
February 9, 2007

Physics 390: Homework set #3

Solutions

Reading: Tipler & Llewellyn, Chapter 6

Questions:

1. If the ground-state energy of an electron in a box were of the same magnitude as hydrogen
in the ground state, how would the width of the box compare to the Bohr radius?

Solution: For a particle in a box, the ground state energy is

E =
h̄2π2

2mL2
=⇒ L =

h̄π√
2mE

=
h̄cπ√
2mc2E

.

Taking the electron mass for m and E=13.6 eV, we have

L =
π( 197 eV · nm)

√

2(511 × 103 eV)(13.6 eV)

= 0.17 nm.

This is pretty close (within about a factor of 3) of the Bohr radius, a0 = 0.0529 nm. Note, the Bohr

radius is smaller than the length scale that emerges from this particle in a box calculation. This

says that the Coulomb potential binds the electron more tightly than the crude approximation of a

particle in a box would suggest.

2. (a) In the systems we have considered, do any two energy eigenfunctions that are propor-
tional to each other have the same energy eigenvalues? (b) Can you find two wave functions
that are not proportional to each other, yet still have the same energy eigenvalues? What
distinguishes the functions?

Solution:

(a) Any two eigenfunctions that are proportional to each other have the same eigenvalue. Let ψ
be a solution to the Schrödinger equation with energy E, so that Ĥψ = Eψ. Now let φ = Cψ
be a function that’s proportional to ψ. We have

Ĥφ = Ĥ(Cψ) = CĤψ = CEψ = E(Cψ) = Eφ.

(b) Yes, we have encountered an example: The free-particle wave functions ψ1 = Aei(kx−ωt) and
ψ2 = Ae−i(kx+ωt). These both describe a particle with energy E = h̄2k2/2m, but they are not
proportional. The first describes a particle moving to the right, while the second describes a
particle moving to the left.

When we study two- or three-dimensional particles in a box wavefunctions, or the hydrogen
atom, we’ll see additional examples:
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– The two-dimensional particle in a box wavefunctions, ψnm = (2/L) sin(nπx/L) sin(mπy/L).

Both ψnm and ψmn have the same energy, Enm = Emn = h̄2π2

2mL2 (n2 +m2). For n 6= m, the
functions are not proportional; they correspond to different numbers of standing waves
in the x and y directions.

– Up to small corrections, the H-atom energy depends only on the principal quantum
number n, but for a given n there can be different wavefunctions that correspond to
different values of the angular momentum and/or its projection onto the z-axis.

3. Does Equation 6-27 imply that we know the momentum of the particle exactly? If so,
what does that imply about our knowledge of its position? How can you reconcile this with
our knowledge that the particle must be in the well?

Solution: Equation 6-27 gives the relationship between energy and momentum for the particle in
a box: k2 = (p/h̄)2 = 2mE/h̄2. So what happens if the particle is in an energy eigenstate, i.e. a
state with definite energy En = p2

n/2m = n2h̄2π2/2mL2? This does not mean that the particle has
a definite momentum. Rather, the particle has a definite momentum squared. The momentum itself
is uncertain because it can have either sign—the particle could be moving to the left or to the right
with equal probability. This is why we found 〈p〉 = 0 when we computed it in class. We saw then
that the uncertainty relations are indeed satisfied for the particle in a box.

Formally, the momentum is not well-defined because the energy eigenstates, ψn =
√

2
L sin nπx

L , are

not eigenstates of momentum. That is, when we act on ψn with the momentum operator −ih̄ ∂
∂x , we

do not get back a multiple of ψn.

4. In this problem you will verify the Heisenberg uncertainty relations for the ground state of
the quantum harmonic oscillator, for which (Equation 6-58)

ψ0(x) = A0e
−mωx2/2h̄.

(a) Show that the normalization condition
∫

∞

−∞
|ψ(x)|2 dx = 1 requires A0 = (mω/h̄π)1/4.

Solution: We need

1 =

∫

∞

−∞

ψ∗

0ψ0 dx = A2
0

∫

∞

−∞

e−mωx2/h̄ dx.

Let u =
√

mω/h̄ x. Then

1 = A2
0

√

h̄

mω

∫

∞

−∞

e−u2

du = A2
0

√

h̄

mω
·
√
π =⇒ A0 =

(

mω

h̄π

)1/4

.

In the last step I used the result of Appendix B in the text to do the gaussian integral.

(b) What value do you expect for 〈x〉? Use a symmetry argument rather than a calculation.

Solution: The potential V (x) = 1
2mω

2x2 is symmetric about x = 0. So we expect the

particle to spend equal amounts of time on the left and on the right. Thus we expect 〈x〉 = 0.

(c) Compute 〈x2〉. Then compute ∆x ≡
√

〈x2〉 − 〈x〉2.
Solution:

〈x2〉 =

∫

∞

−∞

ψ∗

0x
2ψ0 dx = A2

0

∫

∞

−∞

x2e−mωx2/h̄ dx = A2
0

(

h̄

mω

)3/2 ∫ ∞

−∞

u2e−u2

du = A2
0

(

h̄

mω

)3/2 √
π

2
,

2



where I again used the technique of Appendix B to evaluate the integral. Using the result of
part (a) for A0, we have

〈x2〉 =
h̄

2mω
=⇒ ∆x =

√

〈x2〉 − 〈x〉2 =
√

〈x2〉 =

√

h̄

2mω
.

(d) What value do you expect for 〈p〉? Use a symmetry argument rather than a calculation.

Solution: Again by the symmetry of the potential, we expect the particle to be moving to
the left as often as to the right. So 〈p〉 = 0, as can be easily verified by a direct calculation.

(e) Conservation of energy for the harmonic oscillator can be used to relate p2 to x2. Use
this relation, along with the value of 〈x2〉 from part (c), to find 〈p2〉.
Solution: We know that E = Ek + V = p2

2m + 1
2mω

2x2. For the ground state, E = 1
2 h̄ω. So

taking the expectation value of both sides,

〈E〉 =
1

2
h̄ω =

1

2m
〈p2〉 +

1

2
mω2〈x2〉 =

1

2m
〈p2〉 +

1

2
mω2 · h̄

2mω
=

1

2m
〈p2〉 +

1

4
h̄ω.

Solving for 〈p2〉, we have

〈p2〉 =
1

2
mωh̄.

(f) Using the results of parts (d) and (e), evaluate ∆p.

Solution: ∆p =
√

〈p2〉 − 〈p〉2 =
√

mωh̄
2 .

(g) Finally, using the results of parts (c) and (e), evaluate ∆x∆p for the harmonic oscillator.
Is the result consistent with the uncertainty relationship?

Solution:

∆x∆p =





√

h̄

2mω









√

mωh̄

2



 =
h̄

2
.

This is consistent with the Heisenberg uncertainty relation ∆x∆p ≥ h̄/2. The value obtained

here is the minimum possible value of ∆x∆p allowed by the uncertainty principle. In this

sense, the wave function of the ground state of the harmonic oscillator, which is known as a

Gaussian wave packet, is the most “compact” wave packet that can be constructed.

Problems: 3, 6, 25, 42, 43, 50

Problem 6-3: The wave function ψ(x) = Ae−x2/2L2

is a solution to the Schrödinger equation with
energy E = h̄2/2mL2.

(a) To find the potential, we use the fact that ψ(x) is a solution to the Schrödinger equation, which
we can write as

V (x)ψ = Eψ +
h̄2

2m

d2ψ

dx2
. (1)
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So compute the second derivative of ψ:

dψ

dx
= − x

L2
·Ae−x2/2L2

= − x

L2
ψ.

d2ψ

dx2
= − 1

L2
ψ − x

L2

dψ

dx

= − 1

L2
ψ +

x

L2

x

L2
ψ

=
1

L2

(

x2

L2
− 1

)

ψ.

We can now write down the left-hand side of Equation (1):

Eψ +
h̄2

2m

d2ψ

dx2
=

h̄2

2mL2
ψ +

h̄2

2mL2

(

x2

L2
− 1

)

ψ

=
h̄2

2mL4
x2ψ

= V (x)ψ,

where in the last step I used the Schrödinger equation, Equation (1). So

V (x) =
1

2

(

h̄2

mL4

)

x2.

This is the equation of a parabola centered at x = 0.

(b) The classical system with this type of potential is the simple harmonic oscillator: V = 1
2kx

2.
So the “spring constant” of this quantum system is k = h̄2/mL4.

Problem 6-6:

(a) For a free electron, the potential V (x) = 0, so the Schrödinger equation becomes

− h̄2

2m

d2ψ

dx2
= Eψ.

Substituting the second derivative of ψ(x) = A sin(2.5 × 1010 x)

d2ψ

dx2
= −(2.5 × 1010)2ψ

into the Schrödinger equation gives

(2.5 × 1010)2
(

h̄2

2m

)

ψ = Eψ,

and, since E = Ek = p2/2m for a free particle,

p2 = 2m

[

(2.5 × 1010)2
(

h̄2

2m

)]

and p = (2.5 × 1010)h̄ = 2.64 × 10−24 kg · m/s.
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(b) The total energy E is then

E = p2/2m =
(

2.64 × 10−24 kg · m/s
)2
/(2)

(

9.11 × 10−31 kg
)

= 3.82 × 10−18 J = 23.9 eV.

(c) The Compton wavelength is given by

λ = h/p = 6.63 × 10−34 J · s/2.64 × 10−24 kg · m/s = 2.5 × 10−10 m = 0.251 nm.

Problem 6-25: Let’s assume that V1 < E < V2, and let’s define 4 regions to consider here:

Region I (V = V2): −∞ < x < 0
Region II (V = 0): 0 ≤ x < x1

Region III (V = V1): x1 ≤ x < x2

Region IV (V = V2): x2 ≤ x <∞

For regions I and IV, ψ is exponentially falling, curvature is positive.

For region II: ψ is oscillatory; Ek is relatively large, so p is relatively large and therefore λ is relatively
small. The amplitude is relatively small because the kinetic energy Ek, and hence the velocity of the
particle is relatively large.

For region III: ψ is oscillatory; Ek is relatively small, so p is relatively small and therefore λ is rela-
tively large. The amplitude is relatively large because the kinetic energy Ek, and hence the velocity
of the particle is relatively small.

These findings are summarized in this graph:

Problem 6-42: The situation is as shown here:

(a) For x > 0,

E =
h̄2k2

1

2m
=
h̄2k2

2

2m
− V0 = 2V0 ⇒ h̄2k2

2

2m
= 3V0.

So k2 =
√

6mV0/h̄. Since k1 =
√

4mV0/h̄, then k2 =
√

3/2k1.

(b)

R =
(k1 − k2)

2

(k1 + k2)2
=

(1 −
√

3/2)2

(1 +
√

3/2)2
= 0.0102.

So 1.02% of the incident particles are reflected at the boundary.
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V

V0

0

V=0

x=0

k1

(c) T = 1 − R = 0.99.

(d) Approximately 99% of the particles, or 990,000, would continue on. Classically, 100% of
the particles would continue on.

Problem 6-43: From Eqns. 6-68 and 6-69

R =
(k1 − k2)

2

(k1 + k2)2
T =

4k1k2

(k1 + k2)2

we get

T +R =
4k1k2

(k1 + k2)2
+

(k1 − k2)
2

(k1 + k2)2
=

(4k1 + k2
1 − 2k1k2 + k2

2)

(k1 + k2)2

=
(k2

1 + 2k1k2 + k2
2)

(k1 + k2)2

=
(k1 + k2)

2

(k1 + k2)2
= 1.

Problem 6-50:

(a) For particles in an infinite square well the energy levels are given by

En =
n2h2

8ml2
and En+1 =

(n+ 1)2h2

8ml2
.

So
En+1 − En

En

=
n2 + 2n+ 1 − n2

n2
=

2n + 1

n2
=

2 + 1/n

n
.

For large n, 1/n≪ 2, and
En+1 − En

En
≈ 2

n
.

(b) For n = 1000, the fractional energy difference is

2

1000
= 0.002 = 0.2%.

(c) It means that the energy difference between adjacent levels per unit energy for large n
is getting smaller, as the corresponding principle requires.
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