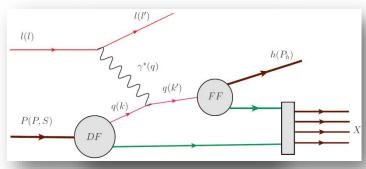
Opportunities with fixed-target Drell-Yan

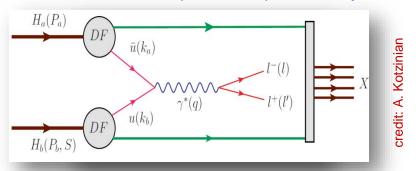
Wolfgang Lorenzon University of Michigan

INT-17-68W Workshop, Seattle, WA (2-October-2017)



Complementarity between SIDIS and Drell Yan

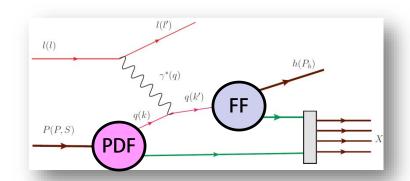
- SIDIS and Drell-Yan have similar physics reach:
 - tools to probe quark and antiquark structure of nucleon
 - electromagnetic probes

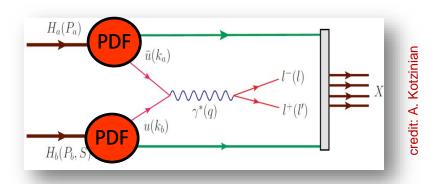

SIDIS (spacelike)

Quintessential probe of hadron structure:

- relatively simple to measure and calculate
- charge-weighted flavor sensitivity
- QCD final state effects
- fragmentation process
- no quark-antiquark selectivity

Drell-Yan (timelike) virtual photon


Cleanest probe to study hadron structure:


- no QCD final state effects
- no fragmentation process
- production of two TMD parton distribution functions
- ability to select sea quark distribution
- → hadron beam: $\sigma(DY) / \sigma(nuclear) \approx 10^{-7}$

Factorization and Universality (SIDIS - DY)

SIDIS PDF⊗FF

DY PDF⊗PDF

Probe Universality

are TMD PDFs in SIDIS identical to TMD PDFs in DY?

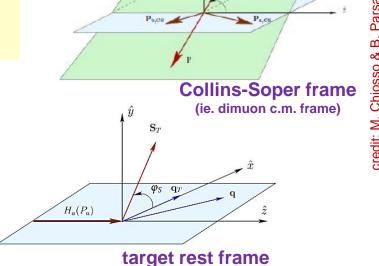
Test using unpolarized experiments, transverse SSA and DSA

LO SIDIS and single polarized DY cross sections

$$\frac{d\sigma_{SIDIS}^{LO}}{dxdydzdp_T^2d\varphi_hd\psi} = \left[\frac{\alpha}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right)\right]$$

$$\times \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \cos 2\phi_h \left(\varepsilon A_{UU}^{\cos 2\phi_h}\right)\right\}$$

$$+ S_T \begin{bmatrix} \sin\left(\phi_h - \phi_S\right) \left(A_{UT}^{\sin(\phi_h - \phi_S)}\right) \\ + \sin\left(\phi_h + \phi_S\right) \left(\varepsilon A_{UT}^{\sin(\phi_h + \phi_S)}\right) \\ + \sin\left(3\phi_h - \phi_S\right) \left(\varepsilon A_{UT}^{\sin(3\phi_h - \phi_S)}\right) \end{bmatrix}$$


$$\frac{d\sigma^{LO}}{d\Omega} = \frac{\alpha_{em}^2}{Fq^2} F_U^1 \left\{ 1 + \cos^2 \theta + \sin^2 \theta \cos 2\varphi_{CS} A_U^{\cos 2\varphi_{CS}} \right.$$

$$+ S_T \left[\frac{\left(1 + \cos^2 \theta\right) \sin \varphi_S A_T^{\sin \varphi_S}}{\sin \left(2\varphi_{CS} + \varphi_S\right) A_T^{\sin(2\varphi_{CS} + \varphi_S)}} \right.$$

$$+ \sin^2 \theta \left(\frac{\sin \left(2\varphi_{CS} + \varphi_S\right) A_T^{\sin(2\varphi_{CS} - \varphi_S)}}{\sin \left(2\varphi_{CS} - \varphi_S\right) A_T^{\sin(2\varphi_{CS} - \varphi_S)}} \right) \right] \right\}$$

Measure magnitude of azimuthal modulations in cross section:

"Single Spin Asymmetries"

target rest frame

LO SIDIS and single polarized DY cross sections

SIDIS

$$\frac{d\sigma_{SIDIS}^{LO}}{dxdydzdp_T^2d\varphi_hd\psi} = \left[\frac{\alpha}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right)\right]$$

$$\times \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \cos 2\phi_h \left(\varepsilon A_{UU}^{\cos 2\phi_h}\right)\right\}$$

$$+ S_T \begin{bmatrix} \sin\left(\phi_h - \phi_S\right) \left(A_{UT}^{\sin(\phi_h - \phi_S)}\right) \\ + \sin\left(\phi_h + \phi_S\right) \left(\varepsilon A_{UT}^{\sin(\phi_h + \phi_S)}\right) \\ + \sin\left(3\phi_h - \phi_S\right) \left(\varepsilon A_{UT}^{\sin(3\phi_h - \phi_S)}\right) \end{bmatrix}$$

PDF \otimes FF BM ⊗ CF

$$A_{UU}^{\cos 2\phi_h} \propto h_1^{\perp q} \otimes H_{1q}^{\perp h} \hspace{1cm} ext{BM} \otimes ext{CF}$$
 $A_{UT}^{\sin(\phi_h - \phi_s)} \propto f_{1T}^{\perp q} \otimes D_{1q}^h \hspace{1cm} ext{Sivers} \otimes ext{FF}$
 $A_{UT}^{\sin(\phi_h + \phi_s)} \propto h_1^q \otimes H_{1q}^{\perp h} \hspace{1cm} ext{Transv} \otimes ext{CF}$
 $A_{UT}^{\sin(3\phi_h - \phi_s)} \propto h_{1T}^{\perp q} \otimes H_{1q}^{\perp h} \hspace{1cm} ext{Pretz} \otimes ext{CF}$

Transv ⊗ CF

Pretz ⊗ CF

$$\frac{d\sigma^{LO}}{d\Omega} = \frac{\alpha_{em}^2}{Fq^2} F_U^1 \left\{ 1 + \cos^2 \theta + \sin^2 \theta \cos 2\varphi_{CS} A_U^{\cos 2\varphi_{CS}} A_U^{\sin 2\varphi_{CS}} A_U^{\sin 2\varphi_{CS}} A_U^{\sin 2\varphi_{CS}} A_U^{\sin 2\varphi_{CS}} A_U^{\cos 2\varphi_{CS}} A_U^$$

beam target

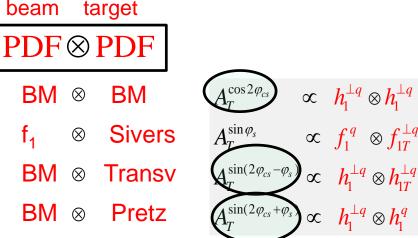
PDF⊗ PDF

$$f_1 \otimes Sivers$$

$$egin{array}{lll} A_T^{\cos2arphi_{cs}} & \propto & h_1^{\perp q} \otimes h_1^{\perp q} \ A_T^{\sinarphi_s} & \propto & f_1^{\ q} \otimes f_{1T}^{\ \perp q} \ A_T^{\sin(2arphi_{cs}-arphi_s)} & \propto & h_1^{\perp q} \otimes h_{1T}^{\perp q} \ A_T^{\sin(2arphi_{cs}+arphi_s)} & \propto & h_1^{\perp q} \otimes h_1^{q} \end{array}$$

within QCD TMD framework:

$$egin{align*} \left| h_1^{\perp q} \right|_{SIDIS} &= -h_1^{\perp q} \Big|_{DY} & \left| h_1^q \right|_{SIDIS} &= h_1^q \Big|_{DY} \ \left| f_{1T}^{\perp q} \right|_{SIDIS} &= -f_{1T}^{\perp q} \Big|_{DY} & \left| h_{1T}^{\perp q} \right|_{SIDIS} &= h_{1T}^{\perp q} \Big|_{DY} \end{aligned}$$


$$\begin{vmatrix} h_1^q \big|_{SIDIS} &= h_1^q \big|_{DY} \\ h_{1T}^{\perp q} \big|_{SIDIS} &= h_{1T}^{\perp q} \big|_{DY} \end{vmatrix}$$

Drell Yan Advantage

- Complementarity is emphasized by (LO): (Arnold, Metz, Schlegel: PRD79, 034005 (2009))
 - → in SIDIS: there is 1 F_{U(L),T} per TMD
 - → in DY: (at least 2)F_{(U)T} per TMD
 - → same TMDs can be measured in different F_{(U)T}
 - \rightarrow allowing cross checks of TMD extraction
 - & even of underlying formalism

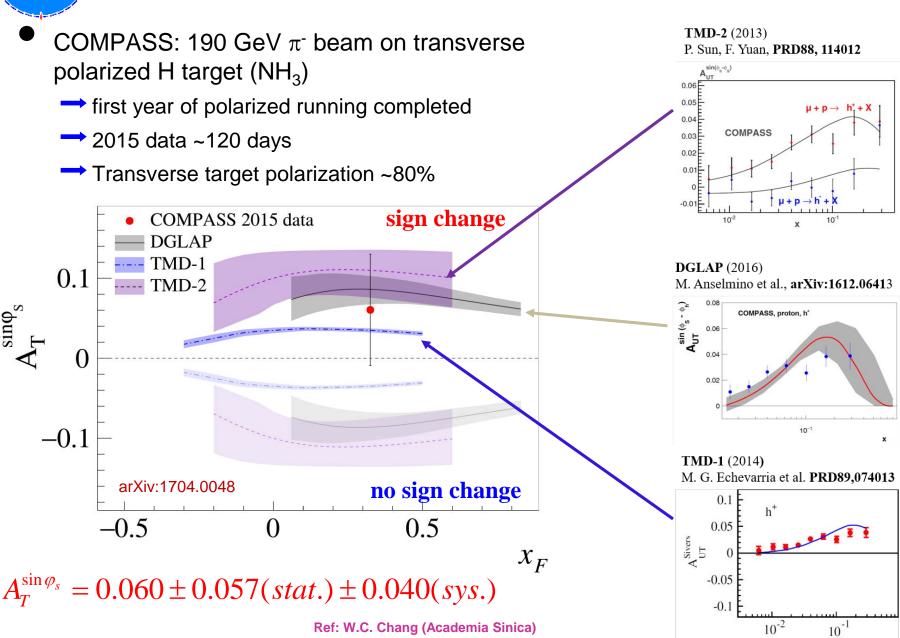
$egin{array}{lll} A_{UU}^{\cos2\phi_h} & \propto & h_1^{\perp q} \otimes H_{1q}^{\perp h} \ A_{UT}^{\sin(\phi_h-\phi_s)} & \propto & f_{1T}^{\perp q} \otimes D_{1q}^h \ A_{UT}^{\sin(\phi_h+\phi_s)} & \propto & h_1^q \otimes H_{1q}^{\perp h} \ A_{UT}^{\sin(3\phi_h-\phi_s)} & \propto & h_{1T}^{\perp q} \otimes H_{1q}^{\perp h} \end{array}$

$$A_T^{\sin\varphi_s} = \frac{F_T^1}{F_{\rm U}^1}$$

Complementarity between SIDIS and Drell Yan

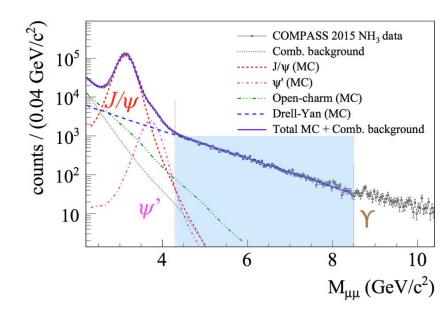
- Complementarity is emphasized by (LO): (Arnold, Metz, Schlegel: PRD79, 034005(2009))
 - \rightarrow in SIDIS: there is 1 $F_{U(L),T}$ per TMD
 - \rightarrow in DY: at least 2 $F_{(U)T}$ per TMD
 - \rightarrow same TMDs can be measured in different $F_{(U)T}$
 - → allowing cross checks of TMD extraction
 - & even of underlying formalism TMD
- Systematic study of quark TMDs in Drell Yan
 - requires double-polarization
 - only then can all 8 leading twist TMD be measured
- Double-Spin Drell Yan
 - Measure DY with both Beam and Target polarized
 - → broad spin physics program possible
 - → truly complementary to spin physics programs at Jlab and RHIC

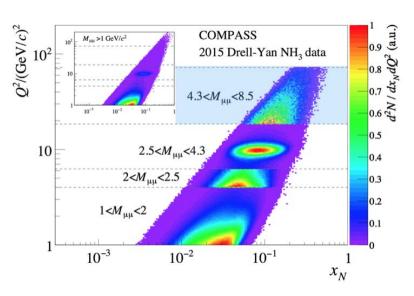
(Un)Polarized Drell Yan Experiments


Experiment	Particles	Energy (GeV)	x _b or x _t	Luminosity (cm ⁻² s ⁻¹)	${ m A}_{_{ m T}}^{\sin\phi_{_{\!S}}}$	P _b or P _t (f)	rFOM#	Timeline
COMPASS (CERN)	$\pi^- + p^\uparrow$	160 GeV √s = 17	$x_t = 0.1 - 0.3$	2 x 10 ³³	0.14	$P_t = 90\%$ f = 0.22	1.1 x 10 ⁻³	2015-2016, 2018
PANDA (GSI)	$\bar{\mathbf{p}} + \mathbf{p}^{\uparrow}$	15 GeV √s = 5.5	$x_t = 0.2 - 0.4$	2 x 10 ³²	0.07	$P_t = 90\%$ f = 0.22	1.1 x 10 ⁻⁴	>2024?
PAX (GSI)	p [↑] + p	collider √s = 14	$x_b = 0.1 - 0.9$	2 x 10 ³⁰	0.06	P _b = 90%	2.3 x 10 ⁻⁵	>2020??
NICA (JINR)	p [↑] + p	collider √s = 26	$x_b = 0.1 - 0.8$	1 x 10 ³¹	0.04	P _b = 70%	6.8 x 10 ⁻⁵	>2023?
J-PARC (high-p beam line)	π + p	10- 20 GeV $\sqrt{s} = 4.4-6.2$	$x_b = 0.2 - 0.97$ $x_t = 0.06 - 0.6$	2 x 10 ³¹				>2019? under discussion
fsPHENIX (RHIC)	\mathbf{p}^{\uparrow} + \mathbf{p}^{\uparrow}	$\sqrt{s} = 200$ $\sqrt{s} = 510$	$x_b = 0.1 - 0.5$ $x_b = 0.05 - 0.6$	8 x 10 ³¹ 6 x 10 ³²	0.08	$P_b = 60\%$ $P_b = 50\%$	4.0 x 10 ⁻⁴ 2.1 x 10 ⁻³	>2021?
SeaQuest (FNAL: E-906)	p + p	120 GeV √s = 15	$x_b = 0.35 - 0.9$ $x_t = 0.1 - 0.45$	3.4 x 10 ³⁵				2012 - 2017
Pol tgt DY [‡] (FNAL: E-1039)	$p + p^{\uparrow}$ $p + d^{\uparrow}$	120 GeV √s = 15	$x_t = 0.1 - 0.45$	3.0 x 10 ³⁵ 3.5 x 10 ³⁵	0 – 0.2*	P _t = 85% f = 0.176	0.15	2018-2020
Pol beam DY [§] (FNAL: E-1027)	p [↑] + p	120 GeV \sqrt{s} = 15	$x_b = 0.35 - 0.9$	2 x 10 ³⁵	0.04	P _b = 60%	1	>2021?

^{*8} cm NH₃ target / $^{\S}L=1 \times 10^{36}$ cm⁻² s⁻¹ (LH₂ tgt limited) / L= 2 x 10^{35} cm⁻² s⁻¹ (10% of MI beam limited)

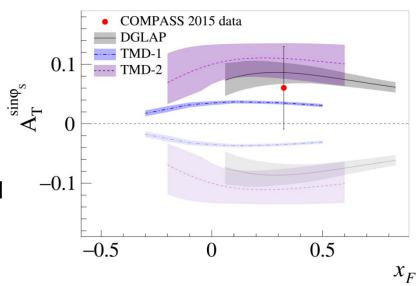
^{*}not constrained by SIDIS data / *rFOM = relative lumi * P^2 * f^2 wrt E-1027 (f=1 for pol p beams, f=0.22 for π^- beam on NH₃)


COMPASS 2015 Results



COMPASS 2015 Results - II

- Drell-Yan analysis performed in the mass range of 4.3 8.5 GeV/c²
 - → Only 4% background in this mass range
 - \rightarrow DY events [M($\mu^+\mu^-$) > 4 GeV/c²): ~35,000
- Phase space for Drell-Yan and SIDIS partially overlap in the x-Q² plane
 - average Q² in Drell-Yan is about 2x that in SIDIS
 - allows to minimize the impact of uncertainties from TMD scale evolution
 - overlap in kinematic regions of COMPASS Drell-Yan and SIDIS data allows for direct comparisons of TMD amplitudes
- COMPASS probes proton's valence quarks in Drell-Yan and SIDIS

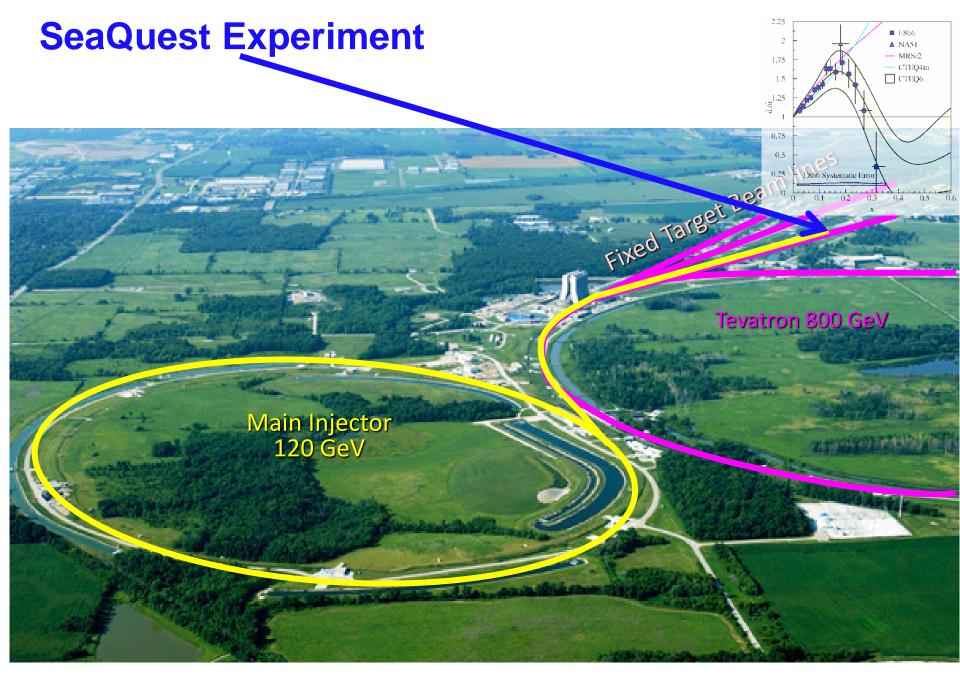


COMPASS Plans

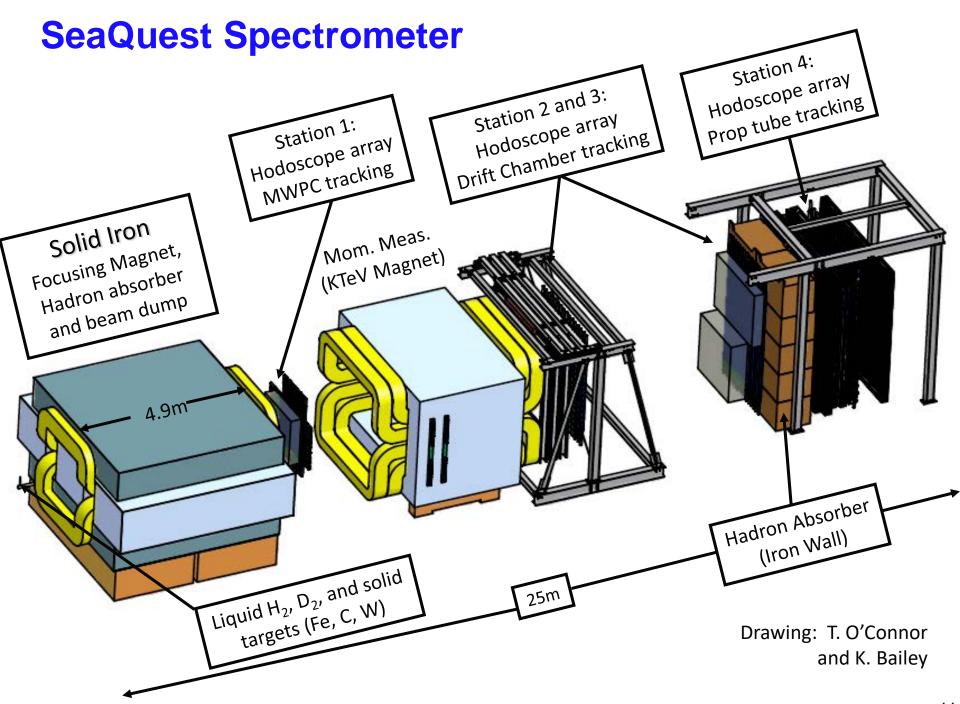
- First physics results: April 2017
 - → ~1σ result
 - consistent w/ sign change!
- 2016-2017: DVCS program.
- 2018: second year of polarized DY planned
 - improved statistics expected

- COMPASS Beyond 2020 (under study: https://indico.cern.ch/event/502879/)
 - → polarized ⁶LiD target: flavor separation of TMD SSAs.
 - → long LH₂ and nuclei targets: un-polarized pion-induced DY
 - consider running with radio separated kaon/anti-proton beam for DY and spectroscopy
 - improve significantly our knowledge of pion and kaon PDFs
 - detailed study of the fundamental Lam-Tung relation violation
 - → Gluon TMDs ?

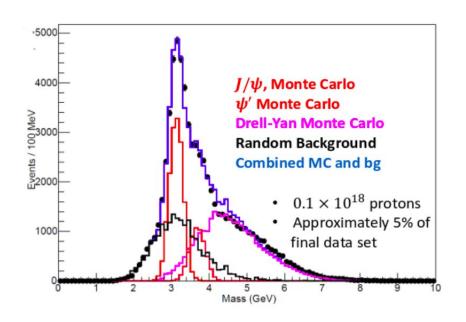
Current and Future DY Program at FNAL

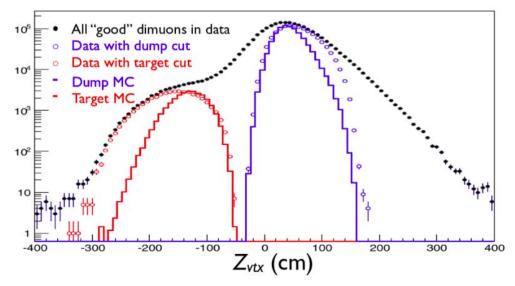


Unpolarized Beam and Target w/ SeaQuest detector

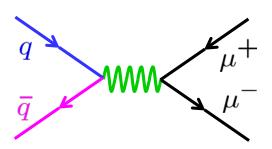

- E-906: 120 GeV p from Main Injector on LH₂,LD₂, C,Fe,W targets → high-x
 Drell Yan
- Science run: March 2014 July 2017
 - → 2015 data set: preliminary results

Polarized Beam and/or Target w/ SeaQuest detector

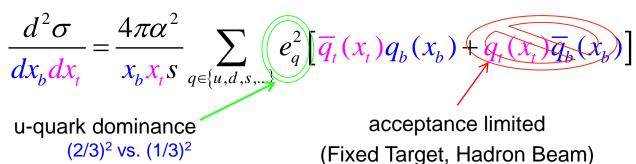

- → development of high-luminosity facility for polarized Drell Yan
- **E-1039**: SeaQuest w/ pol NH₃/ND₃ targets (2018-2019)
 - probe sea quark distributions
- **E-1027**: pol p beam on (un)pol tgt (2020-2021?)
 - → Sivers sign change (valence quark)

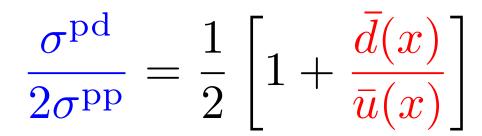

10% of available beam to SeaQuest / 90% to neutrino program

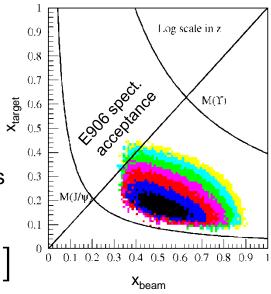
Event Selection & Reconstruction



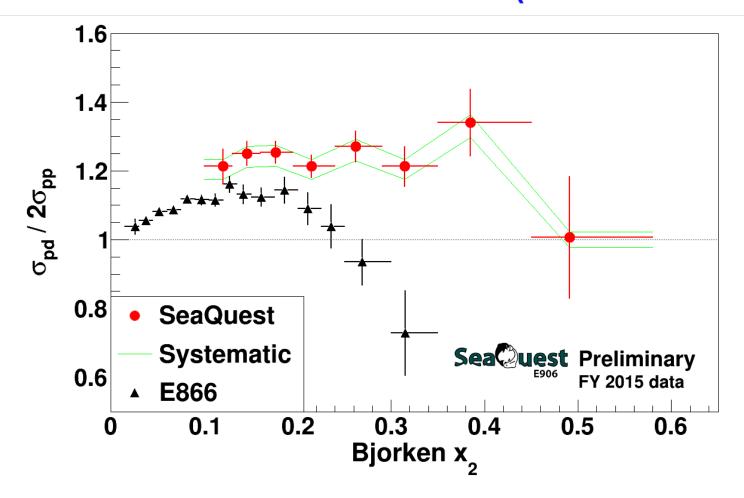
- Monte Carlo describe data well
- Resolution better than expected
 - $-\sigma_{M}(J/\psi)$ ~180 MeV
 - $-\sigma_{M}(D-Y)$ ~220 MeV
 - J/ψ to ψ' separation
 - lower J/ψ mass cut (more Drell-Yan events)



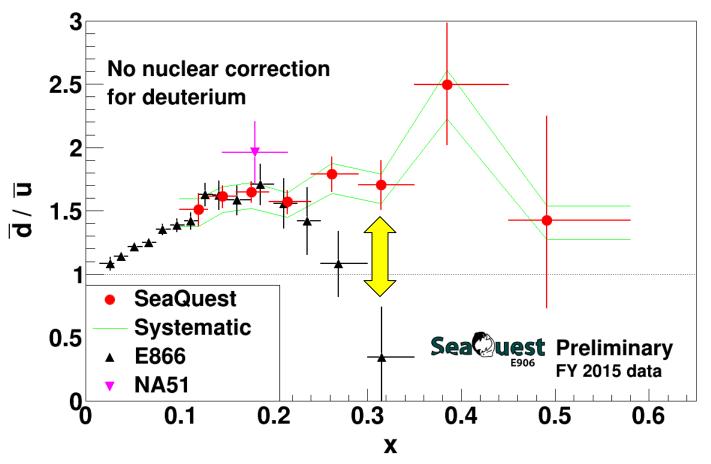

- good Target/Dump separation
- pointing resolution poor along beam axis
- dominated by random coincidences


Fixed Target Drell-Yan: Sensitivity to sea quarks

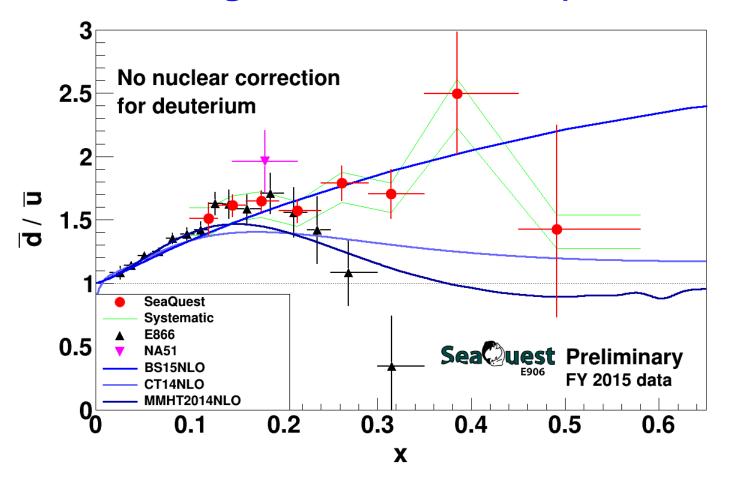
Cross section: convolution of beam and target parton distributions



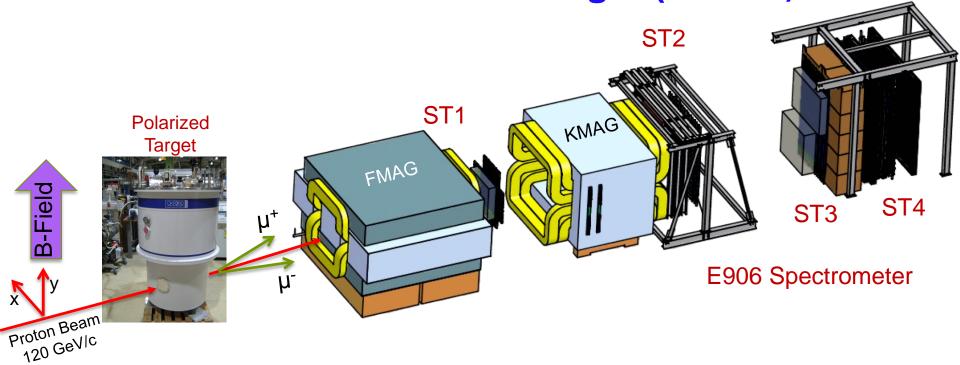
beam: valence quarks at high x


target: sea quarks at low/intermediate x

SeaQuest Cross Section Ratio (2015 Data Set)

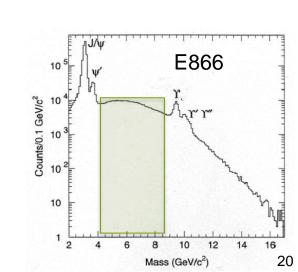

- different kinematics and Q² for E866 & SeaQuest data sets
- new chambers installed in March 2016: improve acceptance in high x₂ region
- 30% of anticipated data $(\sim 1.2 \times 10^{18} \text{ pot})$
- approved for 5 x 10¹⁸ pot

SeaQuest Leading Order extraction (2015 Data Set)


- E866 data is for Q² = 54 GeV² while SeaQuest data has Q² ≈ 29 GeV²
 - difference should be insignificant
- no nuclear correction for deuterium
 - expected larger at higher x, but still small compared to error bars
- is there disagreement at high x?

SeaQuest Leading Order extraction (2015 Data Set)

- BS15 (statistical model) calculated using parameters from NPA941(2015)307
- CT14 and MMHT2014 calculated with the LHAPDF library
- PDF scales taken as 29 GeV²


Let's Add a Polarized Target (E-1039)

- 2.7·10¹² p/spill, one 4s spill/minute
- kinematic range 4 < M < 9 GeV
- luminosity: 3·10³⁵ /cm²/s (NH₃)
- $\sqrt{s} = 15 \text{ GeV}$
- move polarized target ~2m upstream
 - → improves target-dump separation
 - \rightarrow moves acceptance to lower x_2

 $L_{int} = 1.82 *10^{42}/cm^2 NH_3 / 2.11 *10^{42}/cm^2 ND_3$ for 2 years

Ref: Andi Klein (LANL)

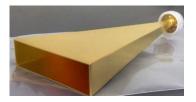
The Polarized Target

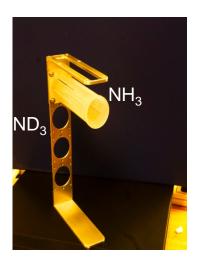
• field: 5T @ 1K

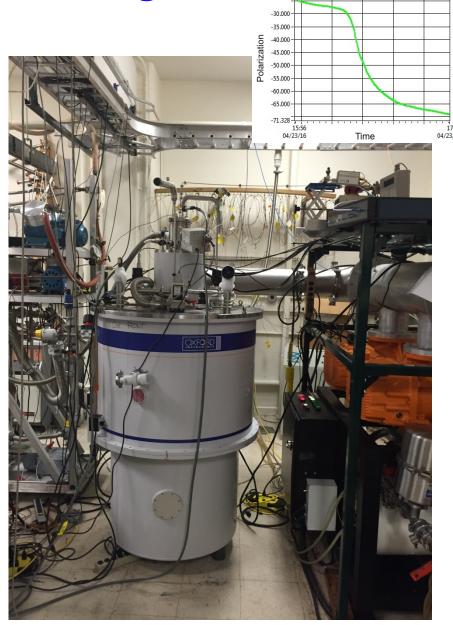
elliptical: 1.9 cm x 2.1 cm (x,y), I:7.9 cm (z)

ρ: 0.87 g/cm³ NH₃, 1 g/cm³ ND₃

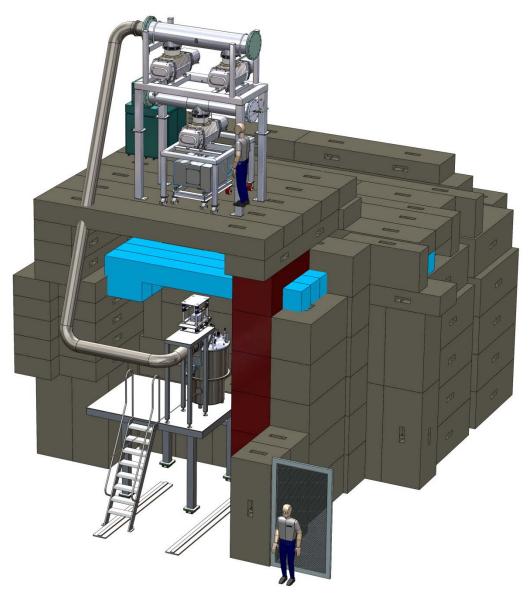
packing fraction: 0.6


dilution factor: 0.176, 0.3


Polarization <80%>, <32%>


• IL: 8.6%, 9.5%

3 active cells, 1 empty


Helium consumption 100 l/day

The E1039 Target and FMAG

Changes needed:

- Collimators upstream
- Closed Loop He system
- 90 degree monitors L/R, T/B

Beam $\sigma_x=17$ mm, $\sigma_v=19$ mm

Target upstream by ~200cm

- moves acceptance to lower x₂
- better target dump separation

Sivers Function and Spin Crisis

$$f_{1T}^{\perp} = \bigcirc$$
 -

cannot exist w/o quark **OAM**

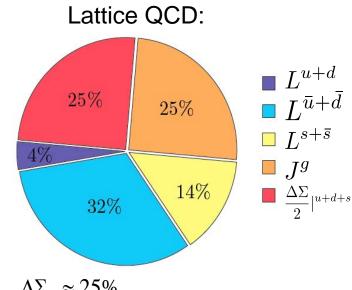
- describes transverse-momentum distribution of unpolarized quarks inside transversely polarized proton
- captures non-perturbative spin-orbit coupling effects inside a polarized proton

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L$$

$$\Delta\Sigma = \Delta u + \Delta d + \Delta s$$

$$\frac{1}{2}\Delta\Sigma \approx 25\%; \quad \Delta G \approx 20\%$$

$$\Delta \Sigma = \Delta u + \Delta d + \Delta s$$


$$L \approx \text{unmeasured}$$

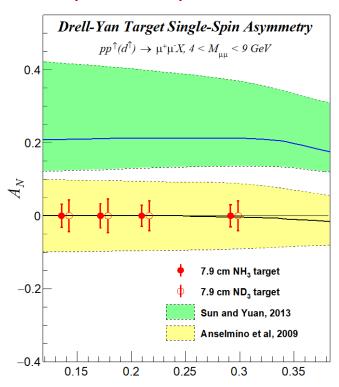
$$\frac{1}{2}\Delta\Sigma \approx 25\%; \ \Delta G \approx 20\%$$

How measure quark OAM?

- GPD: Generalized Parton Distribution
- TMD: Transverse Momentum Distribution

$$A_N = rac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}} \stackrel{?}{=} 0$$
 $A_N^{DY} \propto rac{u(x_b) \cdot f_{1T}^{\perp, \bar{u}}(x_t)}{u(x_b) \cdot \bar{u}(x_t)}$

$$\Delta\Sigma_q \approx 25\%$$


 $2 L_q \approx 50\%$ (4% (valence)+46% (sea))

$$2 J_g \approx 25\%$$

K.-F. Liu *et al* arXiv:1203.6388

Projected Statistical Precision with a Polarized Target at (E-1039)

Probe Sea Quark Sivers Asymmetry
with a polarized proton/deuteron target at SeaQuest

Statistics shown for two calendar years of running:

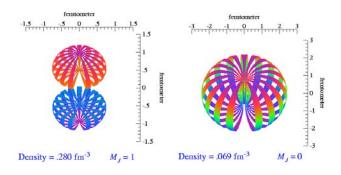
target =
$$NH_3$$
 / ND_3
- $L = 1.82 *10^{42}/cm^2$ / $2.11*10^{42}/cm^2$
- $P = 80\%$ / 32%

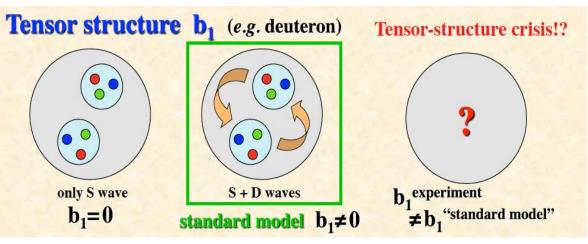
- existing SIDIS data poorly constrain sea-quark Sivers function (Anselmino)
- significant Sivers asymmetry expected from meson-cloud model (Sun & Yuan)
- first Sea Quark Sivers AsymmetryMeasurement
- determine sign and value of \overline{u} and d
 Sivers distribution

If $A_N \neq 0$, major discovery: "Smoking Gun" evidence for $L_{\overline{u},\overline{d}} \neq 0$

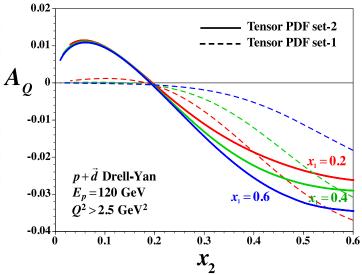
$$A_N^{DY} = \frac{2}{\pi} \cdot A_T^{\sin \varphi_s} \propto f_{1,u}^q(x_b) \otimes f_{1T,\overline{u}(\overline{d})}^{\perp q}(x_t)$$

Tensor Polarization of Deuteron


 deuteron is spin 1 particle, opens up new physics


spin-1 system in a B-field leads to 3 sublevels via Zeeman interaction

Vector polarization: (n + - n -); $-1 < P_z < +1$


Tensor polarization: $(n + - n^0) - (n^0 - n^-)$; $-2 < P_{zz}^- < +1$

Normalization: $(n + n^{-} + n^{0}) = 1$

Current Status and Plans for E-1039

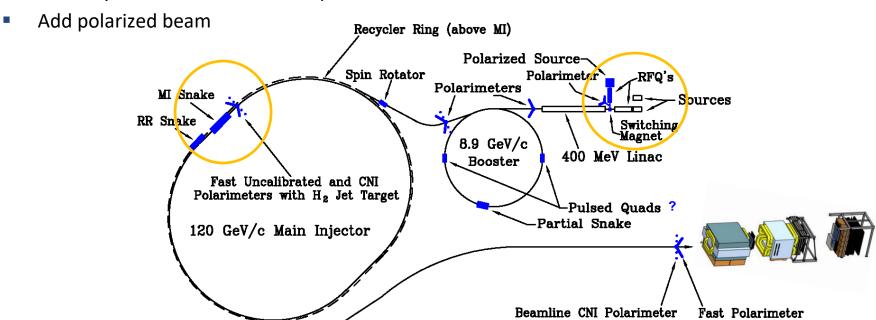
Current status

- full system cooldown/test with full extended 8 cm long target
- reached 92% polarization
- half of the liquefier system built and delivered, second half will be ordered late this year
- beamline design 70% finished; now looking for reducing costs
- currently working on 90% design of the whole installation and beam line

Funding

- → DoE has provided \$2 Mio for E-1039 in Sept 2017
- Fermilab will pay to decommission E906 and to install E1039

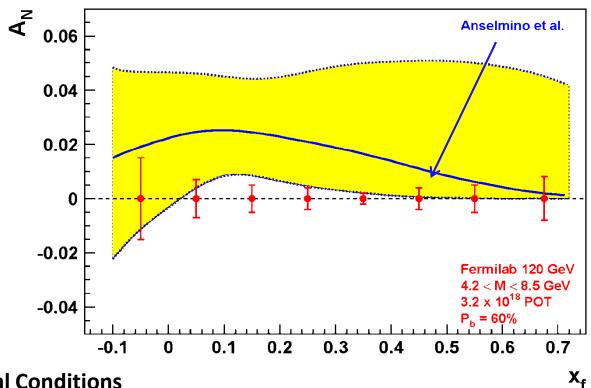
Plans


- → last system cooldown with both target sticks in Dec 2017
- → move target to FNAL in Jan 2018, system cooldown Feb 2018 at FNAL
- start beam line commissioning in Mar 2018, and general commissioning in summer 2018
- start data taking in fall 2018

Let's Polarize the Beam at Fermilab (E-1027)

The Plan:

Use fully understood SeaQuest Spectrometer

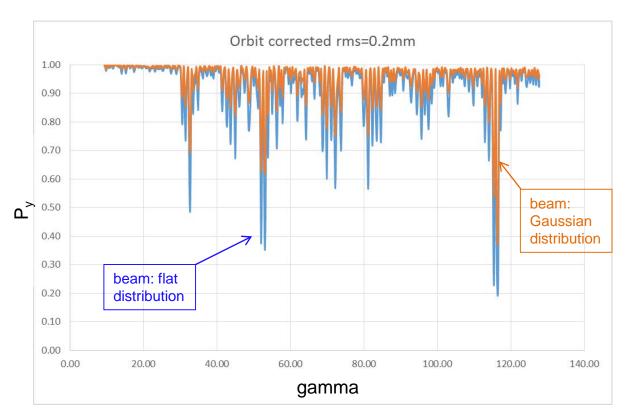


- Measure sign-change in Sivers Function:
 - → QCD (and factorization) require sign change
 - → major milestone in hadronic physics (HP13)
- $\left. f_{1T}^{\perp} \right|_{SIDIS} = -\left. f_{1T}^{\perp} \right|_{DY}$

- Fermilab (best place for polarized DY):
 - → very high luminosity, large x-coverage (primary beam, fixed target)
- Cost Est.: \$6M +\$4M Contingency & Management = \$10M (in 2013)

Expected Precision from E-1027 at Fermilab

Probe Valence Quark Sivers Asymmetry with a polarized proton beam at SeaQuest

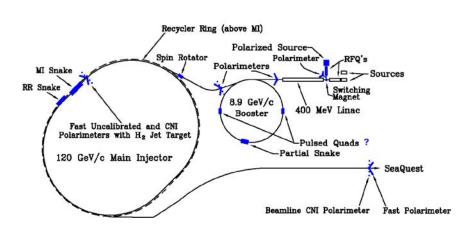

1.3 Mio
DY events
with no
dilution

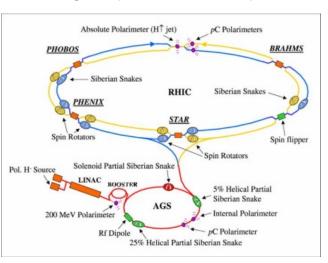
- Experimental Conditions
 - same as SeaQuest
 - luminosity: $L_{av} = 2 \times 10^{35}$ (10% of available beam time: $I_{av} = 15$ nA)
 - 3.2 X 10¹⁸ total protons for 5 x 10⁵ min: (= 2 yrs at 50% efficiency) with P_b = 60%

Can measure not only sign, but also the size & probably shape of the Sivers function! as well as TMD evolution!

Simulation of final polarization as function of Energy in MI

- Simulations of final polarization as function of Energy in Fermilab Main Injector look promising (Meiqin Xiao (FNAL AD), Etienne Forest (KEK)):
 - point-like snake in correct location, w/ actual ramp rate for acceleration: final polarization: ~ 90%

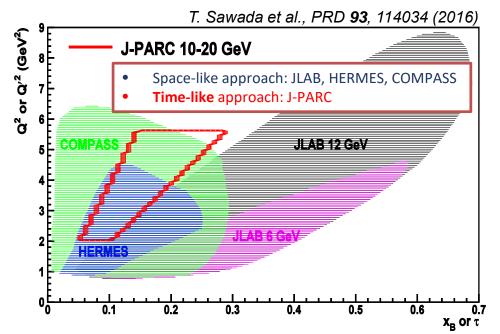


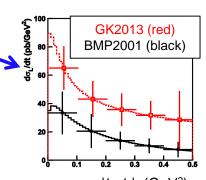

Polarizations with magnet field error and misalignment (from magnet database and survey group), corrected (for SeaQuest running conditions)

 ϵ_{max} = 20 π mm.mrad in y plane and Δp =1.25*10⁻³ in longitudinal plane

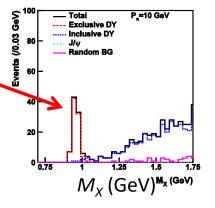
Polarized protons: Fermilab vs RHIC

- Most significant difference:
 - Ramp time of Main Injector < 0.7 s, at RHIC 1-2 min
 - → warm magnets at MI vs. superconducting at RHIC
 - → pass through all depolarizing resonances much more quickly
- Beam remains in MI ~2 s, in RHIC ~8 hours
 - extracted beam vs. storage ring
 - much less time for cumulative depolarization
- Disadvantage compared to RHIC no institutional history of accelerating polarized proton beams
 - Fermilab E704 had polarized beams through hyperon decays



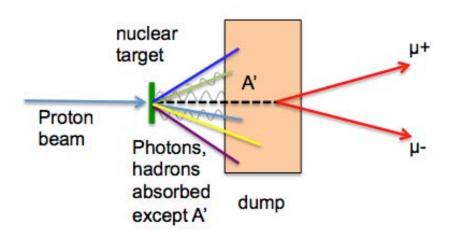

J-PARC Projection & Plans

- Accessing GPD of nucleon via exclusive meson-induced Drell-Yan
 - Test of factorization of exclusive Drell-Yan process
 - Test of universality of GPD in space-like (DVMP) and time-like processes (DY).


 $P_{\pi} = 10 \text{ GeV}$

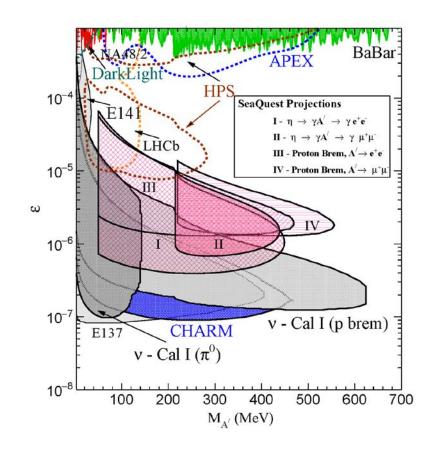
- E50 experiment (Stage-1 approved by J-PARC) + μ -ID extension
 - \rightarrow 10-20 GeV π^- beam on high momentum beam line at J-PARC
 - \longrightarrow good missing mass resolution in exclusive DY events $(\pi^- p \to \mu^+ \mu^- n)$
 - Statistical accuracy adequate for discriminating between predictions from two current GPD models.

GK2013: P. Kroll et al. Eur. Phys. J. C73, 2278 (2013)


 $|t - t_0|$ (GeV²)

BMP2001: E.R. Berger et al. Phys.Lett.B523, 265 (2001)

Search for Dark Photons at SeaQuest


Classic Beam Dump Experiment

- Minimal impact on Drell-Yan program
 - run parasitically during E906

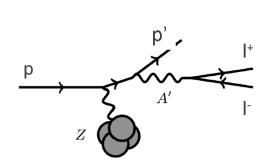
$$l_o \approx \frac{0.8 cm}{N_{eff}} \left(\frac{E_o}{10 GeV}\right) \left(\frac{10^{-4}}{\varepsilon}\right)^2 \left(\frac{100 MeV}{m_{A'}}\right)^2$$

J. D. Bjorken et al, PRD 80 (2009) 075018

SeaQuest experimental parameters:

- \rightarrow E₀ = 5 110 GeV for Proton Bremsstrahlung
- \rightarrow N_{eff} = 2
- \rightarrow $l_0 = 0.17m 5.95m$

Polarized Proton Beams and Searches for Dark Forces


Searches for a dark photon also limit other possibilities

Parity violation studies could prove key

$$\mathcal{L}_{\text{darkZ}} = -(\varepsilon e J_{\text{em}}^{\mu} + \varepsilon_Z \frac{g}{2\cos\theta_W} J_{\text{NC}}^{\mu}) Z_{d\mu}$$

[Davoudiasl, Lee, Marciano, 2014]

If the A' is a dark Z, then ...

The dilepton yield can change with proton polarization: the asymmetry can be O(1)!

Conclusions

- There is an exciting Drell-Yan program with polarized/unpolarized beams and targets underway
 - → although experimentally more challenging, it has some clear advantages over SIDIS
- Different labs offer complementary probes and processes to study hadronic landscape
 - → focus on strength of each lab to (minimize cost and) optimize physics output
- Future opportunities look very promising
 - → support from hadronic community (was and remains) vital to move forward
 - → opportunities to join the Fermilab program
- We have finally seen first results from COMPASS on the sign-change
 - → statistics still poor; but expect more in 2018
- Now entering an era where we will have first measurement of a sea quark Sivers function (answer some of the questions):
 - → How much do the quarks and gluons contribute to the nucleon spin?
 - → In particular, what is the role of the sea quarks?
 - → Is there significant orbital angular momentum?
 - → Does TMD formalism work? Does Sivers function change sign (but keep shape and size)?

Thank You