Momentum and Energy

In classical (Newtonian) mechanics $\vec{p} = m\vec{v}$ and $E = \frac{1}{2}mv^2$, where *m* is the mass. The equation of motion is given by $\vec{F} = m\vec{a} = \frac{d\vec{p}}{dt}$.

These expressions must be modified since we know that the Galilean transformation, which $\vec{F} = m\vec{a}$ obeys, is not valid unless $v/c \ll 1$.

Note that for Galilean transformations

$$\vec{p} = m \frac{d\vec{r}}{dt} = \text{scalar mass} \frac{\text{vector displacement}}{\text{scalar time}}$$

However, time dt does depend on the reference frame and hence is not a scalar ($dt' \neq dt$ in general) in a fully relativistic theory.

We would like to find a scalar under Lorentz Transformations which reduces to dt in the limit when $v/c \ll 1$, or

relativistic momentum $= \vec{p} = m \frac{\text{vector displacement}}{\text{Lorentz scalar time}}.$

Note, that for any two events separated by $\Delta x, \Delta y, \Delta z, \Delta t$ the quantity $c^2(\Delta t)^2 - (\Delta x)^2 - (\Delta y)^2 - (\Delta z)^2 \equiv (\Delta s)^2$

is a Lorentz invariant or scalar whose value is independent of reference frame.

(You can prove this by exlicit substitutions $\Delta x \to \Delta x'$, etc.)

For infinitesimal differences we obtain $(ds)^2 = c^2 dt^2 - dx^2 - dy^2 - dz^2$. Let (dx, dy, dz) represent the change in position of a particle during the time interval dt. Then

$$\frac{(ds)^2}{c^2} = (dt)^2 \left[1 - \frac{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2}{c^2} \right]$$
$$= (dt)^2 \left[1 - \frac{v^2}{c^2} \right].$$

The quantity $\frac{ds}{c}$ is called "proper" time $d\tau$ and is Lorentz invariant $(d\tau = d\tau')$

$$(d\tau)^2 = (dt)^2 \left[1 - \frac{v^2}{c^2} \right]$$

$$d\tau = dt \sqrt{1 - \frac{v^2}{c^2}} = \frac{dt}{\gamma},$$

where v, γ refer to the motion of the particle.

Note that when $\frac{v}{c} \to 0$ $d\tau \to dt$.

We thus define a "relativistic" momentum:

$$\vec{p} = m \frac{d\vec{r}}{d\tau} = m \frac{d\vec{r}}{dt/\gamma} = m\gamma \frac{d\vec{r}}{dt}$$

or

$$\vec{p} = \frac{m}{\sqrt{1 - \frac{v^2}{c^2}}} \vec{v} = \gamma m \vec{v}.$$

For example $p_x = \frac{m}{\sqrt{1 - \frac{v^2}{c^2}}} \frac{dx}{dt}$.

Recall that the Lorentz Transformations for coordinates involve **4** quantities (x, y, z, t). The definition of relativistic momentum is $\vec{p} = m \frac{d\vec{r}}{d\tau}$, where m and $d\tau$ are Lorentz scalars. We thus expect \vec{p} to be the first three components of a "Lorentz 4-vector" and to transform like $d\vec{r}$, where $d\vec{r} = (dx, dy, dz)$.¹

The only problem is, we do not have the momentum analog to dt

Let's call the momentum component analogous to dt by the letter \mathcal{E} .

What is the letter \mathcal{E} equal to?

since
$$p_x = m \frac{dx}{d\tau}$$

 $p_y = m \frac{dy}{d\tau}$
 $p_z = m \frac{dz}{d\tau}$

We would expect $\mathcal{E} = m \frac{dt}{d\tau} = m \frac{dt}{dt/\gamma} = m \gamma$ or $\mathcal{E} = m \left[1 - \frac{v^2}{c^2}\right]^{-1/2}$.

$$p_4 = \gamma m \frac{ds_4}{dt} = i\gamma mc$$
 (since $ds_4 = icdt$).

We speak of a "Lorentz 4-vector" ds = (dx, dy, dz, icdt) whose length $(ds)^2 = ds \cdot ds = dx \cdot dx + dy \cdot dy + dz \cdot dz - c^2 dt \cdot dt$ is invariant under Lorentz Transformations ("rotations"). The fourth component must be of the form

Let's do Taylor series expansion in v^2/c^2 :

$$f(x) = f(0) + \left. \frac{df}{dx} \right|_{x=0} x + \frac{1}{2} \left. \frac{d^2 f}{dx^2} \right|_{x=0} x^2 + \cdots$$

where $x = v^2/c^2$ $f(x) = m(1-x)^{-1/2}$

so $\mathcal{E} = m \left[1 + \frac{1}{2} \frac{v^2}{c^2} + \frac{3}{8} \frac{v^4}{c^4} + \cdots \right].$

If we multiply both sides with c^2

$$c^{2}\mathcal{E} = \underbrace{mc^{2}}_{\text{rest-mass energy}} + \underbrace{\frac{1}{2}mv^{2}}_{\text{looks like kinetic energy}} + \underbrace{\frac{3}{8}mv^{2}\left(\frac{v^{2}}{c^{2}}\right)}_{\rightarrow 0 \text{ if } v/c \rightarrow 0} + \cdots$$

Since the rest-mass energy is mc^2 , we interpret the fourth component of the momentum 4-vector, $p_4 = i \frac{E}{c}$, with $E = c^2 \mathcal{E} = \gamma mc^2$ as the relativistic energy of a moving particle of rest mass m.

Note that if $v \ll c$ $E = \gamma mc^2 = \frac{1}{\sqrt{1 - v^2/c^2}} mc^2 \approx \left(1 + \frac{v^2}{2c^2}\right) mc^2 = mc^2 + \frac{1}{2}mv^2$.

With this definition

p_x	transforms like	dx
p_y	"	dy
p_z	"	dz
$\frac{E}{a^2}$	"	dt

or

$$p'_{x} = \gamma \left(p_{x} - \frac{vE}{c^{2}} \right)$$

$$p'_{y} = p_{y}$$

$$p'_{z} = p_{z}$$

$$\frac{E'}{c^{2}} = \gamma \left(\frac{E}{c^{2}} - \frac{v}{c^{2}} p_{x} \right) \quad \text{or} \quad E' = \gamma \left[E - v p_{x} \right].$$

In the same way that $(ds)^2 = c^2 dt^2 - dx^2 - dy^2 - dz^2$ is Lorentz invariant

$$c^{2} \left(\frac{E}{c^{2}}\right)^{2} - (p_{x})^{2} - (p_{y})^{2} - (p_{z})^{2} \quad \text{is invariant}$$
$$= \frac{E^{2}}{c^{2}} - p^{2} = \frac{(\gamma m c^{2})^{2}}{c^{2}} - (\gamma m v^{2})^{2} = m^{2} c^{2} \underbrace{(\gamma^{2} - \beta^{2} \gamma^{2})}_{1} = \underbrace{m^{2} c^{2}}_{\text{invariant}},$$

since the identity $\frac{1}{1-v^2/c^2} - \frac{v^2/c^2}{1-v^2/c^2} = 1$ or $\gamma^2 - \beta^2 \gamma^2 = 1$ is a Lorentz invariant, because 1 is a constant. Since the rest-mass m and the speed of light c are both constants, m^2c^2 is also a Lorentz invariant.

We can rewrite this by multiplying by c^2 to obtain

 $E^2 - (pc)^2 = (mc^2)^2$

This fundamental relationship between energy, momentum, and "rest-mass" is true for <u>all</u> particles.

Recall that $E = \gamma mc^2 = mc^2 + \frac{1}{2}mv^2 + \frac{3}{8}mv^2 \left(\frac{v^2}{c^2}\right) + \cdots$, which reduces to the expected $\frac{1}{2}mv^2$ when $v/c \to 0$, except for the constant term mc^2 . Now, when $v \ll c$, the term $mc^2 \gg \frac{1}{2}mv^2$. The term mc^2 is called the "rest energy" or "rest-mass energy" of a particle. For example, if you take a particle with zero kinetic energy and an antiparticle with zero kinetic energy and let them annihilate, the amount of released energy is $2(mc^2)$.

To complete the relativistic definitions, the relativistic kinetic energy is $E - mc^2 = mc^2[\gamma - 1].$

We showed above that $E^2 - (pc)^2$ is invariant, that is $E^2 - (pc)^2 = (E')^2 - (p'c)^2 = (mc^2)^2$ for a single particle with rest-mass m.

This result can be extended to a collection of particles:

let $E = E_1 + E_2 + E_3 + \cdots$ $p_x = p_{1x} + p_{2x} + p_{3x} + \cdots$ $p_y = p_{1y} + p_{2y} + p_{3y} + \cdots$ $p_z = p_{1z} + p_{2z} + p_{3z} + \cdots$

then $E^2 - (pc)^2 = (E')^2 - (p_x c)^2 - (p_y c)^2 - (p_z c)^2$ is also invariant:

$$E^{2} - (pc)^{2} = (E')^{2} - (p'c)^{2} = (m_{\text{eff}} c^{2})^{2},$$

where $m_{\text{eff}} c^2$ is the "effective" mass of the system \cdots and where $m_{\text{eff}} c^2$ is the same in <u>all</u> Lorentz frames.

To complete the story, Newton's equation of motion

$$\vec{F} = m\vec{a} = \frac{d\vec{p}}{dt}$$
 becomes $\vec{F} = \frac{d}{dt} \left(\frac{m}{\sqrt{1 - \frac{v^2}{c^2}}} \vec{v}\right).$