Special Relativity Review

Galilean transformation

Coordinate transformations:

$$
\begin{array}{ll}
x^{\prime}=(x-v t) & x=\left(x^{\prime}+v t\right) \\
y^{\prime}=y & y=y^{\prime} \\
z^{\prime}=z & z=z^{\prime} \\
t^{\prime}=t & t=t^{\prime}
\end{array}
$$

Not consistent with the invariance of the speed of light

Velocity transformations:
$u_{x}{ }^{\prime}=u_{x}-v$
$u_{y}{ }^{\prime}=u_{y}$
$u_{z}{ }^{\prime}=u_{z}$

Energy, momentum:

$$
\begin{aligned}
& \vec{p}=m \vec{v} \\
& E=\frac{1}{2} m v^{2}
\end{aligned}
$$

Energy, momentum transformations:

Lorentz transformation

$$
\begin{array}{ll}
x^{\prime}=\gamma(x-v t) & x=\gamma\left(x^{\prime}+v t^{\prime}\right) \\
y^{\prime}=y & y=y^{\prime} \\
z^{\prime}=z & z=z^{\prime} \\
t^{\prime}=\gamma\left(t-\frac{v}{c^{2}} x\right) & t=\gamma\left(t^{\prime}+\frac{v}{c^{2}} x^{\prime}\right)
\end{array}
$$

when $v / c \ll 1$ Lorentz transformation reduces to Galilean transformation with $\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \quad$ and $\quad c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
u_{x}{ }^{\prime} & =\frac{u_{x}-v}{1-\frac{v u_{x}}{c^{2}}} \\
u_{y}{ }^{\prime} & =\frac{u_{y}}{\gamma\left(1-\frac{v u_{x}}{c^{2}}\right)} \\
u_{z}{ }^{\prime} & =\frac{u_{z}}{\gamma\left(1-\frac{v u_{x}}{c^{2}}\right)}
\end{aligned}
$$

$\vec{p}=\gamma m \vec{v}$
$E=\gamma m c^{2} \quad \vec{v}, \gamma$ refer to particle

$$
\begin{aligned}
p_{x}{ }^{\prime} & =\gamma\left(p_{x}-\frac{v}{c^{2}} E\right) \\
p_{y}{ }^{\prime} & =p_{y} \\
p_{z}{ }^{\prime} & =p_{z} \\
E^{\prime} & =\gamma\left(E-v p_{x}\right)
\end{aligned}
$$

where v, γ refer to motion of primed coordinate system

more Review of Special Relativity

Two important Lorentz invariants (Lorentz scalars):

$$
\begin{aligned}
& (\Delta s)^{2}=(c \Delta \tau)^{2}=\underbrace{(c \Delta t)^{2}-(\Delta x)^{2}-(\Delta y)^{2}-(\Delta z)^{2}}_{\text {if }<0 \text { then acausal }} \\
& \left(m c^{2}\right)^{2}=E^{2}-\left(c p_{x}\right)^{2}-\left(c p_{y}\right)^{2}-\left(c p_{z}\right)^{2}
\end{aligned}
$$

Moving objects appear contracted

$$
L=\frac{L^{\prime}}{\gamma}
$$

Moving clocks appear to run more slowly

$$
T=\gamma T^{\prime}
$$

Doppler shift:

$$
\begin{array}{ll}
\lambda=\frac{\sqrt{1+\frac{v}{c}}}{\sqrt{1-\frac{v}{c}}} \lambda^{\prime} & \text { if source moves away with speed } v \\
\lambda=\frac{\sqrt{1-\frac{v}{c}}}{\sqrt{1+\frac{v}{c}}} \lambda^{\prime} & \text { if source moves towards observer with speed } v
\end{array}
$$

General relativity:
Clock at height h above floor appears to run faster by a factor $1+\frac{g h}{c^{2}}$ where $g=$ gravitational acceleration.

