Opportunities with polarized protons at Fermilab

PacSPIN2015 (8-October-2015)

This work is supported by

Current Facilities

- T & L polarized p beams (\sqrt{s} = 200, 500 GeV)
- L program:
- → $A_{LL}^{\pi^0}$ (PHENIX) & A_{LL}^{jet} (STAR) → $\Delta g(x)$
 - first significant non-zero results on Δg(x)
- → $A_L^{W^{\pm}}$ at $\sqrt{s} = 500 \text{ GeV} \rightarrow \Delta q_{bar}(x)$
 - surprise: $\Delta \overline{u} \Delta \overline{d} > 0$
- T program:
 - → $A_N^{\pi^0,\eta,\text{jet},...}$ → Sivers/Collins/Twist-3

- 120 GeV p from Main Injector on LH_2, LD_2 , C,Ca,W targets \rightarrow high-x Drell-Yan
- Science data started in March 2014
 - ➡ run for 2 yrs

- 190 GeV π^- beam on T-pol H target \rightarrow polarized Drell-Yan
- Data collection started in May 2015
 - → run for 100 days

Future Spin Measurements

New instrumentation in forward direction

- \rightarrow higher η : higher x_{beam} , lower x_{target}
- STAR Forward Calorimeter System: EMCal + HCal
- fsPHENIX: forward spectometer w/ EMCal, HCal, RICH, tracking
 - → planned spin program in ∆g(x,Q²) at low-x (longitudinal) as well as Jets, Drell-Yan (transverse), ...

Polarized Beam and/or Target w/ SeaQuest detector

- \rightarrow high-luminosity facility for polarized Drell-Yan
- E-1039: SeaQuest w/ pol NH₃ target
 - ➡ probe sea quark distributions
- E-1027: pol p beam on unpol tgt
 - → Sivers sign change (valence quark)

TMDs: Sivers Function

 $f_{1T}^{\perp} = \bigcirc - \bigcirc$

cannot exist w/o quark OAM

- describes transverse-momentum distribution of unpolarized quarks inside transversely polarized proton
- captures non-perturbative spin-orbit coupling effects inside a polarized proton
- Sivers function is naïve time-reversal odd
- leads to
 - → $sin(\phi \phi_S)$ asymmetry in SIDIS
 - ➡ sin\u00f6_b asymmetry in Drell-Yan
 - measured in SIDIS (HERMES, COMPASS)
- future measurements at Jlab@12 GeV planned

First moment of Sivers functions:

 u- and d- Sivers have opposite signs, of roughly equal magnitude

Sivers Asymmetry in SIDIS

Global fit to sin $(\phi_h - \phi_S)$ asymmetry in SIDIS (HERMES (p), COMPASS (p), COMPASS (d))

QCD Evolution of Sivers Function

- Initial global fits by Anselmino group included DGLAP evolution only in collinear part of TMDs (not entirely correct for TMD-factorization)
- Using TMD Q^2 evolution: \rightarrow agreement with data improves

TMD Evolution of Sivers Asymmetry (W⁻)

- much stronger than any other known evolution effects
- but needs input from data to constrain nonpertubative part in evolution
- Can only be done at RHIC (plans for 2% measurement in 2016)

Comparison of extracted TMD (Sivers) will provide strong constraint on TMD evolution

The Sign Change

$$f_{1T}^{\perp}(x,k_{T})\Big|_{SIDIS} = -f_{1T}^{\perp}(x,k_{T})\Big|_{DY,W}$$

fundamental prediction of QCD (in non-perturbative regime)

goes to heart of gauge formulation of field theory

• "Smoking gun" prediction of **TMD formalism**

Universality test includes not only the sign-reversal character of the TMDs but also the comparison of the amplitude as well as the shape of the corresponding TMDs

NSAC Milestone HP13 (2015):

"Test unique QCD predictions for relations between single-transverse spin phenomena in p-p scattering and those observed in deep-inelastic lepton scattering"

Planned Polarized Drell-Yan Experiments

Experiment	Particles	Energy (GeV)	$\mathbf{x}_{\mathbf{b}}$ or $\mathbf{x}_{\mathbf{t}}$	Luminosity (cm ⁻² s ⁻¹)	$A_{_{T}}^{\sin\phi_{S}}$	P_{b} or P_{t} (f)	rFOM#	Timeline
COMPASS (CERN)	π^{\pm} + p [↑]	160 GeV √s = 17	$x_t = 0.1 - 0.3$	2 x 10 ³³	0.14	P _t = 90% f = 0.22	1.1 x 10 ⁻³	2015, 2018
PANDA (GSI)	$\overline{\mathbf{p}} + \mathbf{p}^{\uparrow}$	15 GeV √s = 5.5	$x_t = 0.2 - 0.4$	2 x 10 ³²	0.07	$P_t = 90\%$ f = 0.22	1.1 x 10 ⁻⁴	>2018
PAX (GSI)	$\mathbf{p}^{\uparrow} + \overline{\mathbf{p}}$	collider √s = 14	$x_{b} = 0.1 - 0.9$	2 x 10 ³⁰	0.06	P _b = 90%	2.3 x 10 ⁻⁵	>2020?
NICA (JINR)	p [↑] + p	collider √s = 26	$x_{b} = 0.1 - 0.8$	1 x 10 ³¹	0.04	P _b = 70%	6.8 x 10⁻⁵	>2018
PHENIX/STAR (RHIC)	$\mathbf{p}^{\uparrow} + \mathbf{p}^{\uparrow}$	collider √s = 510	$x_{b} = 0.05 - 0.1$	2 x 10 ³²	0.08	P _b = 60%	1.0 x 10 ⁻³	>2018
fsPHENIX (RHIC)	$\mathbf{p}^{\uparrow} + \mathbf{p}^{\uparrow}$	$\sqrt{s} = 200$ $\sqrt{s} = 510$	$x_b = 0.1 - 0.5$ $x_b = 0.05 - 0.6$	8 x 10 ³¹ 6 x 10 ³²	0.08	P _b = 60% P _b = 50%	4.0 x 10 ⁻⁴ 2.1 x 10 ⁻³	>2021
SeaQuest (FNAL: E-906)	p + p	120 GeV √s = 15	$x_b = 0.35 - 0.9$ $x_t = 0.1 - 0.45$	3.4 x 10 ³⁵				2012 - 2016
Pol tgt DY [‡] (FNAL: E-1039)	p + p [↑]	120 GeV √s = 15	$x_t = 0.1 - 0.45$	4.4 x 10 ³⁵	0- 0.2*	P _t = 85% f = 0.176	0.15	2017-2018
Pol beam DY [§] (FNAL: E-1027)	p [↑] + p	120 GeV √s = 15	x _b = 0.35 - 0.9	2 x 10 ³⁵	0.04	P _b = 60%	1	>2018

⁺8 cm NH₃ target / [§]L= 1 x 10³⁶ cm⁻² s⁻¹ (LH₂ tgt limited) / L= 2 x 10³⁵ cm⁻² s⁻¹ (10% of MI beam limited) *not constrained by SIDIS data / *rFOM = relative lumi * P² * f² wrt E-1027 (f=1 for pol p beams, f=0.22 for π^- beam on NH₃)

Sivers Asymmetry at Fermilab Main Injector

- Experimental Sensitivity
 - Iuminosity: $L_{av} = 2 \times 10^{35}$ (10% of available beam time: $I_{av} = 15 \text{ nA}$)
 - → 3.2 x 10¹⁸ total protons for 5 x 10⁵ min: (= 2 yrs at 50% efficiency) with $P_b = 60\%$

Can measure not only sign, but also the size & maybe shape of the Sivers function !

Polarized Beam Drell-Yan at Fermilab (E-1027)

- Extraordinary opportunity at Fermilab (best place for polarized DY) :
 - → high luminosity, large x-coverage
 - → (SeaQuest) spectrometer already setup and running
 - \rightarrow run alongside neutrino program (w/ 10% of beam)
 - \rightarrow experimental sensitivity:
 - > 2 yrs at 50% eff, $P_b = 60\%$, $I_{av} = 15$ nA
 - > luminosity: $L_{av} = 2 \times 10^{35} / cm^2 / s$
 - > measure sign, size & shape of Sivers function

A Novel, Compact Siberian Snake for the Main Injector

- 1 helical dipole + 2 conv. dipoles
 - helix: 4T / 5.6 m / 4" ID
 - dipoles: 4T / 0.2 m / 4" ID
- use 4-twist magnets
 - 8π rotation of B field
- never done before in a high energy ring
 - RHIC uses snake pairs
 - 4 single-twist magnets (2π rotation)

Differences compared to RHIC

Most significant difference: Ramp time of Main Injector < 0.7 s, at RHIC 1-2 min

warm magnets at MI vs. superconducting at RHIC

- → pass through all depolarizing resonances much more quickly
- Beam remains in MI ~5 s, in RHIC ~8 hours
 - extracted beam vs. storage ring
 - much less time for cumulative depolarization
- Disadvantage compared to RHIC no institutional history of accelerating polarized proton beams

Fermilab E704 had polarized beams through hyperon decays

The Path to a polarized Main Injector

Stage 1 approval from Fermilab: 14-November-2012

PAC request: detailed machine design and costing using 1 snake in MI

- Spin@Fermi collaboration provide design
- → Fermilab (AD) does verification & costing
- Collaboration with A.S. Belov at INR and Dubna to develop polarized source
- Initial simulations in 2013 2014:
 - set up Zgoubi spin-tracking package (M. Bai, F. Meot, BNL, M. Syphers, MSU)
 - \rightarrow single particle tracking, emittance, momentum spread of particles
 - → conceptual design that works *at least for a perfect machine* perfect magnet alignment, perfect orbits, no momentum spread, etc.
 - → but slow and limited support: difficulties implementing orbit errors, quadrupole mis-alignments/rolls, ramp rates

Effect of emittance on final polarization vs Energy

Point-like snake in correct location, perfect orbit, no momentum smearing.

Average polarization for 8 particles

Only small difference seen at final energy of 120 GeV

The Path to a polarized Main Injector - II

Breakthrough: AD support from Fermilab: July-2015

Fermilab AD support in 2015

- S. Nagaitsev pledges support for simulations (April 2015)
- Meiqin Xiao from AD set up PTC (Etienne Forest, KEK)
 - → repeated Zgoubi work in 1 month
 - → "easy" to include orbit errors, quadrupole mis-alignments/rolls, ramp rates
 - support for one year
 - → plan to complete simulations
 - \rightarrow go back to PAC

Polarized Traget Drell-Yan at Fermilab (E-1039)

Probe Sea-quark Sivers Asymmetry with a polarized proton target at SeaQuest

- Statistics shown for one calendar year of running:
- L = 7.2 *10⁴²/cm² \leftrightarrow POT = 2.8*10¹⁸
- Running will be two calendar years of beam time

- existing SIDIS data poorly constrain sea-quark Sivers function
- significant Sivers asymmetry expected from meson-cloud model
- first Sea Quark Sivers Measurement
- determine sign and value of ū Sivers distribution

If $A_N \neq 0$, **major discovery**: "Smoking Gun" evidence for $L_{\overline{u}} \neq 0$

Status and Plans (E-1039) Polarization: 85% Packing fraction 0.6 Dilution factor: 0.176 Density: 0.89 g/cm³

- use current SeaQuest setup, a polarized proton target, unpolarized beam
- add third magnet SM0 ~5m upstream
 - \rightarrow improves dump-target separation
 - \rightarrow reduces overall acceptance
- Current status
 - magnet system is finished and working
 - refrigerator is finished and tested (at 1K)
 - NMR system reached final design
 - mechanical design laid out

ahead of schedule, ready for installation in Fall 2016

Exploring the Dark Side of the Universe

- Dark sector could interact with the standard model sector via a hidden gauge boson (A' or "dark photon" or "para photon" or "hidden photon")
- Dark photons can provide a portal into the dark sector
- Dark photons could couple to standard model matter with α' = αε²

 $\epsilon \sim 10^{-2}$ to 10^{-8} from loops of heavy particles

A' produced via a loop mechanism

B. Holdom, PLB **166** (1986) 196 J. D. Bjorken et al, PRD **80** (2009) 075018

Possible Mechanisms for producing A' at SeaQuest

SeaQuest A' search strategy

- A' generated by η decay and/or proton
 Bremsstrahlung in the Iron beam dump
- A' could travel a distance I₀ without interacting
- A' decays into di-leptons
- Reconstructed di-lepton vertex is displaced, downstream of the target in the beam dump

A' sensitivity region for SeaQuest

$$l_o \approx \frac{0.8 \, cm}{N_{eff}} \left(\frac{E_o}{10 \, GeV}\right) \left(\frac{10^{-4}}{\varepsilon}\right)^2 \left(\frac{100 \, MeV}{m_{\dot{A}}}\right)^2$$

J.D. Bjorken et al, PRD 80 (2009) 075018

- E_0 = energy of the A'
 - \rightarrow E₀ = 5 20 GeV for η decay
 - \rightarrow E₀ = 5 110 GeV for p bremsstrahlung
- N_{eff} = no. of avail. decay products $\rightarrow N_{eff}$ = 2
- I_0 = distance that A' travels before decaying
 - \rightarrow I₀ = 0.17m 5.95m
- ε = coupling constant between
 standard model and dark sector

$$m_{A'}$$
 = mass of A'

η decay: limited to A' mass less than the meson mass

A' sensitivity region for SeaQuest

$$l_o \approx \frac{0.8 \, cm}{N_{eff}} \left(\frac{E_o}{10 \, GeV}\right) \left(\frac{10^{-4}}{\varepsilon}\right)^2 \left(\frac{100 \, MeV}{m_{A'}}\right)^2$$

J.D. Bjorken et al, PRD 80 (2009) 075018

- E₀ = energy of the A'
 ⇒ E₀ = 5 20 GeV for η decay
 ⇒ E₀ = 5 110 GeV for p bremsstrahlung
 N_{eff} = no. of avail. decay products
 ⇒ N_{eff} = 2
- I_0 = distance that A' travels before decaying
 - \rightarrow I₀ = 0.17m 5.95m
- ε = coupling constant between standard model and dark sector

$$m_{A'}$$
 = mass of A'

Polarized Proton Beams and Searches for Dark Forces

Searches for a dark photon also limit other possibilities

Parity violation studies could prove key

$$\mathcal{L}_{\text{darkZ}} = -(\varepsilon e J_{\text{em}}^{\mu} + \varepsilon_Z \frac{g}{2\cos\theta_W} J_{\text{NC}}^{\mu}) Z_{d\,\mu}$$

[Davoudiasl, Lee, Marciano, 2014]

If the A' is a dark Z, then ...

The dilepton yield can change with proton polarization: the asymmetry can be O(1)!

[SG, Holt, Tadepalli, 2015]

Summary

- There are many exiting opportunities with polarized hadron beams in the coming decade
- RHIC, Fermilab, COMPASS offer complementary probes and processes to study hadronic landscape
 - \rightarrow a complete spin program requires multiple hadron species
- Hope to answer some of the burning questions
 - \rightarrow how much do the gluons contribute to the nucleon spin?
 - \rightarrow is there significant orbital angular momentum?
 - \rightarrow does TMD formalism work? Does Sivers function change sign?
- Explore the Dark Sector
 - \rightarrow SeaQuest is nearly ideal beam-stop experiment
 - \rightarrow underway for at least the next year
 - \rightarrow probe not only dark photons, but also Z_d with a polarized beam

Thank You

COMPASS, E-1027, E-1039 (and Beyond)

	Beam	Target Pol.	Favored	Physics Goals					
	Pol.		Quarks	(Siver	s Func				
				sign change	size	shape	L _{sea}	A', Z _d	
$\frac{\text{COMPASS}}{\pi^- p^\uparrow \to \mu^+ \mu^- X}$	×	>	valence	\checkmark	×	×	×	×	
$\begin{array}{c} \textbf{E-1027} \\ p^{\uparrow} p \rightarrow \mu^{+} \mu^{-} X \end{array}$	>	×	valence	~	\checkmark	>	×	\checkmark	
$\begin{array}{c} \textbf{E-1039} \\ p \ p^{\uparrow} \rightarrow \mu^{+} \mu^{-} X \end{array}$	X	>	sea	×	>	(~)	>	(√)	
E-10XX $\vec{p} \ \vec{p} \rightarrow \mu^+ \mu^- X$	~	~	sea & valence	Transversity, Helicity, Other TMDs					

Polarized Beam at Fermilab Main Injector

- Polarized Beam in Main Injector
 - ➡ use SeaQuest target

 \checkmark liquid H₂ target can take about I_{av} = 5 x 10¹¹ p/s (=80 nA)

- I mA at polarized source can deliver about I_{av} = 1 x 10¹² p/s (=150 nA) for 100% of available beam time (A. Krisch: Spin@Fermi report in (Aug 2011): arXiv:1110.3042 [physics.acc-ph])
 - 26 µs linac pulses, 15 Hz rep rate, 12 turn injection into booster, 6 booster pulses into Recycler Ring, followed by 6 more pulses using slip stacking in MI
 - $1 \text{ MI pulse} = 1.9 \times 10^{12} \text{ p}$
 - using three 2-sec cycles/min (~10% of beam time): $\rightarrow 2.8 \times 10^{12} \text{ p/s}$ (=450 nA) instantaneous beam current , and I_{av} = 0.95 x 10¹¹ p/s (=15 nA)

→ possible scenarios:

 $\int L_{av} = 2.0 \times 10^{35} / \text{cm}^2/\text{s} \quad (10\% \text{ of available beam time: } I_{av} = 15 \text{ nA})$ $\int L_{av} = 1 \times 10^{36} / \text{cm}^2/\text{s} \quad (50\% \text{ of available beam time: } I_{av} = 75 \text{ nA})$

Systematic uncertainty in beam polarization measurement (scale uncertainty)

 $\Delta P_b/P_b < 5\%$

Dark Photons at SeaQuest (FNAL)

[SG, Holt, Tadepalli, arXiv:1509.00050]

Dark Photons: SeaQuest vs. SHiPS "apples & oranges"

5 yr exposure 400 GeV beam opt. detectors VS. l yr exposure 120 GeV beam SeaQuest spect. Sharper constraints are possible!