Momentum and Energy

In classical (Newtonian) mechanics $\vec{p}=m \vec{v}$ and $E=\frac{1}{2} m v^{2}$, where m is the mass. The equation of motion is given by $\vec{F}=m \vec{a}=\frac{d \vec{p}}{d t}$.
These expressions must be modified since we know that the Galilean transformation, which $\vec{F}=m \vec{a}$ obeys, is not valid unless $v / c \ll 1$.
Note that for Galilean transformations

$$
\vec{p}=m \frac{d \vec{r}}{d t}=\text { scalar mass } \frac{\text { vector displacement }}{\text { scalar time }}
$$

However, time $d t$ does depend on the reference frame and hence is not a scalar $\left(d t^{\prime} \neq d t\right.$ in general) in a fully relativistic theory.

We would like to find a scalar under Lorentz Transformations which reduces to $d t$ in the limit when $v / c \ll 1$, or

$$
\text { relativistic momentum }=\vec{p}=m \frac{\text { vector displacement }}{\text { Lorentz scalar time }}
$$

Note, that for any two events separated by $\Delta x, \Delta y, \Delta z, \Delta t$ the quantity $c^{2}(\Delta t)^{2}-(\Delta x)^{2}-(\Delta y)^{2}-(\Delta z)^{2} \equiv(\Delta s)^{2}$ is a Lorentz invariant or scalar whose value is independent of reference frame.
(You can prove this by exlicit substitutions $\Delta x \rightarrow \Delta x^{\prime}$, etc.)
For infinitesimal differences we obtain $(d s)^{2}=c^{2} d t^{2}-d x^{2}-d y^{2}-d z^{2}$. Let $(d x, d y, d z)$ represent the change in position of a particle during the time interval $d t$. Then

$$
\begin{aligned}
\frac{(d s)^{2}}{c^{2}} & =(d t)^{2}\left[1-\frac{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}}{c^{2}}\right] \\
& =(d t)^{2}\left[1-\frac{v^{2}}{c^{2}}\right]
\end{aligned}
$$

The quantity $\frac{d s}{c}$ is called "proper" time $d \tau$ and is Lorentz invariant ($d \tau=d \tau^{\prime}$)

$$
\begin{aligned}
(d \tau)^{2} & =(d t)^{2}\left[1-\frac{v^{2}}{c^{2}}\right] \\
d \tau & =d t \sqrt{1-\frac{v^{2}}{c^{2}}}=\frac{d t}{\gamma}
\end{aligned}
$$

where v, γ refer to the motion of the particle.

Note that when $\frac{v}{c} \rightarrow 0 \quad d \tau \rightarrow d t$.

We thus define a "relativistic" momentum:

$$
\vec{p}=m \frac{d \vec{r}}{d \tau}=m \frac{d \vec{r}}{d t / \gamma}=m \gamma \frac{d \vec{r}}{d t}
$$

or

$$
\vec{p}=\frac{m}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \vec{v}=\gamma m \vec{v} .
$$

For example $p_{x}=\frac{m}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \frac{d x}{d t}$.
Recall that the Lorentz Transformations for coordinates involve 4 quantities (x, y, z, t). The definition of relativistic momentum is $\vec{p}=m \frac{d \vec{r}}{d \tau}$, where m and $d \tau$ are Lorentz scalars. We thus expect \vec{p} to be the first three components of a "Lorentz 4 -vector" and to transform like $d \vec{r}$, where $d \vec{r}=(d x, d y, d z)$. ${ }^{1}$
The only problem is, we do not have the momentum analog to $d t$

$$
\begin{array}{rll}
d x & \rightarrow p_{x} & \\
d y & \rightarrow p_{y} & \text { analogy } \\
d z & \rightarrow p_{z} & \\
d t & \rightarrow ? &
\end{array}
$$

Let's call the momentum component analogous to $d t$ by the letter \mathcal{E}.

What is the letter \mathcal{E} equal to?

$$
\text { since } \begin{aligned}
& p_{x} \\
&=m \frac{d x}{d \tau} \\
& p_{y}=m \frac{d y}{d \tau} \\
& p_{z}=m \frac{d z}{d \tau}
\end{aligned}
$$

We would expect $\mathcal{E}=m \frac{d t}{d \tau}=m \frac{d t}{d t / \gamma}=m \gamma$
or $\mathcal{E}=m\left[1-\frac{v^{2}}{c^{2}}\right]^{-1 / 2}$.
We speak of a "Lorentz 4-vector" $d s=(d x, d y, d z, i c d t)$ whose length $(d s)^{2}=d s \cdot d s=d x \cdot d x+d y$. $d y+d z \cdot d z-c^{2} d t \cdot d t$ is invariant under Lorentz Transformations ("rotations"). The fourth component must be of the form

$$
p_{4}=\gamma m \frac{d s_{4}}{d t}=i \gamma m c \quad\left(\text { since } \quad d s_{4}=i c d t\right) .
$$

Let's do Taylor series expansion in v^{2} / c^{2} :

$$
f(x)=f(0)+\left.\frac{d f}{d x}\right|_{x=0} x+\left.\frac{1}{2} \frac{d^{2} f}{d x^{2}}\right|_{x=0} x^{2}+\cdots
$$

where $x=v^{2} / c^{2} \quad f(x)=m(1-x)^{-1 / 2}$
so $\mathcal{E}=m\left[1+\frac{1}{2} \frac{v^{2}}{c^{2}}+\frac{3}{8} \frac{v^{4}}{c^{4}}+\cdots\right]$.
If we multiply both sides with c^{2}
$c^{2} \mathcal{E}=\underbrace{m c^{2}}_{\text {rest-mass energy }}+\underbrace{\frac{1}{2} m v^{2}}_{\text {looks like kinetic energy }}+\underbrace{\frac{3}{8} m v^{2}\left(\frac{v^{2}}{c^{2}}\right)}_{\rightarrow 0 \text { if } v / c \rightarrow 0}+\cdots$.
Since the rest-mass energy is $m c^{2}$, we interpret the fourth component of the momentum 4-vector, $p_{4}=i \frac{E}{c}$, with $E=c^{2} \mathcal{E}=\gamma m c^{2}$ as the relativistic energy of a moving particle of rest mass m.
Note that if $v \ll c \quad E=\gamma m c^{2}=\frac{1}{\sqrt{1-v^{2} / c^{2}}} m c^{2} \approx\left(1+\frac{v^{2}}{2 c^{2}}\right) m c^{2}=m c^{2}+\frac{1}{2} m v^{2}$.
With this definition

p_{x}	transforms like	$d x$
p_{y}	$"$	$d y$
p_{z}	$"$	$d z$
$\frac{E}{c^{2}}$	$"$	$d t$

or

$$
\begin{aligned}
p_{x}^{\prime} & =\gamma\left(p_{x}-\frac{v E}{c^{2}}\right) \\
p_{y}^{\prime} & =p_{y} \\
p_{z}^{\prime} & =p_{z} \\
\frac{E^{\prime}}{c^{2}} & =\gamma\left(\frac{E}{c^{2}}-\frac{v}{c^{2}} p_{x}\right) \quad \text { or } \quad E^{\prime}=\gamma\left[E-v p_{x}\right]
\end{aligned}
$$

In the same way that $(d s)^{2}=c^{2} d t^{2}-d x^{2}-d y^{2}-d z^{2}$ is Lorentz invariant

$$
\begin{aligned}
& c^{2}\left(\frac{E}{c^{2}}\right)^{2}-\left(p_{x}\right)^{2}-\left(p_{y}\right)^{2}-\left(p_{z}\right)^{2} \quad \text { is invariant } \\
= & \frac{E^{2}}{c^{2}}-p^{2}=\frac{\left(\gamma m c^{2}\right)^{2}}{c^{2}}-\left(\gamma m v^{2}\right)^{2}=m^{2} c^{2} \underbrace{\left(\gamma^{2}-\beta^{2} \gamma^{2}\right)}_{1}=\underbrace{m^{2} c^{2}}_{\text {invariant }}
\end{aligned}
$$

since the identity $\frac{1}{1-v^{2} / c^{2}}-\frac{v^{2} / c^{2}}{1-v^{2} / c^{2}}=1$ or $\gamma^{2}-\beta^{2} \gamma^{2}=1$ is a Lorentz invariant, because 1 is a constant. Since the rest-mass m and the speed of light c are both constants, $m^{2} c^{2}$ is also a Lorentz invariant.

We can rewrite this by multiplying by c^{2} to obtain

$$
E^{2}-(p c)^{2}=\left(m c^{2}\right)^{2}
$$

This fundamental relationship between energy, momentum, and "rest-mass" is true for all particles.
Recall that $E=\gamma m c^{2}=m c^{2}+\frac{1}{2} m v^{2}+\frac{3}{8} m v^{2}\left(\frac{v^{2}}{c^{2}}\right)+\cdots$,
which reduces to the expected $\frac{1}{2} m v^{2}$ when $v / c \rightarrow 0$, except for the constant term $m c^{2}$. Now, when $v \ll c$, the term $m c^{2} \gg \frac{1}{2} m v^{2}$. The term $m c^{2}$ is called the "rest energy" or "rest-mass energy" of a particle. For example, if you take a particle with zero kinetic energy and an antiparticle with zero kinetic energy and let them annihilate, the amount of released energy is $2\left(m c^{2}\right)$.

To complete the relativistic definitions, the relativistic kinetic energy is
$E-m c^{2}=m c^{2}[\gamma-1]$.

We showed above that $E^{2}-(p c)^{2}$ is invariant, that is $E^{2}-(p c)^{2}=\left(E^{\prime}\right)^{2}-\left(p^{\prime} c\right)^{2}=\left(m c^{2}\right)^{2}$ for a single particle with rest-mass m.

This result can be extended to a collection of particles:

$$
\text { let } \begin{aligned}
E & =E_{1}+E_{2}+E_{3}+\cdots \\
p_{x} & =p_{1_{x}}+p_{2_{x}}+p_{3_{x}}+\cdots \\
p_{y} & =p_{1_{y}}+p_{2_{y}}+p_{3_{y}}+\cdots \\
p_{z} & =p_{1_{z}}+p_{2_{z}}+p_{3_{z}}+\cdots
\end{aligned}
$$

then $E^{2}-(p c)^{2}=\left(E^{\prime}\right)^{2}-\left(p_{x} c\right)^{2}-\left(p_{y} c\right)^{2}-\left(p_{z} c\right)^{2}$ is also invariant:

$$
E^{2}-(p c)^{2}=\left(E^{\prime}\right)^{2}-\left(p^{\prime} c\right)^{2}=\left(m_{\mathrm{eff}} c^{2}\right)^{2}
$$

where $m_{\mathrm{eff}} c^{2}$ is the "effective" mass of the system \cdots and where $m_{\mathrm{eff}} c^{2}$ is the same in all Lorentz frames.

To complete the story, Newton's equation of motion

$$
\vec{F}=m \vec{a}=\frac{d \vec{p}}{d t} \quad \text { becomes } \quad \vec{F}=\frac{d}{d t}\left(\frac{m}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \vec{v}\right) .
$$

