The Asymmetry of Antimatter in the Proton

Wolfgang Lorenzon

(8-Mar-2021)

U-M: HEP Seminar

Nature 590, 561 (2021) article by SeaQuest collaboration

Michigan collaborators:

C.A. Aidala, C. Ayuso, A. Chen, W. Lorenzon, I. Mooney, D.H. Morton, B.J. Ramson, J.G. Rubin, T. Sawada, M.B.C. Scott

The Proton

proton discovered in 1917

 $\circ {}^{14}N + \alpha \rightarrow {}^{17}O + p$

- o extensively studied, but still puzzling
 - size? spin? mass?
- future Electron-Ion Collider (>2030)
 - o how does the mass of the nucleon arise?
 - o how does the spin of the nucleon arise?

The Proton

- proton is spin-1/2 particle
- proton is not pointlike (made of three constituents, called quarks)

The Proton – is it boring?

Fermilab 95-759

Proton - more than just constituents

Histogram of notes used in Beethoven's 5th symphony

Both plots focus on constituents rather than interactions Interactions are important - they create the dynamics

Plot inspired by J. Arrington (ANL)

Proton - more than just constituents

• the 1st four notes

 adding rhythmic variation

• with full dynamics

Histogram of notes used in Beethoven's 5th symphony

Interactions are important - they create the dynamics

Proton - more than just constituents

 the 1st four notes (G, E, F, D)

 adding rhythmic variation

• with full dynamics

Histogram of notes used in Beethoven's 5th symphony

Interactions are important - they create the dynamics

The Proton

- quarks are held together by strong nuclear force, which arises when quarks exchange gluons
- complex internal structure generated by interactions between pointlike constituents (quarks/partons).
- Uncertainty Principle dictates: quarks must be in motion - at close to speed of light:

$$p \ge \frac{\hbar}{x}$$
: for M_q = 350 MeV, x = 1 fm
 $\rightarrow v \ge 0.6 c$

→ proton is a strongly-coupled, relativistic, infinite-body system

In the News

QUANTUM PHYSICS

Decades-Long Quest Reveals Details of the Proton's Inner Antimatter

In the News

nature > nature podcast > article

NATURE PODCAST · 24 FEBRUARY 2021

The quark of the matter: what's really inside a proton?

The surprising structure of protons, and a method for growing small intestines for transplantation.

Protons are messy on the inside. Made of three main quarks (illustrated with large spheres), the particles also harbor a constantly shifting collection of transient quarks and antiquarks (smaller spheres) and gluons (squiggles) that bind the quarks together.

Probing the inner Structure of the Proton

Structure Functions

QCD effects on structure functions

Example:
$$F_2(x) = \sum_f e_f^2 x q_f(x)$$
 represents quark

momentum distribution inside nucleon

Parton Distribution Functions

Dramatic rise in gluon distribution discovered at HERA in 1990's.

The Quark "Sea" derives from the Gluon "Ocean" by gluon splitting into a quark-antiquark pair

Gluon splitting drives the dynamics at x<0.1

Flavor Structure of the Proton

Constituent Quark Model Pure valence description: proton = 2u + d

Perturbative Sea

sea quark pairs from $g \rightarrow q\overline{q}$ should be flavor symmetric:

$$\overline{d} = \overline{u}$$

Flavor Structure of the Proton: Brief History

- → Perturbative Sea $\overline{d}(x) = \overline{u}(x)$
- → NMC (Gottfried Sum Rule) $\int_0^1 \left[\overline{d}(x) - \overline{u}(x) \right] dx \neq 0$

NA51:
$$\overline{d} > \overline{u}$$

17

Flavor Structure of the Proton: Brief History

- → Perturbative Sea $\overline{d}(x) = \overline{u}(x)$
- → NMC (inclusive DIS) $\int_0^1 \left[\overline{d}(x) - \overline{u}(x) \right] dx \neq 0$
- → NA51 (Drell-Yan) $\overline{d}(x) > \overline{u}(x)$

đ

u

- → E866/NuSea (Drell-Yan) $\overline{d}(x) > \overline{u}(x)$
- What is the origin of the sea?
- → Significant part of the LHC beam

W'

Flavor Structure of the Proton: Brief History

- ➡ Perturbative Sea
- → NMC (inclusive DIS)
- → NA51 (Drell-Yan)

→ E866/NuSea (Drell-Yan)

- are there more gluons and thus symmetric anti-quarks at higher x?
- unknown other mechanisms with unexpected x-dependence?
- non-perturbative QCD models can explain excess d-bar quarks, but not return to symmetry or deficit of d-bar quarks

 $d > \overline{u}$

E866:

Flavor Structure of the Proton: Models

Non-perturbative models: alternate d.o.f.

Meson Cloud Models

Quark sea from cloud of 0 mesons:

Chiral-Quark Soliton Model

- quark d.o.f. in a pion mean-field: $u \rightarrow d + \pi^+$
- nucleon = chiral soliton
- one parameter: dynamically generated quark mass
- expand in 1/N_c:

Statistical Model

- nucleon = gas of massless partons
- few parameters: generate parton distribution functions
- input: QCD: chiral structure DIS: u(x) and d(x)

$$\rightarrow \overline{d} > \overline{u}$$

 \Rightarrow important constraints on flavor asymmetry for polarization of light sea

 $\bullet |\overline{d} > \overline{u}|$

$$\Delta \overline{q} = 0$$

$$\Delta \overline{u} \cong -\Delta \overline{d} > 0$$

Probing the inner Structure of the Proton

SIDIS and Drell-Yan have similar physics reach:

- → tools to probe quark and antiquark structure of nucleon
- electromagnetic probes

SIDIS (spacelike)

Quintessential probe of hadron structure:

- relatively simple to measure and calculate
- charge-weighted flavor sensitivity
- QCD final state effects
- fragmentation process
- no quark-antiquark selectivity

Drell-Yan (timelike) virtual photon

Cleanest probe to study hadron structure:

- ➡ no QCD final state effects
- ➡ no fragmentation process
- production of two TMD parton distribution functions
- ability to select sea quark distribution
- → hadron beam: σ(DY) / σ(nuclear) ≈ 10⁻⁷

credit: A. Kotzinian

10% of available beam to SeaQuest / 90% to neutrino program

The long Path towards the Science

- Stage I approval in 2001
- Stage II approval in Dec 2008
 - U-M group joined experiment
- Commissioning Runs (Apr 2012 Feb 2014, w/ interruptions)
 - Data Collection (Feb 2014 Jul 2017)

Expt.	Experiment			Com	Shut	Com	Expe	eriment		
Funded	Construction			Run	down	Run	F	Runs		
	2009	2010	2011	2012		2013	2014	2015	2016	2017

Invariant Mass Reconstruction

- Monte Carlo sims describe data well
- Resolution as expected
 - $\sigma_M(J/\psi)$ = 210 MeV/c²
 - J/ ψ to ψ' separation
- Drell-Yan mass region: > 4.5 GeV/c²
- Invariant mass spectra for LH₂ and DH₂ look very similar

Event Selection & Reconstruction

- Monte Carlo sims describe data well
- Resolution as expected
 - $\sigma_M(J/\psi)$ = 210 MeV/c²
 - J/ ψ to ψ' separation
- Drell-Yan mass region: > 4.5 GeV/c²
- Invariant mass spectra for LH₂ and DH₂ look very similar

- good Target/Dump separation
- pointing resolution poor along beam axis
- dominated by random coincidences

Fixed Target Drell-Yan: Sensitivity to sea quarks

Cross section: convolution of beam and target parton distributions

$$\frac{d^2\sigma}{dx_b dx_t} = \frac{4\pi\alpha^2}{x_b x_t s} \sum_{q \in \{u, d, s, \dots\}} e_q^2 [\overline{q}_t(x_t)q_b(x_b) + q_t(x_t)\overline{q}_b(x_t)]$$

u-quark dominance (2/3)² vs. (1/3)² acceptance limited (Fixed Target, Hadron Beam)


```
beam: valence quarks at high x
```

```
target: sea quarks at low/intermediate x
```

$$\frac{\sigma^{pd}}{2\sigma^{pp}} \approx \frac{1}{2} \left[1 + \frac{\overline{d}(x_t)}{\overline{u}(x_t)} \right]$$

Analysis Challenge

- Neutrino program extracts full beam from Main Injector in ~ 1 ms
- SeaQuest uses slow-spill extraction for 4 s every 60 s
- Primary challenge: large fluctuations in the bunch beam intensity
 - variation in track reconstruction efficiency
 - change in rate of accidental coincidences
- Remedy options:
 - reject all events above a certain (low) threshold (absorb remainder into syst. error)
 - large impact on stat. error
 - model each effect in MC, parametrize effect, and apply to data
 - syst. effect of model and any still unknown effects grows too large?
 - fit ratio of final (ie. lumi-corrected) yields on LH₂(x,I) and LD₂(x,I) to a functional form -> extrapolate to zero intensity
 - retain full statistical power of the data, w/o need to model every effect

Analysis Challenge

- Neutrino program extracts full beam from Main Injector in ~ 1 ms
- SeaQuest uses slow-spill extraction for 4 s every 60 s
- Primary challenge: large fluctuations in the bunch beam intensity
 - variation in track reconstruction efficiency
 - change in rate of accidental coincidences
- Remedy:
 - fit ratio of final (ie. lumi-corrected) yields on LH₂(x,I) and LD₂(x,I) to a functional form -> extrapolate to zero intensity
 - data alone are being used to measure and correct for the intensity dependence
 - χ^2 / dof = 38.7 / 40 for the simultaneous fit of all five x_t bins

SeaQuest Cross Section Ratio

- different kinematics and Q² for E866 & SeaQuest data sets
 - E866 data at Q² = 54 GeV²
 - SeaQuest data at Q² ≈ 29 GeV²
 - different beam energies & acceptances -> slightly different x_b distributions
- cross section ratios calculated in NLO with CT18 parton distribution

SeaQuest d_bar / u_bar extraction

- Different Q² for E866 and SeaQuest
 - o difference should be insignificant
- why is there disagreement at high x?
 - no explanation found yet

SeaQuest d_bar / u_bar extraction

- SeaQuest data reasonably well described by meson-baryon model & statistical model
 - those predictions do NOT support the drop seen at high x for E866 data
- data will ultimately be compared to Lattice QCD calculations

- replace unpolarized E906 target w/ polarized target \rightarrow LANL and UVA effort
- move polarized target ~3m upstream
 - \rightarrow improves target-dump separation
 - \rightarrow moves acceptance to lower x_2

 $L_{int} = 1.82 \times 10^{42}/cm^2 NH_3 / 2.11 \times 10^{42}/cm^2 ND_3$ for 2 years

Sivers Function

operator structure: horizontal direction is that of the virtual boson probing the distribution

The main physics focus for SpinQuest is on the Sivers Function

- describes transverse-momentum distribution of unpolarized quarks inside transversely polarized proton
- captures non-perturbative spin-orbit coupling effects inside a polarized proton
 - Sivers function is odd under "naïve timereversal"
 - operation that reverses all vectors and pseudo-vectors but does not exchange initial and final states
 - leads to
 - → $sin(\phi_h \phi_S)$ asymmetry in SIDIS
 - → sinφ_b asymmetry in Drell-Yan
 - measured in SIDIS (HERMES, COMPASS, Jlab)

Sivers Function and Spin Crisis $f_{1T}^{\perp} = 0$ cannot exist w/o quark OAM

But: connection b/w Sivers function and OAM is yet model-dependent

What does data tell us?

How measure quark OAM ?

- **GPD:** Generalized Parton Distribution
- TMD: Transverse Momentum Distribution

$$A_N^{DY} \propto \frac{u(x_b) \cdot f_{1T}^{\perp, \bar{u}}(x_t)}{u(x_b) \cdot \bar{u}(x_t)}$$

Projected DY Transverse Single Spin Asymmetry

- existing SIDIS data poorly constrain sea-quark Sivers function (Anselmino)
- significant Sivers asymmetry expected from meson-cloud model (Sun & Yuan)
- determine sign and value of sea quark Sivers asymmetry
- measure sea quark Sivers flavor dependence (H & D targets)

If $A_N \neq 0$, **major discovery**: "Smoking Gun" evidence for $L_{\overline{u},\overline{d}} \neq 0$

Let's Polarize the Beam at Fermilab (E-1027)

The Plan:

- Use SpinQuest Spectrometer
- Add polarized beam

Fermilab (best place for polarized DY):

→ very high luminosity, large x-coverage (primary beam, fixed target)

Measure sign-change in Sivers Function:

- → sign, size and shape of Sivers function
- \rightarrow and TMD evolution
- Access to valence quarks

$$\left. f_{1T}^{\perp} \right|_{SIDIS} = - \left. f_{1T}^{\perp} \right|_{DY}$$

Expected Precision from E-1027 at Fermilab

Probe Valence Quark Sivers Asymmetry with a polarized proton beam at SeaQuest

Experimental Conditions

- same as SpinQuest
- luminosity: $L_{av} = 2 \times 10^{35}$ (10% of available beam time: $I_{av} = 15$ nA)
- 3.2 X 10¹⁸ total protons for 5 x 10⁵ min: (= 2 yrs at 50% efficiency) with $P_b = 60\%$

Can measure not only sign, but also the size & probably shape of the Sivers function! as well as TMD evolution!

Search for Dark Photons at SeaQuest

Minimal impact on Drell-Yan program

→ run parasitically during E906/E1039

$$l_o \approx \frac{0.8 \, cm}{N_{eff}} \left(\frac{E_o}{10 \, GeV}\right) \left(\frac{10^{-4}}{\varepsilon}\right)^2 \left(\frac{100 \, MeV}{m_{A'}}\right)^2$$

J. D. Bjorken et al, PRD 80 (2009) 075018

SeaQuest experimental parameters:

 \rightarrow E₀ = 5 - 110 GeV for Proton Bremsstrahlung

→
$$N_{eff} = 2$$

→ $I_0 = 0.17m - 5.95m$

Fermilab - Summary and Outlook

Experiments	Timeline	Interactions	Physics	E SendensEROS 2 HAGNEEROS 15 8 1 1 1 1 1 1 1 1 1 1 1 1 1
E906 (SeaQuest)	2014 - 2017	$p + LH_2 / LD_2$ p + C, Fe, W	dbar/ubar, nucl dep quark dE/dx	$Drett-Yan Target Single-Spin Asymmetry pp^{\tau(d^{T})} \rightarrow w^{\tau_{1}} x, 4 < M_{pix} < 9 GeV$
E1039 (SpinQuest)	2021 – 2023+	p + pol NH ₃ p + pol ND ₃	sea-quark Sivers, TMD	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
E1027	(?)	pol p + LH_2 or pol p + pol NH ₃	valence quark Sivers, sign change, TMDs	Ansetmino et al. 309 0.15 0.2 0.25 0.3 0.35 Ansetmino et al. 0.04 0.02 0.
E1067 (DarkQuest)	2016 - 2023+ (para.) 2023+ (dedicated?)	p + any target	dark photon, dark Higgs, dark Z,	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
				10^{-8} 10^{-7} $CHARM$ v - Cal I (p brem) 10^{-7} v - Cal I (π^0) 10^{-8} 10^{-

Summary & Outlook

SeaQuest confirms that nature prefers anti-down to anti-up quarks in proton

--> preference for anti-down quarks persists even in previously unmeasured domains

- → in fact, measurements show that there are more anti-down than anti-up quarks up to the quarks' fractional momenta of almost 0.5
- However, inconsistency between SeaQuest and E866 above x > 0.3 is unresolved and requires further study
 - → future experiments need precision at least comparable to that of Seaquest
 - nevertheless, precision of current results has potential implications for collider experiments that are searching for physics BSM of particle physics
- Origin of the observed antimatter asymmetry remains elusive though
 - → will ultimately be compared to Lattice QCD calculations
 - \rightarrow be a good test for QCD

Exciting future opportunities at Fermilab for fundamental study of proton

- → what role do sea quarks play in resolving the spin puzzle?
- \rightarrow is there significant orbital angular momentum?
- → does TMD formalism work? Does Sivers function change sign (but keep shape /size)?
- Expand SpinQuest physics reach to Dark Photon search?

Thank You

Non-perturbative Models: Pion Cloud

Meson Cloud in the nucleon Sullivan process in DIS

$$|p\rangle = |p_0\rangle + \alpha |N\pi\rangle + \beta |\Delta\pi\rangle + \gamma |\Lambda K\rangle + \dots$$

In its simplest form, Clebsch-Gordon Coefficients and πN , $\pi \Delta$ couplings 1 - 1 7 $\int \mathbf{1}$ 0

•
$$\alpha$$
: $|N\pi\rangle = \begin{cases} |p,\pi^0\rangle & \frac{uu+dd}{2} & -\sqrt{\frac{1}{3}} \\ |n,\pi^+\rangle & u\bar{d} & \sqrt{\frac{2}{3}} \end{cases}$ • predicts $\bar{d} \ge \bar{u}$

•
$$\beta: |\Delta \pi\rangle = \begin{cases} |\Delta^{++}, \pi^-\rangle & d\bar{u} & \sqrt{\frac{1}{2}} \\ |\Delta^+, \pi^0\rangle & \frac{u\bar{u}+d\bar{d}}{2} & -\sqrt{\frac{1}{3}} \\ |\Delta^0, \pi^+\rangle & u\bar{d} & \sqrt{\frac{1}{6}} \end{cases}$$

- cannot have

$$d \leq \bar{u}$$

Acceptance

Acceptance is very similar for LH₂ and LD₂ targets

– both M and P_T (for all but the very highest P_T bins) distributions have same shapes

Sivers Function

T-odd observables

- → SSA observable $\vec{J} \cdot (\vec{p}_1 \times \vec{p}_2)$ odd under naïve Time-Reversal
- since QCD amplitudes are T-even, must arise from interference (between spin-flip and non-flip amplitudes with different phases)
- should all be completely suppressed in perturb hard scattering subprocess xsec
- A T-odd function like f_{1T}^{\perp} must arise from interference (How?)

