Physics 390 Winter 2007: Midterm Exam Practice Solutions

These are a few problems comparable to those you will see on the exam. They were picked from previous exams. I will provide a sheet with useful constants and equations for the exam.

1: The energy reaching the Earth from the Sun at the top of the atmosphere is described by the 'Solar Constant': $1360 \mathrm{~W} / \mathrm{m}^{2}$. The radius of the Earth is $6.4 \times 10^{6} \mathrm{~m}$. Assume that the Earth radiates like a blackbody at a uniform temperature.
a) What value would you estimate for the equilibrium temperature of the Earth?
b) What would be the peak wavelength for thermal emission from the Earth?
a) The Earth is both absorbing solar radiation and emitting its own thermal radiation. These two processes will balance at the equilibrium temperature:
Absorbed solar light: The sun energy arriving is $1360 \mathrm{~W} / \mathrm{m}^{2}$. The area of the Earth which faces the sun is given by $\pi \mathrm{r}^{2}=1.3 \times 10^{14} \mathrm{~m}^{2}$. It's not half the surface area of the Earth, because the Sun doesn't shine down on every point. This means that the total energy arriving at the top of the atmosphere is about:
$1360 \mathrm{~W} / \mathrm{m}^{2} * 1.3 \times 10^{14} \mathrm{~m}^{2}=1.8 \times 10^{17} \mathrm{~W}$
Emitted thermal radiation: Assuming the entire Earth is at a uniform temperature, it emits a total power of Area $* \sigma \mathrm{~T}^{4}=4 \pi \mathrm{r}^{2} * \sigma \mathrm{~T}^{4}=2.9 \times 10^{7} \mathrm{~W} / \mathrm{K}^{4} * \mathrm{~T}^{4}$
Equating these two yields : $\mathrm{T}^{4}=1.8 \times 10^{17} \mathrm{~W} / 2.9 \times 10^{7} \mathrm{~W} / \mathrm{K}^{4}=6.2 \times 10^{9} \mathrm{~K}^{4}$ or an equilibrium temperature of $\mathrm{T}=280 \mathrm{~K}$.
b) $\lambda_{\max } \mathrm{T}=2.9 \times 10^{-3} \mathrm{mK} \quad$ or $\quad \lambda_{\max }=1.0 \times 10^{-5} \mathrm{~m}$, or $10 \mu \mathrm{~m}$.

2: An electron is trapped in an infinitely deep one-dimensional potential well. The width of the well is $10^{-9} \mathrm{~m}$.
a) Write an expression for the solutions to the Schrodinger equation for this potential. Your solutions need not be normalized, but they should meet the boundary conditions appropriate for this potential well.
b) Draw the wave function for the $\mathrm{n}=5$ state.
c) What is the difference in energy between the $\mathrm{n}=4$ and the $\mathrm{n}=5$ state?
a) The wave functions are the usual free wave solutions, but they must go to zero at $x=0$ and $x=L$, so they are:

$$
\psi(x)=\sin (n \pi x / L)
$$

These waves have energy $\mathrm{E}_{\mathrm{n}}=\hbar^{2} \pi^{2} \mathrm{n}^{2} / 2 \mathrm{~mL}^{2}=\mathrm{n}^{2} *(0.37 \mathrm{eV})$
b) The $\mathrm{n}=5$ state has five peaks in it, and is shown on the drawing to the right.
c) The energy difference is $\mathrm{E}_{5}-\mathrm{E}_{4}=(25-16) * 0.37 \mathrm{eV}=3.36 \mathrm{eV}$

3: In a repeat of the Davisson and Germer electron diffraction experiment a beam of electrons with kinetic energy of 54 eV are fired at a clean surface of Nickel.
a) What is the wavelength of these electrons?
b) If the Ni atoms are arranged in a regular cubic lattice with a spacing of 0.45 nm , what is the largest angle at which a strong signal of scattered electrons will be seen?
a) The wavelength is given by $\lambda=\mathrm{h} / \mathrm{p}=1.67 \times 10^{-10} \mathrm{~m}$
b) The scattering relation for electrons off a surface is $\mathrm{n} \lambda=\mathrm{D} \sin \theta$ or $\sin \theta=\mathrm{n} \lambda / \mathrm{D}=\mathrm{n}\left(1.67 \times 10^{-10} / 4.5 \times 10^{-10}\right)=\mathrm{n} * 0.371$
For this, the largest allowed value of n is 2 , and then we have $\theta=\sin ^{-1}(0.742)=47.9^{\circ}$

4: X-rays tubes used in dentist's offices often have an accelerating voltage of 80 kV .
a) What is the minimum wavelength such an x-ray tube can produce?
b) What is the maximum wavelength such an x-ray can have after Compton scattering off an electron inside your tooth?
c) Estimate the maximum wavelength such an x-ray can have after scattering off a calcium nucleus in your tooth. A calcium nucleus contains 20 protons and 20 neutrons.
a) An electron accelerated through 80 kV and slammed into a target can create, by Bremmstrahlung radiation, a photon with an energy of 80 keV . This is a wavelength $\lambda=\mathrm{hc} / \mathrm{E}=1.55 \times 10^{-11} \mathrm{~m}$
b) In Compton scattering the photon gives up some of its energy to an electron. It will give up the largest possible part of its energy when it scatters directly back along the path on which it entered. Shifts in wavelength due to Compton scattering are given by:

$$
\lambda^{\prime}-\lambda=\left(h / m_{e} c\right)(1-\cos \theta)
$$

When the photon scatters straight back, $\theta=180^{\circ}$, and $\cos \theta=-1$, so

$$
\lambda^{\prime}-\lambda=2\left(\mathrm{~h} / \mathrm{m}_{\mathrm{e}} \mathrm{c}\right) \quad \text { or } \quad \lambda^{\prime}=\lambda+2\left(\mathrm{~h} / \mathrm{m}_{\mathrm{e}} \mathrm{c}\right)
$$

where this factor $\left(\mathrm{h} / \mathrm{m}_{\mathrm{e}} \mathrm{c}\right)=2.4 \times 10^{-12} \mathrm{~m}$ is called the Compton wavelength of the electron. This tells us:

$$
\lambda_{\max }^{\prime}=\lambda+4.8 \times 10^{-12} \mathrm{~m}=2.03 \times 10^{-11} \mathrm{~m}
$$

c) Scattering off the calcium nucleus is just like scattering off an electron except that the calcium nucleus is roughly $40^{*} 1800=72,000 \mathrm{x}$ as heavy as the electron. This means the Compton wavelength of this nucleus is 72,000 times as small as that of the electron. Shifts in the wavelength of backscattered photons are similarly reduced. Since the shifts are so tiny, the incoming photon scatters back with just about its original energy.

5: Draw qualitative wavefunctions which represent solutions to the Schroedinger equation for particles with the energies shown confined by the following potentials. Please note with words any particular features you wish to stress.

