
January 26, 2007

Physics 390: Homework set #2

Solutions

Reading: Tipler & Llewellyn, Chapters 4, 5

Questions:

1. Suppose we cover one slit in the two-slit electron experiment with a very thin sheet of

fluorescent material that emits a photon whenever an electron passes through. We then fire

electrons one at a time at the double slit; whether or not we see a flash of light tells us which

slit the electron went through. What effect does this have on the interference pattern? Why?

Solution: Performing the double slit experiment in this way would cause the interference pattern to

disappear. The fluorescent detector performs a measurement that localizes the electron’s position to

within the width of one slit. This introduces a corresponding spread into the electron’s momentum

distribution, in accordance with the uncertainty principle. Since p = h/λ, there is now a correspond-

ing spread in the wavelengths of the electrons emerging from the slits. This spread in wavelengths

wipes out the interference pattern. A quantitative discussion of this problem is given in the “More”

reading for 9/23.

2. In both the Rutherford theory and the Bohr theory, we neglected any wave properties of

the particles. Estimate the de Broglie wavelength of an electron in a Bohr atom and compare

it with the size of the atom. Estimate the de Broglie wavelength of one of Rutherfords alpha

particles and compare it with the size of the nucleus. Is wave behavior expected to be impor-

tant in either case?

Solution:

• For an electron in a Bohr atom: The kinetic energy of an electron in the ground state of a
hydrogen atom is

1

2
mv2 =

ke2

2a0

= −E1 = 13.6 eV.

This is small compared to the electron’s rest mass, so we can use the nonrelativistic expression
to relate its energy to its momentum and compute the de Broglie wavelength:

λ =
h

p
=

h
√

2mE
=

hc
√

2mc2E
=

1240 eV · nm
√

2(511 × 103 eV)(13.6 eV)
= 0.33 nm.

This is of the same order as the size of a hydrogen atom. So yes, we expect wavelike effects to
be important for atomic electrons.
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• For one of Rutherford’s alpha particles: these particles had kinetic energies of order 5 MeV (see
Example 4-2). This is small compared to the mass of an alpha particle (about 4u = 3726 MeV),
so we can again use the nonrelativistic expression:

λ =
hc

√
2mc2E

=
1240 MeV · fm

√

2(3726 MeV)(5 MeV)
= 6 fm.

This is on the order of nuclear dimensions, about 100,000× smaller than an atom. So we
expect wavelike behavior to be unimportant in Rutherford scattering, which is well-described
by treating the alpha particles as classical “bullets”.

3. How might Moseley have measured the wavelengths of the X-rays in his experiments?

Solution: One way would have been to observe their Bragg scattering from a crystal with a known

structure, such as NaCl. By observing the angle at which the Bragg condition 2d sin θ = mλ was

satisfied, he could have determined their wavelength. From that he could have determined their

energy using E = hf = hc/λ.

Problems:

Chapter 4: 3, 6, 24, 33, 45

Problem 4-3: From Eqn. 4-2,
1

λmn
= R

(

1

m2
−

1

n2

)

,

where m = 1 defines the Lyman series, for which only transitions with n ≥ 2 are allowed. From

1

164.1 nm
=

1.097 × 107 m−1

109 nm/m

(

1 −
1

n2

)

,

we get
1

n2
= 1 −

109 nm/m

164.1 nm(1.097 × 107 m−1)
= 1 − 0.5555 = 0.4445,

and
n =

√

1/0.4445 = 1.5.

We therefore conclude that this is not a hydrogen Lyman series transition because n is not an integer.

Problem 4-6:

(a) From Eqn. 4-5, we get the fraction f of events scattered through angles greater than θ

f = πb2nt.

For Au, the number density n = 5.90 × 1028 atoms/m3 (see Example 4-2) and for this foil the
thickness t = 2.0 µm = 2.0 × 10−6 m. The impact parameter b is related to the angle θ by
Eqn. 4-3:

b =
kqαQ

mαv2
cot

θ

2
=

(2)(79)ke2

2Kα
cot

90

2
=

(2)(79)(1.44 eV · nm)

2(7.0 × 106 eV)

= 1.63 × 10−5 nm = 1.63 × 10−14 m.
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So
f = π(1.63 × 10−14)2(5.90 × 1028)(2.0 × 10−6) = 9.8 × 10−5.

(b) For θ = 45◦,

b(45◦) = b(90◦)
cot 45◦

2

cot 90◦

2

= b(90◦)
tan 90◦

2

tan 45◦

2

= 3.92 × 10−5 nm = 3.92 × 10−14 m

and f(45◦) = 5.7 × 10−4.
For θ = 75◦,

b(75◦) = b(90◦)
tan 90◦

2

tan 75◦

2

= 2.12 × 10−5 nm = 2.12 × 10−14 m

and f(75◦) = 1.667 × 10−4.
Therefore,

∆f(45◦ − 75◦) = 5.7 × 10−4 − 1.667 × 10−4 = 4.05 × 10−4.

Problem 4-24:

(a) To calculate the energies of the three lowest states in positronium, the reduced mass correction
to the Rydberg constant has to be applied. From Eqn. 4-26,

R = R∞

(

1

1 + m/M

)

= R∞

(

1

2

)

= 5.4869 × 106 m−1.

Combining Eqns. 4-23 and 4-24, we get

En = −
hcR

n2
,

and

E1 = −
(1240 eV · nm)(5.4869 × 106 m−1)(10−9 m/mm)

(1)2
= −6.804 eV.

Similarly, E2 = −1.701 eV, and E3 = −0.756 eV.

(b) The Lyman α is the n = 2 → n = 1 transition, or

hc

λα
= E2 − E1 → λα =

hc

E2 − E1

=
(1240 eV · nm)

−1.701 eV − (−6.804 eV)
= 243 nm.

The Lyman β is the n = 3 → n = 1 transition, or

λβ =
hc

E3 − E1

=
(1240 eV · nm)

0.756 eV − (−6.804 eV)
= 205 nm.
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Problem 4-33: We can fill out a table in Moseley-plot-friendly format for the elements listed. (Use
f1/2 = (E/h)1/2.)

Element Al Ar Sc Fe Ge Kr Zr Ba

Z 13 18 21 26 32 36 40 56
E (keV) 1.56 3.19 4.46 7.06 10.98 14.10 17.66 36.35

f1/2 (108 Hz) 6.14 8.77 10.37 13.05 16.28 18.45 20.64 29.62

The resulting Moseley plot looks like:

I can fit this to a line with a slope of 1.85 × 10−8 Hz−1/2. Eyeballing Figure 4-18, I get a slope of
approximately

30 − 13

(15 − 7) × 108
= 2.1 × 10−8 Hz−1/2.

These two values are in good agreement.

Problem 4-45:

(a) From Eqn. 4-20 we get for the Li++ ion (Z = 3) the following energy levels:

En = −13.6 eV(9)/n2 = −122.4/n2 eV.

The first three Li++ levels that have (nearly) the same energy as H are:

n = 3, E3 = −13.6 eV, n = 6, E6 = −3.4 eV, n = 9, E9 = −1.51 eV.

The Lyman α line corresponds to the n = 6 → n = 3 Li++ transition. The Lyman β line
corresponds to the n = 9 → n = 3 Li++ transition.

(b) From Eqn. 4-26 we get the Rydberg constant for H

R(H) = R∞

(

1

1 + 0.511 MeV/938.8 MeV

)

= 1.096776 × 107 m−1,

and for Li

R(Li) = R∞

(

1

1 + 0.511 MeV/6535 MeV

)

= 1.097287 × 107 m−1,
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For the Lyman α line

1

λ
= R(H)

(

1 −
1

22

)

= 1.096776 × 107 m−1(10−9 m/nm)(3/4) → λ = 121.568 nm.

For the Li++ equivalent

1

λ
= R(Li)

(

1

32
−

1

62

)

Z2 = 1.097287×107 m−1(10−9 m/nm)

(

1

9
−

1

16

)

(3)2 → λ = 121.512 nm.

This leads to a tiny difference in wavelength of ∆λ = 0.056 nm.

Chapter 5: 3, 15, 18, 30, 35

Problem 5-3: The kinetic energy of nonrelativistic electrons accelerated from rest through a po-
tential difference V0 is

Ek = eV0 =
p2

2m
=

h2

2mλ2
=

(hc)2

2mc2λ2

and thus

V0 =
1

e
·

(1240 eV · nm)

[(2)(0.511 × 106 eV)(0.04 nm)]1/2
= 940 V.

Problem 5-15: The Bragg condition is sin φ = nλ/D. The 350 eV electron beam is nonrelativistic,
so the de Broglie wavelength is

λ =
h

p
=

h
√

2mEk
=

hc
√

2mc2Ek

=
1240 eV · nm

√

2(511 × 103 eV)(350 eV)
= 0.0656 nm.

Then
sin φ = n(0.0656 nm)/(0.315 nm) = 0.208n.

So we have

n φ

1 12.0◦

2 24.6◦

3 38.6◦

4 56.4◦

These are the only allowed values since larger values of n would give sinφ > 1.
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Problem 5-18:

(a) The phase velocity is given by

vp = fλ =
ω

k
.

From Eqn. 5-22, we get for the group velocity

vgroup =
dω

dk
=

d

dk
(kvp) = vp + k

dvp

dk
.

The dispersive term can be expressed as (using k = 2π/λ)

dvp

dk
=

dvp

dλ

dλ

dk
=

dvp

dλ

(

−
2π

k2

)

=

(

−
λ

k

)

dvp

dλ

and therefore

vg = vp − λ
dvp

dλ
.

(b) The index of refraction of light in glass decreases as λ increases (shorter wavelengths are
refracted more than longer wavelengths). Since n = c/vp, vp decreases as λ decreases. Further,
dn/dλ and dvp/dλ have opposite signs, so that dvp/dλ > 0, since dn/dλ < 0. Thus vgroup <
vphase.

Problem 5-30: From Eqn. 5-29,
∆x ∆p ≈ h̄.

For a particle with an uncertainty in position equal to its de Broglie wavelength,

λ ∆p ≈ h̄ or ∆p ≈ h̄/λ or ∆p ≈ h/λ.

Because λ = h/p, and thus p = h/λ, the uncertainty in momentum ∆p is

∆p ≈ p.

Problem 5-35: The minimum lifetime of a state with an energy uncertainty of 1 eV is (Eqn. 5-30)

∆E ∆t ≈ h̄.

Thus

τ ≈ ∆t ≈
h̄

∆E
=

1.055 × 10−34 Js

(1 eV)(1.602 × 10−19 J/eV)
= 6.6 × 10−16 s.
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