Opportunities with polarized protons at Fermilab

Wolfgang Lorenzon

\checkmark University of Michigan

PacSPIN2015
(8-October-2015)

Dark energy

$$
\left|f_{1 T}^{\perp}\right|_{D I S}=-\left.f_{1 T}^{\perp}\right|_{D Y}
$$

Current Facilities

- $\mathrm{T} \& \mathrm{~L}$ polarized p beams $\left(V_{s}=200,500 \mathrm{GeV}\right)$
- L program:
$\rightarrow \mathrm{A}_{\mathrm{LL}}{ }^{\pi 0}$ (PHENIX) \& $\mathrm{A}_{\mathrm{LL}}{ }^{\text {jet }}($ STAR $) \rightarrow \Delta \mathbf{g}(\mathbf{x})$
- first significant non-zero results on $\Delta g(x)$
$\rightarrow A_{L}{ }^{W \pm}$ at $V_{s}=500 \mathrm{GeV} \rightarrow \Delta \mathbf{q}_{\mathrm{bar}}(\mathrm{x})$
- surprise: $\Delta \bar{u}-\Delta \bar{d}>0$
- T program:
$\rightarrow \mathrm{A}_{N}{ }^{\pi 0, \eta, \text {,jet }, \ldots} \rightarrow$ Sivers/Collins/Twist-3

120 GeV p from Main Injector on $\mathrm{LH}_{2}, \mathrm{LD}_{2}$, $\mathrm{C}, \mathrm{Ca}, \mathrm{W}$ targets \rightarrow high-x Drell-Yan

- Science data started in March 2014
\rightarrow run for 2 yrs

COMPASS-II

- $190 \mathrm{GeV} \pi^{-}$beam on T-pol H target \rightarrow polarized Drell-Yan
- Data collection started in May 2015
\rightarrow run for 100 days

Future Spin Measurements

New instrumentation in forward direction
\rightarrow higher η : higher $x_{\text {beam, }}$ lower $x_{\text {target }}$

- STAR Forward Calorimeter System: EMCal + HCal
- fsPHENIX: forward spectometer w/ EMCal, HCal, RICH, tracking
\rightarrow planned spin program in $\Delta \mathbf{g}\left(\mathbf{x}, \mathrm{Q}^{2}\right)$ at low-x
(longitudinal) as well as Jets, Drell-Yan (transverse), ...

Polarized Beam and/or Target wl SeaQuest detector
\rightarrow high-Iuminosity facility for polarized Drell-Yan

- E-1039: SeaQuest w/ pol NH_{3} target
\rightarrow probe sea quark distributions
- E-1027: pol p beam on unpol tgt
\rightarrow Sivers sign change (valence quark)

TMDs: Sivers Function

cannot exist w/o quark OAM

- describes transverse-momentum distribution of unpolarized quarks inside transversely polarized proton
- captures non-perturbative spin-orbit coupling effects inside a polarized proton
- Sivers function is naïve time-reversal odd
- leads to
$\rightarrow \sin \left(\phi-\phi_{\mathrm{S}}\right)$ asymmetry in SIDIS
$\rightarrow \sin \phi_{\mathrm{b}}$ asymmetry in Drell-Yan
- measured in SIDIS (HERMES, COMPASS)
- future measurements at Jlab@12 GeV planned

First moment of Sivers functions:
\rightarrow u- and d- Sivers have opposite signs, of roughly equal magnitude

Sivers Asymmetry in SIDIS

- Global fit to $\sin \left(\phi_{\mathrm{h}}-\phi_{S}\right)$ asymmetry in SIDIS (HERMES (p), COMPASS (p), COMPASS (d))

COMPASS (p)

COMPASS (d)

QCD Evolution of Sivers Function

- Initial global fits by Anselmino group included DGLAP evolution only in collinear part of TMDs (not entirely correct for TMD-factorization)
- Using TMD Q ${ }^{2}$ evolution:
\longrightarrow agreement with data improves

TMD Evolution of Sivers Asymmetry (W)

- much stronger than any other known evolution effects
- but needs input from data to constrain nonpertubative part in evolution
- Can only be done at RHIC (plans for 2\% measurement in 2016)

Comparison of extracted TMD (Sivers) will provide strong constraint on TMD evolution

The Sign Change

$$
\left.f_{1 T}^{\perp}\left(x, k_{T}\right)\right|_{\text {SIDIS }}=-\left.f_{1 T}^{\perp}\left(x, k_{T}\right)\right|_{D Y, W}
$$

- fundamental prediction of QCD (in non-perturbative regime)
\rightarrow goes to heart of gauge formulation of field theory
- "Smoking gun" prediction of TMD formalism
- Universality test includes not only the sign-reversal character of the TMDs but also the comparison of the amplitude as well as the shape of the corresponding TMDs
- NSAC Milestone HP13 (2015):
"Test unique QCD predictions for relations between single-transverse spin phenomena in p-p scattering and those observed in deep-inelastic lepton scattering"

Planned Polarized Drell-Yan Experiments

Experiment	Particles	$\begin{gathered} \text { Energy } \\ \text { (GeV) } \end{gathered}$	x_{b} or x_{t}	$\underset{\left(\mathrm{cm}^{-2} \mathrm{~s}^{-1}\right)}{\text { Luminosity }}$	$A_{T}^{\sin \phi_{s}}$	P_{b} or $\mathrm{P}_{\mathrm{t}}(\mathrm{f})$	rFOM ${ }^{*}$	Timeline
COMPASS (CERN)	$\pi^{ \pm}+p^{\uparrow}$	$\begin{aligned} & 160 \mathrm{GeV} \\ & \sqrt{s}=17 \end{aligned}$	$\mathrm{x}_{\mathrm{t}}=0.1-0.3$	2×10^{33}	0.14	$\begin{gathered} P_{t}=90 \% \\ f=0.22 \end{gathered}$	1.1×10^{-3}	2015, 2018
PANDA (GSI)	$\overline{\mathbf{p}}+\mathbf{p}^{\uparrow}$	$\begin{aligned} & 15 \mathrm{GeV} \\ & V_{\mathrm{s}}=5.5 \end{aligned}$	$\mathrm{x}_{\mathrm{t}}=0.2-0.4$	2×10^{32}	0.07	$\begin{aligned} P_{t} & =90 \% \\ f & =0.22 \end{aligned}$	1.1×10^{-4}	>2018
$\begin{aligned} & \text { PAX } \\ & \text { (GSI) } \end{aligned}$	$\mathbf{p}^{\uparrow}+\bar{p}$	collider $V_{s}=14$	$\mathrm{x}_{\mathrm{b}}=0.1-0.9$	2×10^{30}	0.06	$\mathrm{P}_{\mathrm{b}}=90 \%$	2.3×10^{-5}	>2020?
NICA (JINR)	$p^{\uparrow}+\mathbf{p}$	collider $V_{s}=26$	$\mathrm{x}_{\mathrm{b}}=0.1-0.8$	1×10^{31}	0.04	$\mathrm{P}_{\mathrm{b}}=70 \%$	6.8×10^{-5}	>2018
PHENIX/STAR (RHIC)	$\mathbf{p}^{\uparrow}+\mathbf{p}^{\uparrow}$	collider $V_{s}=510$	$\mathrm{x}_{\mathrm{b}}=0.05-0.1$	2×10^{32}	0.08	$\mathrm{P}_{\mathrm{b}}=60 \%$	1.0×10^{-3}	>2018
fsPHENIX (RHIC)	$\mathbf{p}^{\uparrow}+\mathbf{p}^{\uparrow}$	$\begin{aligned} & V_{s}=200 \\ & V_{s}=510 \end{aligned}$	$\begin{gathered} x_{b}=0.1-0.5 \\ x_{b}=0.05-0.6 \end{gathered}$	$\begin{aligned} & 8 \times 10^{31} \\ & 6 \times 10^{32} \end{aligned}$	0.08	$\begin{aligned} & P_{b}=60 \% \\ & P_{b}=50 \% \end{aligned}$	$\begin{aligned} & 4.0 \times 10^{-4} \\ & 2.1 \times 10^{-3} \end{aligned}$	>2021
SeaQuest (FNAL: E-906)	$p+p$	$\begin{aligned} & 120 \mathrm{GeV} \\ & \sqrt{s}=15 \end{aligned}$	$\begin{aligned} x_{b} & =0.35-0.9 \\ x_{t} & =0.1-0.45 \end{aligned}$	3.4×10^{35}	---	---	---	2012-2016
Pol tgt DY ${ }^{\ddagger}$ (FNAL: E-1039)	$p+p^{\uparrow}$	$\begin{aligned} & 120 \mathrm{GeV} \\ & V_{\mathrm{s}}=15 \end{aligned}$	$\mathrm{x}_{\mathrm{t}}=0.1-0.45$	4.4×10^{35}	$\begin{gathered} 0- \\ 0.2^{*} \end{gathered}$	$\begin{gathered} P_{t}=85 \% \\ f=0.176 \end{gathered}$	0.15	2017-2018
Pol beam DY ${ }^{\S}$ (FNAL: E-1027)	$p^{\uparrow}+p$	$\begin{aligned} & 120 \mathrm{GeV} \\ & \sqrt{\mathrm{~s}}=15 \end{aligned}$	$\mathrm{x}_{\mathrm{b}}=0.35-0.9$	2×10^{35}	0.04	$P_{\text {b }}=60 \%$	1	>2018

[^0]
Sivers Asymmetry at Fermilab Main Injector

- Experimental Sensitivity
\rightarrow luminosity: $\mathrm{L}_{\mathrm{av}}=2 \times 10^{35}$ (10% of available beam time: $\mathrm{I}_{\mathrm{av}}=15 \mathrm{nA}$)
$\rightarrow 3.2 \times 10^{18}$ total protons for $5 \times 10^{5} \mathrm{~min}:\left(=2 \mathrm{yrs}\right.$ at 50% efficiency) with $\mathrm{P}_{\mathrm{b}}=60 \%$

Note:

$$
A_{N}=\frac{2}{\pi} A_{T U}^{\sin \phi_{b}}
$$

\rightarrow Can measure not only sign, but also the size \& maybe shape of the Sivers function!

Polarized Beam Drell-Yan at Fermilab (E-1027)

- Extraordinary opportunity at Fermilab (best place for polarized DY) :
\longrightarrow high luminosity, large x-coverage
\rightarrow (SeaQuest) spectrometer already setup and running
\rightarrow run alongside neutrino program (w/ 10\% of beam)
\longrightarrow experimental sensitivity:
> 2 yrs at 50% eff, $\mathrm{P}_{\mathrm{b}}=60 \%, \mathrm{I}_{\mathrm{av}}=15 \mathrm{nA}$
$>$ luminosity: $\mathrm{L}_{\mathrm{av}}=2 \times 10^{35} / \mathrm{cm}^{2} / \mathrm{s}$
> measure sign, size \& shape of Sivers function

A Novel, Compact Siberian Snake for the Main Injector

Single snake design (6.4m long):

- 1 helical dipole +2 conv. dipoles
- helix: 4T / $5.6 \mathrm{~m} / 4$ " ID
- dipoles: 4T / 0.2 m/4" ID
- use 4-twist magnets
- 8π rotation of B field
- never done before in a high energy ring
- RHIC uses snake pairs
- 4 single-twist magnets (2π rotation)

initial design studies
Siberian Snake B-Fields

Excursion vs. Length
 beam energy

Differences compared to RHIC

- Most significant difference: Ramp time of Main Injector < 0.7 s , at RHIC 1-2 min
\rightarrow warm magnets at MI vs. superconducting at RHIC
\rightarrow pass through all depolarizing resonances much more quickly
- Beam remains in $\mathrm{MI} \sim 5 \mathrm{~s}$, in RHIC ~ 8 hours
\rightarrow extracted beam vs. storage ring
\rightarrow much less time for cumulative depolarization
- Disadvantage compared to RHIC — no institutional history of accelerating polarized proton beams
\rightarrow Fermilab E704 had polarized beams through hyperon decays

The Path to a polarized Main Injector

Stage 1 approval from Fermilab: 14-November-2012

- PAC request: detailed machine design and costing using 1 snake in MI
\rightarrow Spin@Fermi collaboration provide design
\rightarrow Fermilab (AD) does verification \& costing
- Collaboration with A.S. Belov at INR and Dubna to develop polarized source
- Initial simulations in 2013-2014:
\rightarrow set up Zgoubi spin-tracking package (M. Bai, F. Meot, BNL, M. Syphers, MSU)
\longrightarrow single particle tracking, emittance, momentum spread of particles
\rightarrow conceptual design that works at least for a perfect machine - perfect magnet alignment, perfect orbits, no momentum spread, etc.
\longrightarrow but slow and limited support:
difficulties implementing orbit errors, quadrupole mis-alignments/rolls, ramp rates

Effect of emittance on final polarization vs Energy

Point-like snake in correct location, perfect orbit, no momentum smearing.

Average polarization for 8 particles

Only small difference seen at final energy of 120 GeV

The Path to a polarized Main Injector - II

Breakthrough: AD support from Fermilab: July-2015

- Fermilab AD support in 2015
\rightarrow S. Nagaitsev pledges support for simulations (April 2015)
\rightarrow Meiqin Xiao from AD set up PTC (Etienne Forest, KEK)
\rightarrow repeated Zgoubi work in 1 month
\rightarrow "easy" to include orbit errors, quadrupole mis-alignments/rolls, ramp rates
\rightarrow support for one year
\rightarrow plan to complete simulations
\rightarrow go back to PAC

Polarized Traget Drell-Yan at Fermilab (E-1039)

- Probe Sea-quark Sivers Asymmetry with a polarized proton target at SeaQuest

- Statistics shown for one calendar year of running:
$-\mathrm{L}=7.2 * 10^{42} / \mathrm{cm}^{2} \leftrightarrow \mathrm{POT}=2.8^{*} 10^{18}$
- Running will be two calendar years of beam time
- existing SIDIS data poorly constrain sea-quark Sivers function
- significant Sivers asymmetry expected from meson-cloud model
- first Sea Quark Sivers Measurement
- determine sign and value of ū Sivers distribution

If $A_{N} \neq 0$, major discovery:
"Smoking Gun" evidence for $L_{\bar{u}} \neq 0$

Status and Plans (E-1039)

Target

Polarization: 85\%
Packing fraction 0.6
Dilution factor: 0.176
Density: $0.89 \mathrm{~g} / \mathrm{cm}^{3}$

- use current SeaQuest setup, a polarized proton target, unpolarized beam
- add third magnet SMO $\sim 5 \mathrm{~m}$ upstream
\rightarrow improves dump-target separation
\rightarrow reduces overall acceptance
- Current status
- magnet system is finished and working
- refrigerator is finished and tested (at 1 K)
- NMR system reached final design
- mechanical design laid out
ahead of schedule, ready for installation in Fall 2016

Exploring the Dark Side of the Universe

- Dark sector could interact with the standard model sector via a hidden gauge boson (A' or "dark photon" or "para photon" or "hidden photon")
- Dark photons can provide a portal into the dark sector
- Dark photons could couple to standard model matter with $\alpha^{\prime}=\alpha \varepsilon^{2}$
B. Holdom, PLB 166 (1986) 196
J. D. Bjorken et al, PRD 80 (2009) 075018
$\varepsilon \sim 10^{-2}$ to 10^{-8} from loops of heavy particles

Possible Mechanisms for producing A' at SeaQuest

- Proton Bremsstrahlung
- $\pi^{0}, \eta \ldots$ decay

SeaQuest A' search strategy

- A^{\prime} generated by η decay and/or proton
Bremsstrahlung in the Iron beam dump
- A' could travel a distance I_{0} without interacting
- A' decays into di-leptons
- Reconstructed di-lepton vertex is displaced, downstream of the target in the beam dump

A' sensitivity region for SeaQuest

$l_{o} \approx \frac{0.8 \mathrm{~cm}}{N_{e f f}}\left(\frac{E_{o}}{10 \mathrm{GeV}}\right)\left(\frac{10^{-4}}{\varepsilon}\right)^{2}\left(\frac{100 \mathrm{MeV}}{m_{A}}\right)^{2}$
J.D. Bjorken et al, PRD 80 (2009) 075018

- $E_{0}=$ energy of the A^{\prime}
$\rightarrow E_{0}=5-20 \mathrm{GeV}$ for η decay
$\rightarrow \mathrm{E}_{0}=5-110 \mathrm{GeV}$ for p bremsstrahlung
- $\quad N_{\text {eff }}=$ no. of avail. decay products
$\rightarrow \mathrm{N}_{\text {eff }}=2$
- $I_{0}=$ distance that A^{\prime} travels before decaying

$$
\rightarrow I_{0}=0.17 \mathrm{~m}-5.95 \mathrm{~m}
$$

- $\varepsilon=$ coupling constant between standard model and dark sector
- $m_{A^{\prime}}=$ mass of A^{\prime}

A' sensitivity region for SeaQuest

$l_{o} \approx \frac{0.8 \mathrm{~cm}}{N_{e f f}}\left(\frac{E_{o}}{10 \mathrm{GeV}}\right)\left(\frac{10^{-4}}{\varepsilon}\right)^{2}\left(\frac{100 \mathrm{MeV}}{m_{A}}\right.$
J.D. Bjorken et al, PRD 80 (2009) 075018

- $E_{0}=$ energy of the A^{\prime}
$\rightarrow E_{0}=5-20 \mathrm{GeV}$ for η decay
$\rightarrow \mathrm{E}_{0}=5-110 \mathrm{GeV}$ for p bremsstrahlung
- $N_{\text {eff }}=$ no. of avail. decay products
$\rightarrow N_{\text {eff }}=2$
- $I_{0}=$ distance that A^{\prime} travels before decaying

$$
\rightarrow I_{0}=0.17 m-5.95 m
$$

- $\varepsilon=$ coupling constant between standard model and dark sector
- $m_{A^{\prime}}=$ mass of A^{\prime}

DY-like: can access A' with larger mass

Polarized Proton Beams

and Searches for Dark Forces

Searches for a dark photon also limit other possibilities

Parity violation studies could prove key

$$
\mathcal{L}_{\text {darkZ }}=-\left(\varepsilon e J_{\mathrm{em}}^{\mu}+\varepsilon_{Z} \frac{g}{2 \cos \theta_{W}} J_{\mathrm{NC}}^{\mu}\right) Z_{d \mu}
$$

[Davoudiasl, Lee, Marciano, 2OI4]
If the A^{\prime} is a dark Z, then ...

The dilepton yield can change with proton polarization: the asymmetry can be $\mathrm{O}(\mathrm{r})$!
[SG, Holt, Tadepalli, 2015]

Summary

- There are many exiting opportunities with polarized hadron beams in the coming decade
- RHIC, Fermilab, COMPASS offer complementary probes and processes to study hadronic landscape
\longrightarrow a complete spin program requires multiple hadron species
- Hope to answer some of the burning questions
\longrightarrow how much do the gluons contribute to the nucleon spin?
\longrightarrow is there significant orbital angular momentum?
\longrightarrow does TMD formalism work? Does Sivers function change sign?
- Explore the Dark Sector
\longrightarrow SeaQuest is nearly ideal beam-stop experiment
\longrightarrow underway for at least the next year
\longrightarrow probe not only dark photons, but also Z_{d} with a polarized beam

Thank You

COMPASS, E-1027, E-1039 (and Beyond)

	Beam Pol.	Target Pol.	Favored Quarks	Physics Goals						
				(Sivers Function)			$L_{\text {sea }}$	$A^{\prime}, Z_{\text {d }}$		
				sign change	size	shape				
COMPASS $\pi^{-} p^{\uparrow} \rightarrow \mu^{+} \mu^{-} X$	X	\checkmark	valence	\checkmark	X	X	X	X		
$\begin{gathered} \mathrm{E}-1027 \\ p^{\uparrow} p \rightarrow \mu^{+} \mu^{-} X \end{gathered}$	\checkmark	X	valence	\checkmark	\checkmark	\checkmark	X	\checkmark		
$\begin{gathered} \mathrm{E}-1039 \\ p^{\uparrow} \rightarrow \mu^{+} \mu^{-} X \end{gathered}$	X	\checkmark	sea	X	\checkmark	$(\sqrt{ })$	\checkmark	$(\sqrt{ })$		
E-10XX	$\sqrt{ }$	$\sqrt{ }$	sea \& valence	Transversity, Helicity, Other TMDs ...						
$\vec{p} \vec{p} \rightarrow \mu^{+} \mu^{-} X$										

Polarized Beam at Fermilab Main Injector

- Polarized Beam in Main Injector
\rightarrow use SeaQuest target
$\sqrt{ }$ liquid H_{2} target can take about $\mathrm{I}_{\mathrm{av}}=5 \times 10^{11} \mathrm{p} / \mathrm{s}(=80 \mathrm{nA})$
$\rightarrow 1 \mathrm{~mA}$ at polarized source can deliver about $\mathrm{t}_{\mathrm{av}}=1 \times 10^{12} \mathrm{p} / \mathrm{s}(=150 \mathrm{nA})$ for 100\% of available beam time (A. Krisch: Spin@Fermi report in (Aug 2011): arXiv:1110.3042 [physics.acc-ph])
26μ s linac pulses, 15 Hz rep rate, 12 turn injection into booster, 6 booster pulses into Recycler Ring, followed by 6 more pulses using slip stacking in MI

1 MI pulse $=1.9 \times 10^{12} \mathrm{p}$
using three 2 -sec cycles $/ \mathrm{min}$ ($\sim 10 \%$ of beam time):
$\rightarrow 2.8 \times 10^{12} \mathrm{p} / \mathrm{s}(=450 \mathrm{nA})$ instantaneous beam current , and $\mathrm{I}_{\mathrm{av}}=0.95 \times 10^{11} \mathrm{p} / \mathrm{s}(=15 \mathrm{nA})$
\rightarrow possible scenarios:

$$
\begin{array}{ll}
\mathrm{L}_{\mathrm{av}}=2.0 \times 10^{35} / \mathrm{cm}^{2} / \mathrm{s} & \left(10 \% \text { of available beam time: } \mathrm{I}_{\mathrm{av}}=15 \mathrm{nA}\right) \\
\mathrm{L}_{\mathrm{av}}=1 \times 10^{36} / \mathrm{cm}^{2} / \mathrm{s} & \left(50 \% \text { of available beam time: } \mathrm{I}_{\mathrm{av}}=75 \mathrm{nA}\right)
\end{array}
$$

\rightarrow Systematic uncertainty in beam polarization measurement (scale uncertainty)

$$
\Delta \mathrm{P}_{\mathrm{b}} / \mathrm{P}_{\mathrm{b}}<5 \%
$$

Dark Photons at SeaQuest (FNAL)

[SG, Holt, Tadepalli, arXiv:1509.00050]

Dark Photons: SeaQuest vs. SHiPS

 "apples \& oranges"

5 yr exposure 400 GeV beam opt. detectors VS.

I yr exposure
120 GeV beam SeaQuest spect.
Sharper constraints are possible!

[^0]:

 * not constrained by SIDIS data / \#rFOM = relative lumi * $\mathbf{p}^{2}{ }^{*} \mathbf{f}^{2}$ wrt $\mathrm{E}-1027$ ($\mathrm{f}=1$ for pol p beams, $\mathrm{f}=0.22$ for π^{-}beam on NH_{3})

