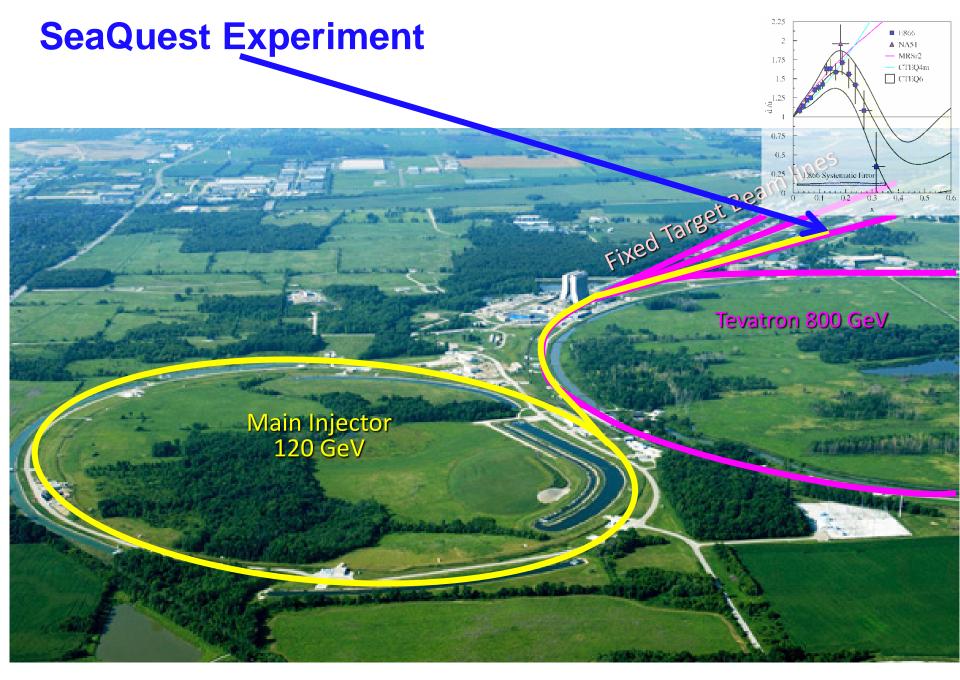
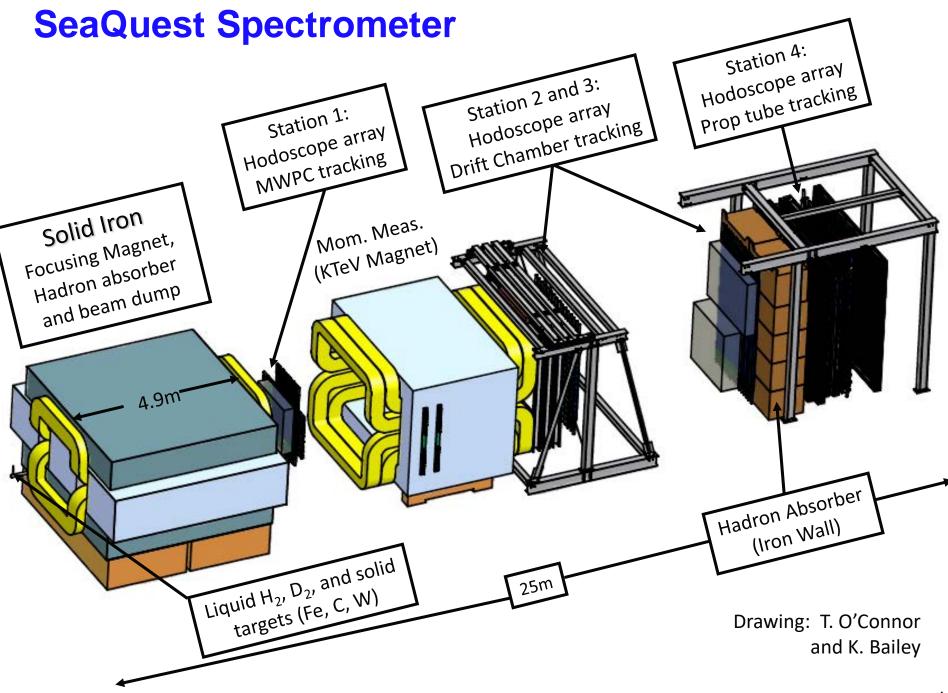

E-906 and future fixed-target Drell Yan

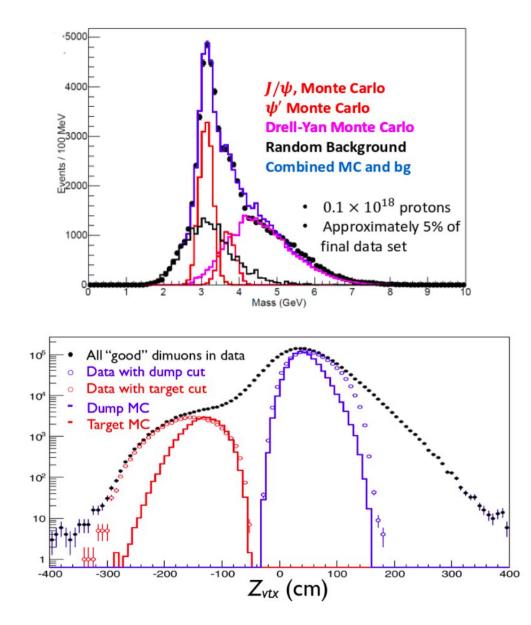
Current and Future D-Y Program at FNAL


Unpolarized Beam and Target w/ SeaQuest detector

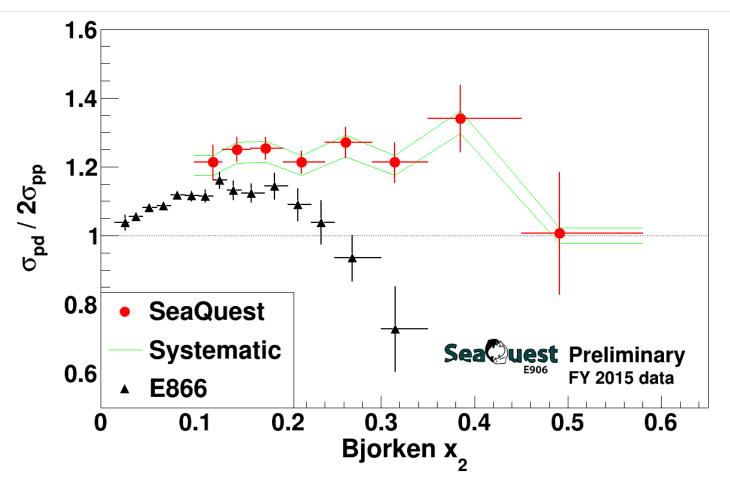
- E-906: 120 GeV p from Main Injector on LH_2, LD_2, C, Fe, W targets \rightarrow high-x Drell-Yan
- Science run: March 2014 July 2017


→ 2015 data set: preliminary results

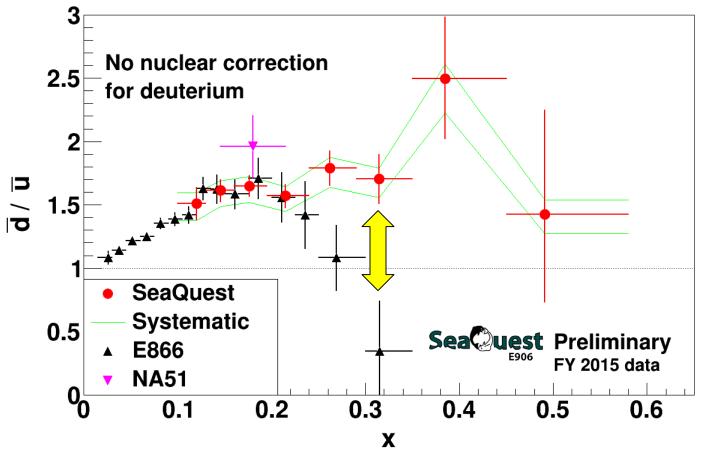
Polarized Beam and/or Target w/ SeaQuest detector


- **E-1039**: SeaQuest w/ pol NH₃ target (2018-2019?)
 - probe sea quark distributions
- E-1027: pol p beam on (un)pol tgt (2020-2021?)
 - → Sivers sign change (valence quark)

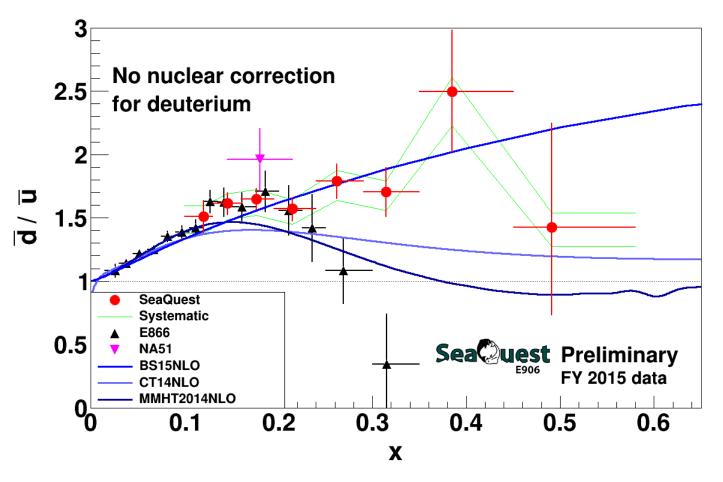
10% of available beam to SeaQuest / 90% to neutrino program


Event Selection & Reconstruction

- Monte Carlo describe data well
- Resolution better than expected
 - $\sigma_M(J/\psi)$ ~180 MeV
 - σ_M(D-Y) ~220 MeV
 - J/ ψ to ψ' separation
 - lower J/ψ mass cut (more Drell-Yan events)

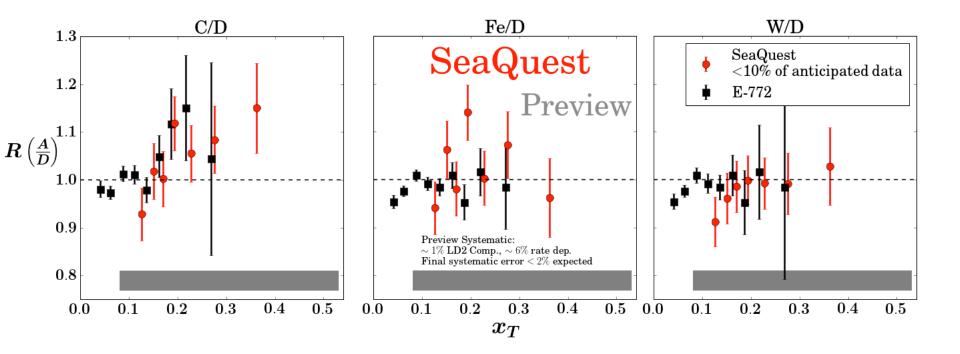

- good Target/Dump separation
- pointing resolution poor along beam axis
- dominated by random coincidences

SeaQuest Cross Section Ratio (2015 Data Set)

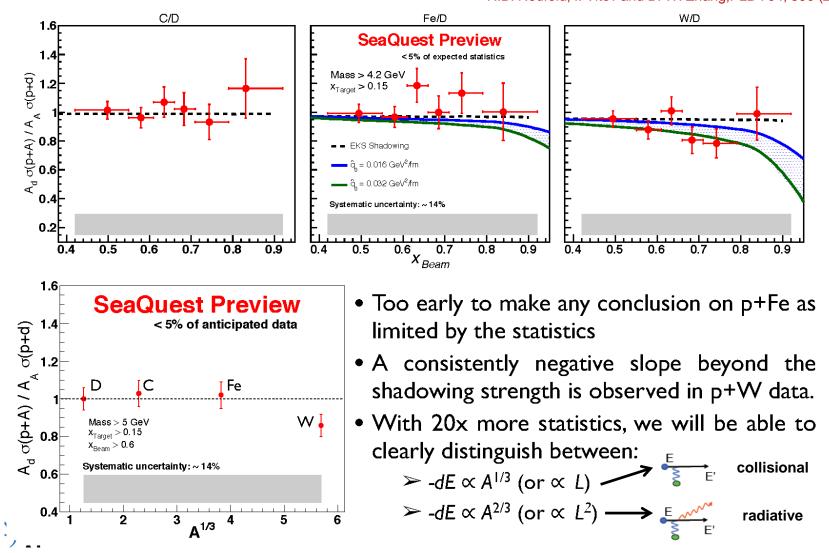

- different kinematics and Q² for E866 & SeaQuest data sets
- new chambers installed in March 2016: improve acceptance in high x₂ region
- 30% of anticipated data ($\sim 1.2 \times 10^{18}$ pot)
- approved for 5×10^{18} pot

SeaQuest Leading Order extraction (2015 Data Set)

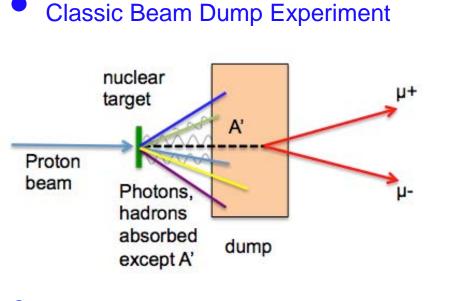
- E866 data is for $Q^2 = 54 \text{ GeV}^2$ while SeaQuest data has $Q^2 \approx 29 \text{ GeV}^2$
 - o difference should be insignificant
- no nuclear correction for deuterium
 - expected larger at higher x, but still small compared to error bars
- is there disagreement at high x?


SeaQuest Leading Order extraction (2015 Data Set)

- BS15 (statistical model) calculated using parameters from NPA941(2015)307
- CT14 and MMHT2014 calculated with the LHAPDF library
- PDF scales taken as 29 GeV²


SeaQuest Nuclear Dependence (Preview)

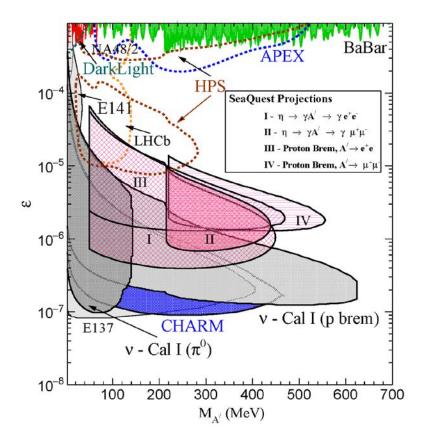
- no antiquark enhancement apparent
- 10% of anticipated statistical precision
- increased detector acceptance at large-x_T to come (new D1 chamber)


SeaQuest Quark Energy Loss (Preview)

- Pre-interaction quark moves through cold nuclear matter and looses energy.
- Expect suppression of the per-nucleon cross section ratio to be significant at high x_{Beam} or x_F
 R.B. Neufeld, I. Vitev and B. W. Zhang, PLB 704, 590 (2011)

10

Search for Dark Photons at SeaQuest

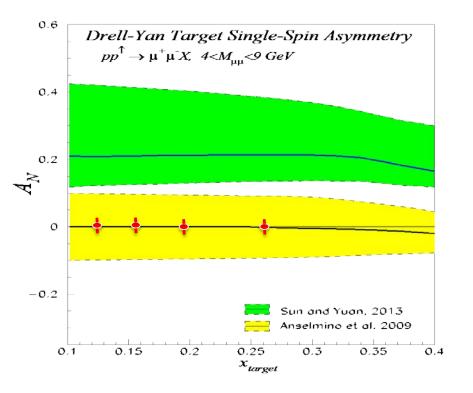


Minimal impact on Drell-Yan program

run parasitically during E906

$$l_o \approx \frac{0.8 \, cm}{N_{eff}} \left(\frac{E_o}{10 \, GeV}\right) \left(\frac{10^{-4}}{\varepsilon}\right)^2 \left(\frac{100 \, MeV}{m_{A'}}\right)^2$$

J. D. Bjorken et al, PRD 80 (2009) 075018


SeaQuest experimental parameters:

 \rightarrow E₀ = 5 - 110 GeV for Proton Bremsstrahlung

→
$$N_{eff} = 2$$

→ $I_0 = 0.17m - 5.95m$

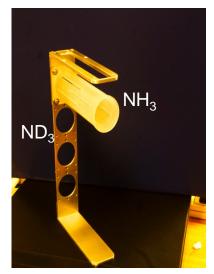
Let's Add a Polarized Target (E-1039)

- Probe **Sea-quark Sivers Asymmetry** with a polarized proton target at SeaQuest
- Projected Statistical Precision with a Polarized Target at (E-1039)

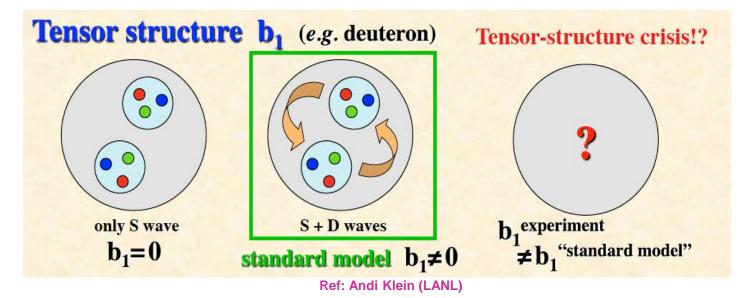
Statistics shown for two calendar years of running:

- $L = 7.2 \times 10^{42} / cm^2 \leftrightarrow POT = 2.8 \times 10^{18}$
- P = 85%

- existing SIDIS data poorly constrain sea-quark Sivers function (Anselmino)
- significant Sivers asymmetry expected from meson-cloud model (Sun & Yuan)
- first Sea Quark Sivers Measurement
- determine sign and value of ū Sivers distribution

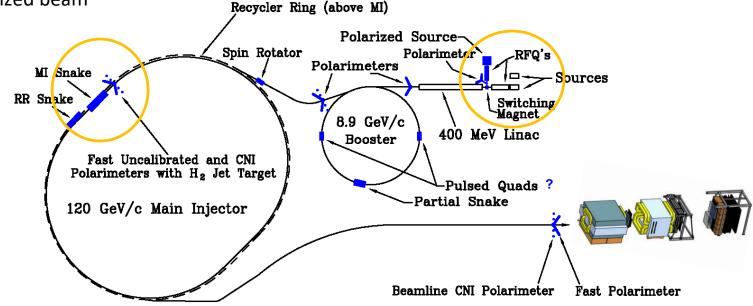

If $A_N \neq 0$, **major discovery**: "Smoking Gun" evidence for $L_{\overline{u}} \neq 0$

Further Plans with Polarized Targets (E-1039')


Probe d Sivers Asymmetry with a polarized ND₃ target at SeaQuest

- SeaQuest only place to measure d-bar (explore during E1039)
- measure Sivers asymmetry for pp and pD and take ratio
 - requires measuring p and "n" in parallel to control systematic errors
 - microwave irradiates both targets at the same time
 - one cell NH_3 , the other ND_3

Target holder


Probe **Tensor** Polarization Deuteron (40% - 50%)

Let's Polarize the Beam at Fermilab (E-1027)

The Plan:

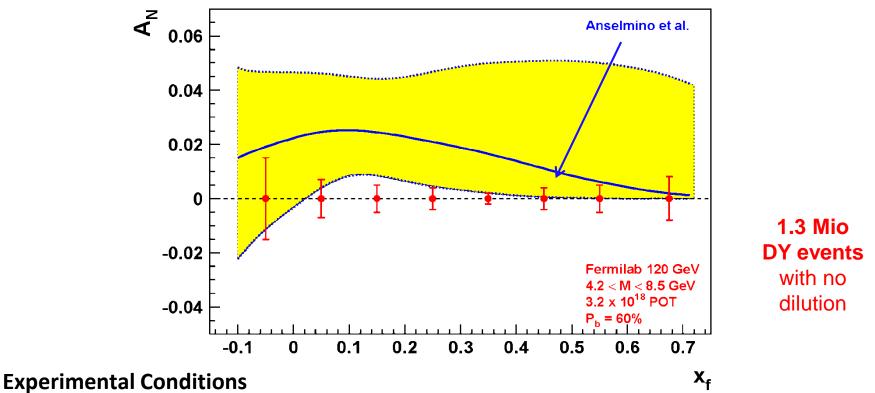
- Use fully understood SeaQuest Spectrometer
- Add polarized beam

- Measure sign-change in Sivers Function:
 - → QCD (and factorization) require sign change
 - → major milestone in hadronic physics (HP13)
- Fermilab (best place for polarized DY):

→ very high luminosity, large x-coverage (primary beam, fixed target)

Cost Est.: \$6M +\$4M Contingency & Management = \$10M (in 2013)

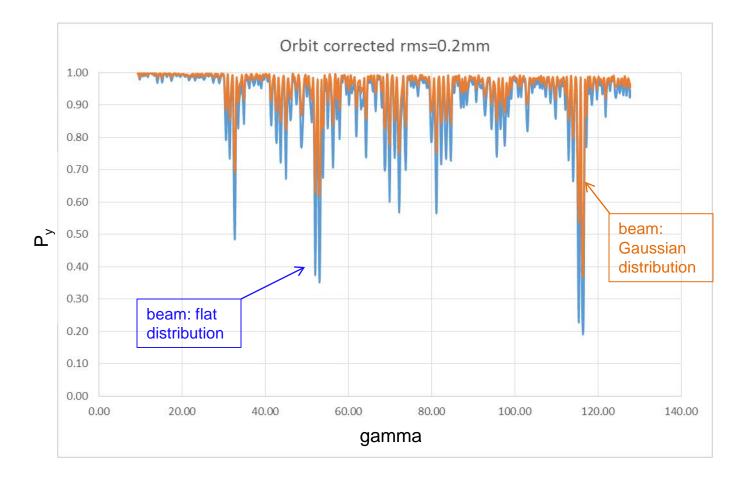
$$\left.f_{1T}^{\perp}\right|_{SIDIS} = -\left.f_{1T}^{\perp}\right|_{DY}$$


(Un)Polarized Drell-Yan Experiments

Experiment	Particles	Energy (GeV)	$\mathbf{x}_{\mathbf{b}}$ or $\mathbf{x}_{\mathbf{t}}$	Luminosity (cm ⁻² s ⁻¹)	$A_{_{T}}^{\sin\phi_{S}}$	P_{b} or P_{t} (f)	rFOM#	Timeline
COMPASS (CERN)	π^{-} + \mathbf{p}^{\uparrow}	160 GeV √s = 17	$x_t = 0.1 - 0.3$	2 x 10 ³³	0.14	P _t = 90% f = 0.22	1.1 x 10 ⁻³	2015-2016, 2018
PANDA (GSI)	$\overline{\mathbf{p}} + \mathbf{p}^{\uparrow}$	15 GeV √s = 5.5	$x_t = 0.2 - 0.4$	2 x 10 ³²	0.07	$P_t = 90\%$ f = 0.22	1.1 x 10 ⁻⁴	>2018
PAX (GSI)	p [↑] + p	collider √s = 14	$x_{b} = 0.1 - 0.9$	2 x 10 ³⁰	0.06	P _b = 90%	2.3 x 10 -5	>2020?
NICA (JINR)	p [↑] + p	collider √s = 26	$x_{b} = 0.1 - 0.8$	1 x 10 ³¹	0.04	P _b = 70%	6.8 x 10 ⁻⁵	>2020?
J-PARC (high-p beam line)	π ⁻ + p	10- 20 GeV √s = 4.4-6.2	$x_{b} = 0.2 - 0.97$ $x_{t} = 0.06 - 0.6$	2 x 10 ³¹				>2019? under discussion
fsPHENIX (RHIC)	$\mathbf{p}^{\uparrow} + \mathbf{p}^{\uparrow}$	$\sqrt{s} = 200$ $\sqrt{s} = 510$	$x_b = 0.1 - 0.5$ $x_b = 0.05 - 0.6$	8 x 10 ³¹ 6 x 10 ³²	0.08	P _b = 60% P _b = 50%	4.0 x 10 ⁻⁴ 2.1 x 10 ⁻³	>2021
SeaQuest (FNAL: E-906)	p + p	120 GeV √s = 15	$x_{b} = 0.35 - 0.9$ $x_{t} = 0.1 - 0.45$	3.4 x 10 ³⁵				2012 - 2017
Pol tgt DY [‡] (FNAL: E-1039)	p + p [↑]	120 GeV √s = 15	$x_t = 0.1 - 0.45$	4.4 x 10 ³⁵	0- 0.2*	P _t = 85% f = 0.176	0.15	>2018
Pol beam DY [§] (FNAL: E-1027)	p [↑] + p	120 GeV √s = 15	x _b = 0.35 - 0.9	2 x 10 ³⁵	0.04	P _b = 60%	1	>2020

⁺8 cm NH₃ target / [§]L= 1 x 10³⁶ cm⁻² s⁻¹ (LH₂ tgt limited) / L= 2 x 10³⁵ cm⁻² s⁻¹ (10% of MI beam limited) *not constrained by SIDIS data / *rFOM = relative lumi * P² * f² wrt E-1027 (f=1 for pol p beams, f=0.22 for π^- beam on NH₃)

Expected Precision from E-1027 at Fermilab


Probe Valence-quark Sivers Asymmetry with a polarized proton beam at SeaQuest

- -
 - same as SeaQuest
 - luminosity: $L_{av} = 2 \times 10^{35}$ (10% of available beam time: $I_{av} = 15$ nA)
 - 3.2 X 10¹⁸ total protons for 5 x 10⁵ min: (= 2 yrs at 50% efficiency) with $P_b = 60\%$

Can measure not only sign, but also the size & probably shape of the Sivers function! as well as TMD evolution!

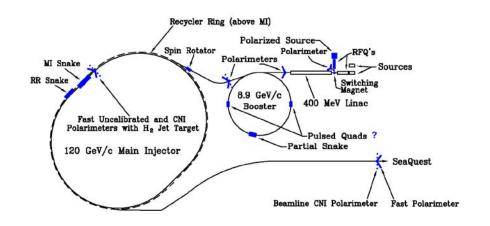
Simulation of final polarization as function of Energy in MI

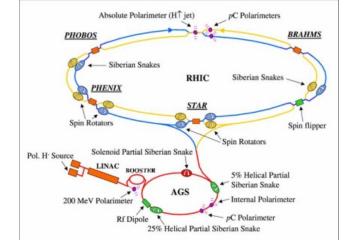
Point-like snake in correct location, actual ramp rate for acceleration.

Polarizations with magnet field error and misalignment (from magnet database and survey group), corrected (for SeaQuest running conditions)

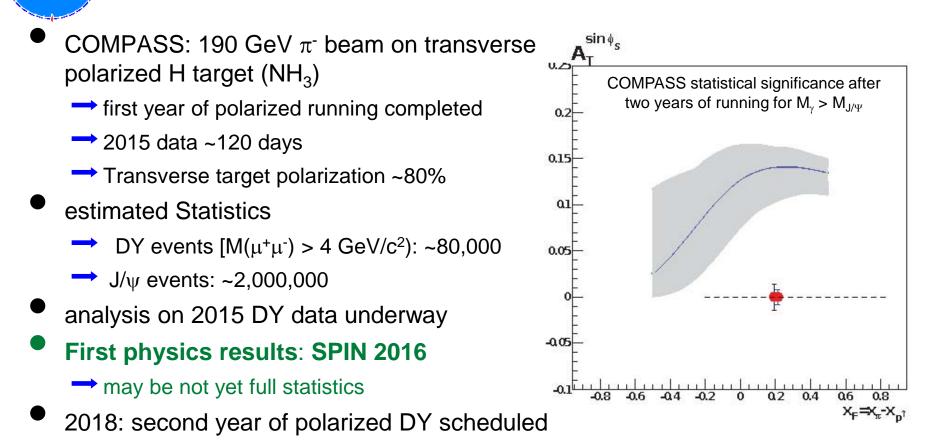
Final polarization: ~ 90%

 ε_{max} = 20 π mm.mrad in y plane and Δp =1.25*10⁻³ in longitudinal plane

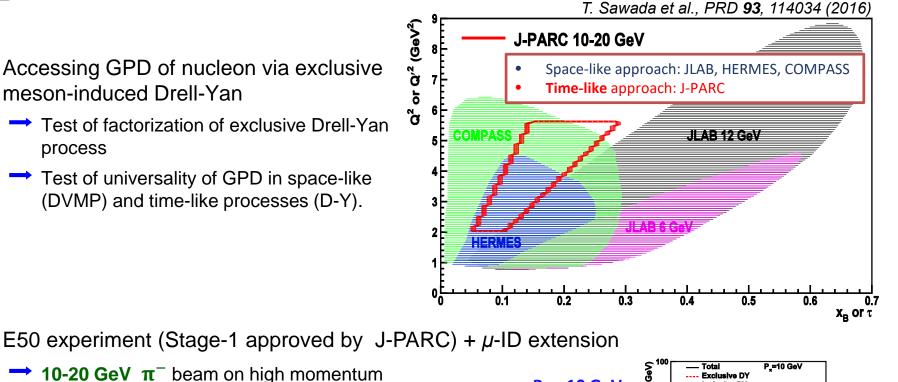

Differences compared to RHIC


Most significant difference: Ramp time of Main Injector < 0.7 s, at RHIC 1-2 min</p>

warm magnets at MI vs. superconducting at RHIC


- → pass through all depolarizing resonances much more quickly
- Beam remains in MI ~2 s, in RHIC ~8 hours
 - extracted beam vs. storage ring
 - much less time for cumulative depolarization
- Disadvantage compared to RHIC no institutional history of accelerating polarized proton beams

Fermilab E704 had polarized beams through hyperon decays


COMPASS Projection & Plans

- COMPASS Beyond 2020 (under study: https://indico.cern.ch/event/502879/)

 - improve significantly our knowledge of pion and kaon PDFs
 - detailed study of the fundamental Lam-Tung relation violation
 - → Gluon TMDs ?

J-PARC Projection & Plans

 $P_{\pi} = 10 \, \text{GeV}$ **Inclusive DY** 8 beam line at J-PARC Random BG \rightarrow good missing mass resolution in exclusive D-Y events $(\pi^- p \rightarrow \mu^+ \mu^- n)$ 40 Statistical accuracy adequate GK2013 (red) for discriminating between BMP2001 (black) 20 predictions from two current 0 0.75 GPD models. $M_{\chi} \, (\text{GeV})^{M_{\chi} (\text{GeV})}$ 20 GK2013: P. Kroll et al. Eur. Phys. J. C73, 2278 (2013) BMP2001: E.R. Berger et al. Phys.Lett.B523, 265 (2001) $|t - t_0|$ (GeV²)

Conclusions

- There is an exiting Drell-Yan program with polarized/unpolarized beams and targets underway
- Future opportunities look very promising
- We are eagerly awaiting results from COMPASS on the sign-change
- Hope to answer some of the questions:
 - How much do the quarks and gluons contribute to the nucleon spin?
 - \rightarrow Is there significant orbital angular momentum?
 - → Does TMD formalism work? Does Sivers function change sign?

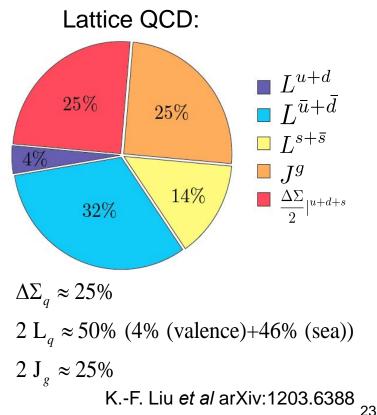
Thank You

Sivers Function and Spin Crisis

cannot exist w/o quark OAM

describes transverse-momentum distribution of unpolarized quarks inside transversely polarized proton

captures non-perturbative spin-orbit coupling effects inside a polarized proton


 $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L \qquad \frac{1}{2}\Delta\Sigma \approx 25\%; \quad \Delta G \approx 20\%$ $\Delta\Sigma = \Delta u + \Delta d + \Delta s \qquad L \approx \text{ unmeasured}$

 $f_{1T}^{\perp} = ($

How measure quark OAM ?

- **GPD:** Generalized Parton Distribution
- TMD: Transverse Momentum Distribution

$$A_N = \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}} \stackrel{2}{\Rightarrow} 0$$
$$A_N^{DY} \propto \frac{u(x_b) \cdot f_{1T}^{\perp,\bar{u}}(x_t)}{u(x_b) \cdot \bar{u}(x_t)}$$

