
February 23, 2007

Physics 390: Homework set #4

Solutions

Reading: Tipler & Llewellyn, Chapter 7

Questions:

1. The 2s electron has a greater probability to be close to the nucleus than the 2p electron,
and also a greater probability to be farther away (see Figure 7-10a). Make an analogy to
classical orbits to explain how this is possible.

Solution: The s-orbits are similar to classical circular orbits, while the p-orbits, which have higher
angular momentum, correspond to elliptical orbits. For particles in classical orbits with the same
total energy, the one in the elliptical orbit is more likely to be found closer to the center, and further
away, as illustrated here.

2. Spherical harmonics, which are eigenfunctions of angular momentum, contain the imagi-
nary number i =

√
−1 (see Table 7-1). Is it all right for a function that is supposed to be

associated with observable quantities to contain imaginary numbers? Why or why not?

Solution: Expectation values for observable quantities are always computed using the combination

ψ∗ψ, which is real even if ψ itself is complex. So there is no problem with the appearance of i in the

spherical harmonics.

3. Consider a penny spinning about an axis through its center at the rate of a few revolutions
per second. Estimate the value of l.

Solution: Some crude estimates:

• Mass of penny: 3 g

• Radius of penny: 1 cm

• Moment of inertia of spinning penny: I’m assuming it’s spinning upright, rather than like
a merry-go-round. For this case the moment of interia is 1

4mr
2. (If you made the other

assumption, the moment of inertial only differs by a factor of two, which is unimportant here).
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• Rotation rate: ≈3 Hz.

Then

L = Iω =
1

4
mr2ω = h̄

√

ℓ(ℓ+ 1) ≈ h̄ℓ,

where I assumed that ℓ will be sufficiently large that ℓ ≈ ℓ+ 1. Solving for ℓ, we have

ℓ =
mr2ω

4h̄

≈
(0.003 kg)(0.01 m)2(3 Hz)(2π)

4(1.05 × 10−34 J · s)
= 1.3 × 1028

This very large value is why we can describe the spinning penny classically.

Problems: 1, 13, 23, 33, 34, 36, 42, 45, 68

Problem 7-1: From Eqn. 7-4

E n1 n2 n3
=

h̄2π2

2mL2

(

n2
1 + n2

2 + n2
3

)

.

So

E 3 1 1 =
h̄2π2

2mL2

(

32 + 12 + 12
)

= 11E0 where E0 =
h̄2π2

2mL2
,

and
E 2 2 2 = E0(2

2 + 22 + 22 = 12E0,

and
E 3 2 1 = E0(3

2 + 22 + 12 = 14E0,

The first, second, third and fifth excited states are degenerate. The results are summarized in this
graph:

Energy
(×E0)
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Problem 7-13: We can express L2
x + L2

y as follows:

L2
x + L2

y = L2 − L2
z = ℓ(ℓ+ 1)h̄2 − (mh̄)2.

For ℓ = 2, then, L2
x + L2

y = (6 −m2)h̄2. m can take on integer values from -2 to 2.

(a) (L2
x + L2

y)min = (6 − 22)h̄2 = 2h̄2.

(b) (L2
x + L2

y)max = (6 − 02)h̄2 = 6h̄2.

(c) L2
x + L2

y = (6 − 12)h̄2 = 5h̄2. Lx and Ly cannot be separately determined.

(d) Since ℓ cannot be larger than n− 1, n must be at least 3.

Problem 7-23: The normalized n = 2, ℓ = 0 radial wavefunction for hydrogen (Z = 1) is (using
Equation 7-33 and the result of problem 7-25)

ψ200 =
1√
2π

1

a
3/2
0

(

2 −
r

a0

)

e−r/2a0 .

With this choice of normalization constant, the radial probability density is (see Eqn. 7-32)

P (r) dr = ψ∗ψ 4πr2 dr =
1

2π

1

a3
0

(

2 −
r

a0

)2

e−r/a0 (4πr2) dr.

The interval ∆r = 0.02a0 is sufficiently small that we can treat P (r) as approximately constant over
the range. Then:

(a) For r = a0 we have

P (r)∆r =
4π

2π

1

a3
0

(2 − 1)2 e−1a2
0(0.02a0) = 2 (1) e−1(0.02) = 1.5 × 10−2.

(b) For r = 2a0,

P (r)∆r =
4π

2π

1

a3
0

(0)e−2a2
0(0.02a0) = 0.

Problem 7-33:

(a) For j = 3/2, there are 2j + 1 = 3 + 1 = 4 possible lines. The four lines correspond to the four
mj values −3/2, −1/2, +1/2, +3/2.

(b) For s = 0, j = 1. Thus, there are 2j + 1 = 2 + 1 = 3 possible lines. The three lines correspond
to the three mj values −1, 0, +1.

Problem 7-34: The spectroscopic notation is 2S+1LJ

For n = 2 (l = 0, 1 and s = 1/2): 2 2S1/2, 2 2P1/2, 2 2P3/2.

For n = 4 (l = 0, 1, 2, 3 and s = 1/2):
4 2S1/2, 4 2P1/2, 4 2P3/2, 4 2D3/2, 4 2D5/2, 4 2F5/2, 4 2F7/2.
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Problem 7-36:

(a) For l = 2, j = l ± 1/2, so j = 5/2 or j = 3/2.

(b) The magnitude of the total angular momentum J is

J =
√

j(j + 1)h̄ =

√

5

2
(5/2 + 1)h̄ = 2.96h̄,

or =

√

3

2
(3/2 + 1)h̄ = 1.94h̄,

(c) The total angular momentum vector J = L+S has z−components Jz = Lz+Sz = mlh̄+msh̄ =
mjh̄, where mj = −j,−j + 1, ...j − 1, j.
So for j = 5/2 the z−components are -5/2, -3/2, -1/2, 1/2, 3/2, 5/2.
For j = 3/2 the z−components are -3/2, -1/2, 1/2, 3/2.

Problem 7-42: Neutrons have antisymmetric wave functions, so two neutrons cannot occupy the
same quantum state. Ignoring spin, the minimum energy configuration occurs when one is in the
n = 1 state and the other is in the n = 2 state. So

E = E1 +E2 = (12 + 22)E1 = 5E1,

where

E1 =
(h̄c)2π2

2mc2L2
=

(197.3 MeV · fm)π2

2(939.6 MeV)(2.0 fm)
= 51.1 MeV =⇒ E = 5E1 = 255 MeV.

Real neutrons, of course, have spin-1/2, so we could put two of them in the n = 1 state, with one
neutron having spin-up and the other having spin-down.

(Problem 7-45):

(a) Chlorine has Z = 17: 1s22s22p63s23p5.

(b) Calcium has Z = 20: 1s22s22p63s23p64s2.

(c) Germanium has Z = 32: 1s22s22p63s23p63d104s24p2.

Problem 7-68: The radial probability density for the ground state of hydrogen is (Eqns. 7-31,
7-32):

P (r) dr = 4πr2C2
100e

−2r/a0 dr = 4πr2
1

π

(

1

a3
0

)

e−2r/a0 dr

At the edge of the proton, where r = R0 = 10−15 m, the exponential factor has decreased from 1 to

e−2R0/a0 = e−2(10−15)/0.59×10−10

= e−3.78×10−5

≈ 1 − 3.78 × 10−5 ≈ 1.

Thus to better than four significant figures, the probability of finding the electron inside the nucleus
is

P =

∫ R0

0
P (r) dr ≈

∫ R0

0

4r2

a3
0

dr =
4

a3
0

∫ R0

0
r2 dr =

4

a3
0

r3

3

∣

∣

∣

∣

∣

R0

0

=
4

3

(

R0

a0

)3

=
4

3
(3.78×10−5)3 = 9.0 × 10−15.
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