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The Proton

• proton discovered in 1917
o

o extensively studied, but still puzzling
 size?   spin?   mass? 

• future Electron-Ion Collider (>2030)
o how does the mass of the nucleon arise?
o how does the spin of the nucleon arise?
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size: (~1 fm)

• proton is spin-1/2 particle
• proton is not pointlike

(made of three constituents, called quarks)
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The Proton

QM pred.

experiment
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The Proton – is it boring?
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Proton - more than just constituents

Plot inspired by J. Arrington (ANL)

Histogram of notes used in 
Beethoven’s 5th symphony

Both plots focus on constituents rather than 
interactions

Interactions are important  - they create the dynamics
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Proton - more than just constituents

Plot inspired by J. Arrington (ANL)

Histogram of notes used in 
Beethoven’s 5th symphony

Both plots focus on constituents rather than 
interactions

Interactions are important  - they create the dynamics

• the 1st four notes 

• adding rhythmic 
variation

• with full dynamics
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Proton - more than just constituents

Plot inspired by J. Arrington (ANL)

Histogram of notes used in 
Beethoven’s 5th symphony

Both plots focus on constituents rather than 
interactions

Interactions are important  - they create the dynamics

• the 1st four notes 
(G, E, F, D)

• adding rhythmic 
variation

• with full dynamics
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The Proton
• quarks are held together by strong nuclear force, 

which arises when quarks exchange gluons
• complex internal structure generated by interactions 

between pointlike constituents (quarks/partons).
• Uncertainty Principle dictates: 

quarks must  be in motion - at close 
to speed of light:

for Mq = 350 MeV, x = 1 fm

→ proton is a strongly-coupled, 
relativistic, infinite-body
system
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In the News
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In the News

11



12

Probing the inner Structure of the Proton
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DIS

cross-section measurements

Structure Functions

Parton Distribution Functions

decomposed

interpreted

process 
dependent

universal

Quintessential probe of hadron structure
– relatively simple to measure
– relatively easy to calculate 
– charge-weighted flavor sensitivity
– no quark-antiquark selectivity

J. Qiu: “Structure functions and 
parton distributions”   

https://arxiv.org/abs/nucl-th/02110

https://arxiv.org/abs/nucl-th/0211086


QCD effects on structure functions

Example:

represents quark 
momentum distribution 
inside nucleon
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quark sea

Structure Functions



Parton Distribution Functions

• Dramatic rise in gluon distribution 
discovered at HERA in 1990’s.

• The Quark “Sea” derives from the 
Gluon “Ocean” by gluon splitting 
into a quark-antiquark pair

• Gluon splitting drives the dynamics 
at x<0.1 
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➡ Constituent Quark Model
Pure valence description: proton =  2u + d

➡ Perturbative Sea
sea quark pairs from g      qq
should be flavor symmetric:
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Flavor Structure of the Proton 

d u=

➡What does the data tell us?

No Data,  d u=
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d u>
➡ Perturbative Sea

➡ NMC (Gottfried Sum Rule)
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Flavor Structure of the Proton: Brief History

NA51:
( ) ( )d x u x=

1

0
( ) ( )  0d x u x dx − ≠ ∫

➡ Knowledge of parton
distributions is data driven

– Sea quark distributions are 
difficult for Lattice QCD 16

1994

1994



➡ Perturbative Sea

➡ NMC (inclusive DIS)

➡ NA51 (Drell-Yan) 

➡ E866/NuSea (Drell-Yan)
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( ) ( )d x u x=

1

0
( ) ( )  0d x u x dx − ≠ ∫

( ) ( )d x u x>

( ) ( )d x u x>

➡What is the origin of the sea?

➡ Significant part of the LHC beam

W’

Flavor Structure of the Proton: Brief History

d u>E866:

17
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– are there more gluons and thus 
symmetric anti-quarks at higher x?

– unknown other mechanisms with 
unexpected x-dependence?

– non-perturbative QCD models can explain 
excess d-bar quarks, but not return to 
symmetry or deficit of d-bar quarks
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Flavor Structure of the Proton: Brief History
➡ Perturbative Sea

➡ NMC (inclusive DIS)

➡ NA51 (Drell-Yan) 

➡ E866/NuSea (Drell-Yan)

d u>E866:

➡parton distributions is 
data driven
– global fits by CTEQ6 

incl E866 data



Flavor Structure of the Proton: Models  
Non-perturbative models: alternate d.o.f.

Meson Cloud Models    Chiral-Quark Soliton Model     Statistical Model

Quark sea from cloud
of 0  mesons:

• quark d.o.f. in a pion 
mean-field: u       d + π+

• nucleon = chiral soliton
• one parameter:

dynamically generated
quark mass

• expand in 1/Nc: 

• nucleon = gas of
massless partons

• few parameters:
generate parton
distribution functions

• input: 
QCD: chiral structure
DIS: u(x) and d(x)

Þ important constraints on flavor asymmetry for polarization of light sea
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d u> d u> d u>

0q∆ = 0u d∆ ≅ −∆ > 0, 0d u∆ < ∆ >
19



• SIDIS and Drell-Yan have similar physics reach: 
➡ tools to probe quark and antiquark structure of nucleon
➡ electromagnetic probes  

SIDIS (spacelike) Drell-Yan (timelike) virtual photon

Cleanest probe to study hadron structure:
➡ no QCD final state effects 
➡ no fragmentation process
➡ production of two TMD parton

distribution functions 
➡ ability to select sea quark distribution
➡ hadron beam:  σ(DY) / σ(nuclear) ≈ 10-7

Quintessential probe of hadron structure:
➡ relatively simple to measure and  

calculate 
➡ charge-weighted flavor sensitivity
➡ QCD final state effects 
➡ fragmentation process
➡ no quark-antiquark selectivity
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Probing the inner Structure of the Proton



Tevatron 800 GeV

Main Injector 
120 GeV

SeaQuest Experiment

21
10% of available beam to SeaQuest /   90% to neutrino program



The long Path towards the Science

• Stage I approval in 2001
• Stage II approval in Dec 2008

- U-M group joined experiment
• Commissioning Runs (Apr 2012 – Feb 2014, w/ interruptions)
• Data Collection  (Feb 2014 – Jul 2017)

2009

2011

Expt. 
Funded

2010

Experiment 
Construction

Com                    Com Experiment
Run                     Run Runs

2012

2013

Shut
down

2014
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2017

2015

2016



Drawing:  T. O’Connor 
and K. Bailey

SeaQuest Spectrometer
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Invariant Mass Reconstruction

 Monte Carlo sims describe data well
 Resolution as expected

– σM(J/ψ ) = 210 MeV/c2

– J/ψ to ψ’ separation
 Drell-Yan mass region: > 4.5 GeV/c2

 Invariant mass spectra for LH2 and 
DH2 look very similar
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Event Selection & Reconstruction
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 good Target/Dump separation

 pointing resolution poor along 
beam axis

 dominated by random 
coincidences

 Monte Carlo sims describe data well
 Resolution as expected

– σM(J/ψ ) = 210 MeV/c2

– J/ψ to ψ’ separation
 Drell-Yan mass region: > 4.5 GeV/c2

 Invariant mass spectra for LH2 and 
DH2 look very similar



Drell-Yan Spectrometer for E906Fixed Target Drell-Yan:  Sensitivity to sea quarks

• Cross section: convolution of beam and target parton distributions
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Analysis Challenge

 Neutrino program extracts full beam from Main Injector in ~ 1 ms
 SeaQuest uses slow-spill extraction for 4 s every 60 s
 Primary challenge: large fluctuations in the bunch beam intensity

– variation in track reconstruction efficiency
– change in rate of accidental coincidences

 Remedy options:
– reject all events above a certain (low) threshold (absorb remainder into syst. error)

• large impact on stat. error

– model each effect in MC, parametrize effect, and apply to data
• syst. effect of model and any still unknown effects grows too large?

– fit ratio of final (ie. lumi-corrected) yields on LH2(x,I) and LD2(x,I) to a functional 
form -> extrapolate to zero intensity

• retain full statistical power of the data, w/o need to model every effect 
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Analysis Challenge

 Neutrino program extracts full beam from Main Injector in ~ 1 ms
 SeaQuest uses slow-spill extraction for 4 s every 60 s
 Primary challenge: large fluctuations in the bunch beam intensity

– variation in track reconstruction efficiency
– change in rate of accidental coincidences

 Remedy:
– fit ratio of final (ie. lumi-corrected) yields on LH2(x,I) and LD2(x,I) to a functional 

form -> extrapolate to zero intensity
• data alone are being used to measure and correct for the intensity dependence
• χ2 / dof = 38.7 / 40 for the simultaneous fit of all five xt bins
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 different kinematics and Q2 for E866 & SeaQuest data sets
 E866  data at Q2 = 54 GeV2 

 SeaQuest data at Q2 ≈ 29 GeV2 

 different beam energies & acceptances -> slightly different xb distributions
 cross section ratios calculated in NLO with CT18 parton distribution

SeaQuest Cross Section Ratio
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 Different Q2 for E866 and SeaQuest
o difference should be insignificant

 why is there disagreement at high x? 
o no explanation found yet

SeaQuest d_bar / u_bar extraction
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SeaQuest d_bar / u_bar extraction

 SeaQuest data reasonably well described by meson-baryon model & statistical 
model 

o those predictions do NOT support the drop seen at high x for E866 data 
 data will ultimately be compared to Lattice QCD calculations



E906 Spectrometer 
x

• replace unpolarized E906 target w/ polarized target
→ LANL and UVA effort

• move polarized target ~3m upstream
→ improves target-dump separation
→ moves acceptance to lower x2

B-
Fi

el
d

Lint = 1.82 *1042/cm2  NH3 /    2.11 *1042/cm2  ND3 for 2 years

The SpinQuest Experiment

x
y

Polarized 
Target
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• The main physics focus for SpinQuest is 
on the Sivers Function

• describes transverse-momentum 
distribution of unpolarized quarks inside 
transversely polarized proton

• captures non-perturbative spin-orbit 
coupling effects inside a polarized proton

• Sivers function is odd under “naïve time-
reversal”
➡ operation that reverses all vectors and pseudo-vectors 

but does not exchange initial and final states

• leads to
➡ sin(φh – φS) asymmetry in SIDIS

➡ sinφb asymmetry in Drell-Yan

• measured in SIDIS (HERMES, COMPASS, Jlab)

Sivers Function

33
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Anselmino et al. (PRD79, 54010(2009))

First moment of Sivers functions:

➡ u- and d-Sivers have opposite 
signs, of roughly equal magnitude

➡u-Sivers slightly smaller than 
d-Sivers

operator structure: horizontal direction is that of the virtual boson probing the distribution



Anselmino et al. (PRD79, 54010(2009))

First Moments of Sivers Function from SIDIS

existing SIDIS data poorly constrain sea-quark Sivers function



But: connection  b/w Sivers function and OAM is yet model-dependent

What does data tell us? 

How  measure quark OAM ? 
• GPD: Generalized Parton Distribution
• TMD: Transverse Momentum Distribution

35

cannot exist w/o quark OAM

25%
2 L 50% (4% (valence)+46% (sea))
2
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Lattice QCD:

K.-F. Liu et al arXiv:1203.6388
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Sivers Function and Spin Crisis
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‒ existing SIDIS data poorly constrain 
sea-quark Sivers function 
(Anselmino)

‒ significant Sivers asymmetry 
expected from meson-cloud model 
(Sun & Yuan)

Projected DY Transverse Single Spin Asymmetry

E1039 proposal

‒ determine sign and value of  sea 
quark Sivers asymmetry

‒ measure sea quark Sivers flavor 
dependence (H & D targets)

xtarget

If AN≠0, major discovery: 
“Smoking Gun” evidence for ,L 0u d ≠



The Plan:
 Use SpinQuest Spectrometer
 Add polarized beam

 Fermilab (best place for polarized DY): 
→ very high luminosity, large x-coverage (primary beam, fixed target)

 Measure sign-change in Sivers Function:
→ sign, size and shape of Sivers function
→ and TMD evolution

 Access to valence quarks

Let’s Polarize the Beam at Fermilab (E-1027)
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 Experimental Conditions

– same as SpinQuest
– luminosity: Lav = 2 x 1035 (10% of available beam time: Iav = 15 nA)
– 3.2 X 1018 total protons for 5 x 105 min:  (= 2 yrs at 50% efficiency) with Pb = 60%

Can measure not only sign, but also the size & probably shape of the Sivers function!
as well as TMD evolution!

Expected Precision from E-1027 at Fermilab
• Probe Valence Quark Sivers Asymmetry with a polarized proton beam at SeaQuest

38

1.3 Mio 
DY events 

with no 
dilution



Search for Dark Photons at SeaQuest
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• Classic Beam Dump Experiment

• Minimal impact on Drell-Yan program

➡ run parasitically  during E906/E1039

J. D. Bjorken et al, PRD 80 (2009) 075018

SeaQuest experimental parameters:
➡ E0 = 5 - 110 GeV for Proton 

Bremsstrahlung
➡ Neff = 2
➡ l0 = 0.17m – 5.95m



Fermilab - Summary and Outlook
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Experiments Timeline Interactions Physics

E906
(SeaQuest)

2014 - 2017 p + LH2 / LD2
p + C, Fe, W

dbar/ubar,
nucl dep
quark dE/dx

E1039
(SpinQuest)

2021 – 2023+ p + pol NH3
p + pol ND3

sea-quark Sivers, 
TMD

E1027 (?) pol p + LH2 
or
pol p + pol 
NH3 

valence quark 
Sivers, sign 
change, TMDs

E1067
(DarkQuest)

2016 - 2023+ (para.)
2023+ (dedicated?)

p + any 
target

dark photon, dark 
Higgs, dark Z, …



Summary & Outlook
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• SeaQuest confirms that nature prefers anti-down to anti-up quarks in proton  
→preference for anti-down quarks persists even in previously unmeasured domains
→ in fact, measurements show that there are more anti-down than anti-up quarks up to 

the quarks’ fractional momenta of almost 0.5

• However, inconsistency between SeaQuest and E866 above x > 0.3  is 
unresolved and requires further study 
→ future experiments need precision at least comparable to that of Seaquest
→nevertheless, precision of current results has potential implications for collider 

experiments that are searching for physics BSM of particle physics

• Origin of the observed antimatter asymmetry remains elusive though
→will ultimately be compared to Lattice QCD calculations 
→be a good test for QCD

• Exciting future opportunities at Fermilab for fundamental study of proton
→what role do sea quarks play in resolving the spin puzzle? 
→ is there significant orbital angular momentum?
→does TMD formalism work? Does Sivers function change sign (but keep shape /size)?

• Expand SpinQuest physics reach to Dark Photon search?
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Thank You
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– Meson Cloud in the nucleon Sullivan process in DIS

– In its simplest form, Clebsch-Gordon Coefficients and πN, π∆
couplings

43

Non-perturbative Models:  Pion Cloud

• predicts

• cannot have



Acceptance

 Acceptance is very similar for LH2 and LD2 targets 
– both M and PT (for all but the very highest PT bins) distributions have same shapes
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• T-odd observables
➡ SSA observable ~                 odd under naïve Time-Reversal 
➡ since QCD amplitudes are T-even, must arise from interference 

(between spin-flip and non-flip amplitudes with different phases)

• should all be completely suppressed in perturb hard scattering subprocess xsec

• A T-odd function like        must arise from interference  (How?)

➡

➡ soft gluons: “gauge links” required for color gauge invariance

➡ such soft gluon re-interactions with the soft wavefunction are
final (or initial) state interactions … and maybe process dependent!

➡ leads to sign change:

Sivers Function

 1
⊥
Tf

1 2( )J p p⋅ ×


 

and produce a T-odd effect!
(also need           )0zL ≠

e.g. Drell-Yan)
  1 1
⊥ ⊥= −

SIDIS DYT Tf f
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Brodsky, Hwang & Smith (2002)
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