
January 17, 2007

Physics 390: Homework set #1

Solutions

Reading: Tipler & Llewellyn, Chapter 3

Questions:

1. Show that the classical wave equation

∂2f

∂t2
− c2 ∂2f

∂x2
= 0

is satisfied by any function f that depends on x and t in the combination u = x ± ct:
f(x, t) = f(u) = f(x ± ct).

Solution: To see this, plug into the equation above:
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similarly,
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∂x2
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∂2f

∂u2
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and,

∂2f

∂t2
− c2 ∂2f

∂x2
= c2 ∂2f

∂u2
− c2 ∂2f

∂u2

= 0 identically!

2. Planck’s constant is h = 6.626 × 10−34 J·s. What familiar physical quantity from classical me-
chanics also has dimensions of J·s?

Solution: Angular momentum also has dimensions of J·s. We will see that Planck’s constant is
closely related to quantization of angular momentum.
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3. In what region of the electromagnetic spectrum does the blackbody radiation from a roomtem-
perature object peak? What sorts of problems would we have if our eyes were sensitive in this region?

Solution: Room temperature is about 290 K. Using the Wien displacement law, we have

λmax =
2.898 × 10−3 m · K

290 K

= 1 × 10−5 m.

This is in the infrared region of the spectrum. If our eyes were sensitive in this region, we would
have difficulty distinguishing individual objects because all room-temperature objects would be the
same “color”.

4. The Compton scattering formula suggests that objects viewed from different angles should reflect
light of different wavelengths. Why don’t we observe a change in color of objects as we change the
viewing angle?

Solution: This effect does indeed take place, but it is so tiny that it is not noticeable to our eyes.
For example, the wavelength of green light from a mercury vapor streetlight is λ = 546.1 nm. The
maximum Compton shift of this light would occur when it’s backscattered at 180◦. In this case, the
shifted wavelength is

λ′ = λ +
hc

mec2
(1 − cos θ)

= 546.1 nm + (0.002426 nm)(2)

= 546.1002 nm.

Such a minuscule shift is entirely undetectable.

Problems: 3, 30, 36, 45, 49, 54

Problem 3:

(a) From Eqn. 2-10 (using v for the velocity rather than u as in the text, to avoid confusing it
with the energy density spectral distribution function) we find that the total energy E of an
electron with a kinetic energy of 5 × 104 eV is 0.561 MeV. From Eqns. 3-4, 2-34 and 2-31 ,

v =
E

B
,

v

c
=

pc

E
, and pc =

√

E2 − (mc2)2

we find that
pc =

√

(0.561 MeV)2 − (0.511 MeV)2 = 0.2315 MeV

v

c
=

0.2315 MeV

0.561 MeV
= 0.41

and therefore, for the magnetic field B:

B =
2 × 105 V/m

0.41 c
= 1.63 × 10−3 T = 16.3 G
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Problem 30: Using Eqn. 3-36,

(1) we get

0.95 =
h

e

(

c

435.8 × 10−9 m

)

−
φ

e

(2) and

0.38 =
h

e

(

c

546.1 × 10−9 m

)

−
φ

e

Subtracting (2) from (1), we get

0.57 =
hc

e 10−9

(

1

435.8
−

1

546.1

)

Solving this equation for h yields: h = 6.56 × 10−34 J · s. Substituting h into either (1) or (2) and
solving for φ/e yields: φ/e = 1.87 eV. The threshold frequency is given by hf/e = φ/e or

f =

(

φ

e

) (

e

h

)

=
(1.87 eV)(1.60 × 10−19 C)

6.56 × 10−34 J · s
= 4.57 × 1014 Hz

Problem 36: From Eqn. 3-40,

λ2 − λ1 =
h

mc
(1 − cos φ) = 0.00243 nm(1 − cos 110◦) = 0.00326 nm = 3.26 × 10−12 m.

The wavelength of the initial photon is

λ1 =
hc

E1
=

1240 nm · eV

511 × 103 eV
= 2.43 × 10−12 m.

From Eqn. 3-40,
λ2 = λ1 + 3.26 × 10−12 m = 5.69 × 10−12 m.

and therefore,

E2 =
hc

λ2
=

1240 nm · eV

5.69 × 10−3 nm
= 0.218 MeV.

From energy conservation, the electron recoil energy is

Ee = E1 − E2 = 0.511 MeV − 0.218 MeV = 0.293 MeV.

The recoil electron momentum makes an angle θ with the direction of the initial photon
From momentum conservation

h

λ2
cos 20◦ = pe sin θ =

√

E2 − (mc2)2

c
sin θ.

Since the total relativistic energy of the electron is E = 0.293 MeV+0.511 MeV = 0.804 MeV, we get

sin θ =
(hc) cos 20◦

λ2

√

E2 − (mc2)2

=
(1240 nm · eV) cos 20◦

0.00569 nm
√

(0.804 MeV)2 − (0.511 MeV)2 (106 eV/MeV)

= 0.330.
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Or θ = 19.3◦.

Problem 45: The photoelectric effect equation is

eV0 =
hc

λ
− φ.

So let’s express the data in terms of 1/λ:

1/λ (106/m) 5.0 3.3 2.5 2.0 1.7

V0 (V ) 4.20 2.06 1.05 0.41 0.03

A plot of these data looks like:

V0(V)

1/8 (106 )

I can fit these data to a straight line with a slope of 1.30 × 10−6 V·m and a y-intercept of −2.2 V.

(a) The work function, which is the vertical intercept, is φ = 2.2 eV.

(b) The horizontal intercept yields the threshold frequency:

1

λt

=
2.2 V

1.30 × 10−6 V · m
= 1.69 × 106 m−1.

So ft = c/λt = 5.1 × 1014 Hz.

(c) The slope of the line (hc/e) yields h/e:

h

e
=

slope

c
=

1.30 × 10−6 V · m

3 × 108 m/s
= 4.33 × 10−15 V · s.

This is within 5% of the accepted value, 4.13 × 10−15 V · s.
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Problem 49:

Conservation of energy gives
E1 + mc2 = E2 + Ek + mc2

and therefore
Ek = E1 − E2 = hf1 − hf2

From Compton’s equation, we have

λ2 − λ1 =
h

mc
(1 − cos θ)

thus
1

f2
−

1

f1
=

h

mc2
(1 − cos θ)

from which follows that

f2 =
f1 mc2

mc2 + hf1 (1 − cos θ)

Substituting this expression for f2 into the expression for Ek (and dropping the subscript on f1) gives

Ek = hf −
hfmc2

mc2 + hf (1 − cos θ)
=

hfmc2 + (hf)2(1 − cos θ)− hfmc2

mc2 + hf (1 − cos θ)
=

hf

1 + mc2

[hf(1−cos θ)]

Ek has its maximum value when the photon energy change is maximum, i.e. when θ = π, so
cos θ = −1. Then

Ek =
hf

1 + mc2

2hf

Problem 54:

(a)

I =
P

4πR2
=

1 W

4π(1 m)2

(

1

1.602 × 10−19 J/eV

)

= 4.97 × 1017 eV/m2
· s.

(b) Let’s assume that an atom occupies an area of (0.1 nm)2. Then

dW

dt
= IA = (4.97 × 1017 eV/m2

· s)(0.1 nm)2(10−9 m/nm2) = 4.97 × 10−3 eV/s.

(c) The time to overcome the 2 eV work function would then be

t =
φ

dW/dt
=

2 eV

4.97 × 10−3 eV/s
= 403 s = 6.71 minutes.

This is in clear contradiction to what’s observed experimentally, in which electrons are ejected
almost instantaneously.
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