
Momentum and Energy

In classical (Newtonian) mechanics ~p = m~v and E = 1
2
mv2, where m is the mass. The

equation of motion is given by ~F = m~a = d~p
dt

.

These expressions must be modified since we know that the Galilean transformation,
which ~F = m~a obeys, is not valid unless v/c ¿ 1.

Note that for Galilean transformations

~p = m
d~r

dt
= scalar mass

vector displacement

scalar time
.

However, time dt does depend on the reference frame and hence is not a scalar (dt′ 6= dt
in general) in a fully relativistic theory.

We would like to find a scalar under Lorentz Transformations which reduces to dt in the
limit when v/c ¿ 1, or

relativistic momentum = ~p = m
vector displacement

Lorentz scalar time
.

Note, that for any two events separated by ∆x, ∆y, ∆z, ∆t the quantity
c2(∆t)2 − (∆x)2 − (∆y)2 − (∆z)2 ≡ (∆s)2

is a Lorentz invariant or scalar whose value is independent of reference frame.

(You can prove this by exlicit substitutions ∆x → ∆x′, etc.)

For infinitesimal differences we obtain (ds)2 = c2dt2 − dx2 − dy2 − dz2. Let (dx, dy, dz)
represent the change in position of a particle during the time interval dt. Then

(ds)2

c2
= (dt)2


1−

(
dx
dt

)2
+

(
dy
dt

)2
+

(
dz
dt

)2

c2




= (dt)2

[
1− v2

c2

]
.

The quantity ds
c

is called “proper” time dτ and is Lorentz invariant (dτ = dτ ′)

(dτ)2 = (dt)2

[
1− v2

c2

]

dτ = dt

√
1− v2

c2
=

dt

γ
,

where v, γ refer to the motion of the particle.
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Note that when v
c
→ 0 dτ → dt.

We thus define a “relativistic” momentum:

~p = m
d~r

dτ
= m

d~r

dt/γ
= mγ

d~r

dt

or
~p = m√

1− v2

c2

~v = γm~v.

For example px = m√
1− v2

c2

dx
dt

.

Recall that the Lorentz Transformations for coordinates involve 4 quantities (x, y, z, t).
The definition of relativistic momentum is ~p = m d~r

dτ
, where m and dτ are Lorentz scalars.

We thus expect ~p to be the first three components of a “Lorentz 4-vector” and to transform
like d~r, where d~r = (dx, dy, dz). 1

The only problem is, we do not have the momentum analog to dt

dx → px

dy → py

dz → pz

dt → ?

analogy

Let’s call the momentum component analogous to dt by the letter E .

What is the letter E equal to?

since px = m
dx

dτ

py = m
dy

dτ

pz = m
dz

dτ

We would expect E = m dt
dτ

= m dt
dt/γ

= m γ

or E = m
[
1− v2

c2

]−1/2
.

1We speak of a “Lorentz 4-vector” ds = (dx, dy, dz, icdt) whose length (ds)2 = ds · ds = dx · dx + dy ·
dy + dz · dz − c2dt · dt is invariant under Lorentz Transformations (“rotations”). The fourth component
must be of the form

p4 = γm
ds4

dt
= iγmc (since ds4 = icdt).
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Let’s do Taylor series expansion in v2/c2:

f(x) = f(0) +
df

dx

∣∣∣∣
x=0

x +
1
2

d2f

dx2

∣∣∣∣
x=0

x2 + · · ·

where x = v2/c2 f(x) = m(1− x)−1/2

so E = m
[
1 + 1

2
v2

c2
+ 3

8
v4

c4
+ · · ·

]
.

If we multiply both sides with c2

c2E = mc2
︸︷︷︸

rest-mass energy
+

1

2
mv2

︸ ︷︷ ︸
looks like kinetic energy

+
3

8
mv2

(
v2

c2

)

︸ ︷︷ ︸
→ 0 if v/c→0

+ · · · .

Since the rest-mass energy is mc2, we interpret the fourth component of the momentum
4-vector, p4 = i E

c
, with E = c2E = γmc2 as the relativistic energy of a moving particle

of rest mass m.
Note that if v ¿ c E = γmc2 = 1√

1−v2/c2
mc2 ≈

(
1 + v2

2c2

)
mc2 = mc2 + 1

2mv2.

With this definition

px transforms like dx
py ” dy
pz ” dz
E
c2

” dt

or

p′x = γ
(
px − vE

c2

)

p′y = py

p′z = pz
E
c2
′

= γ
(

E
c2
− v

c2
px

)
or E ′ = γ [E − v px] .

In the same way that (ds)2 = c2dt2 − dx2 − dy2 − dz2 is Lorentz invariant

c2
(

E

c2

)2

− (px)
2 − (py)

2 − (pz)
2 is invariant

=
E2

c2
− p2 =

(γmc2)

c2

2

−
(
γmv2

)2
= m2c2 (γ2 − β2γ2)︸ ︷︷ ︸

1

= m2c2
︸ ︷︷ ︸

invariant
,

since the identity 1
1−v2/c2

− v2/c2

1−v2/c2
= 1 or γ2 − β2γ2 = 1 is a Lorentz invariant, because 1

is a constant. Since the rest-mass m and the speed of light c are both constants, m2c2 is
also a Lorentz invariant.
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We can rewrite this by multiplying by c2 to obtain

E2 − (pc)2 = (mc2)2

This fundamental relationship between energy, momentum, and “rest-mass” is true for
all particles.

Recall that E = γmc2 = mc2 + 1
2
mv2 + 3

8
mv2

(
v2

c2

)
+ · · · ,

which reduces to the expected 1
2
mv2 when v/c → 0, except for the constant term mc2.

Now, when v ¿ c , the term mc2 À 1
2
mv2. The term mc2 is called the “rest energy”

or “rest-mass energy” of a particle. For example, if you take a particle with zero kinetic
energy and an antiparticle with zero kinetic energy and let them annihilate, the amount
of released energy is 2(mc2).

To complete the relativistic definitions, the relativistic kinetic energy is
E −mc2 = mc2[γ − 1].

We showed above that E2− (pc)2 is invariant, that is E2− (pc)2 = (E ′)2− (p′c)2 = (mc2)2

for a single particle with rest-mass m.

This result can be extended to a collection of particles:

let E = E1 + E2 + E3 + · · ·
px = p1x + p2x + p3x + · · ·
py = p1y + p2y + p3y + · · ·
pz = p1z + p2z + p3z + · · ·

then E2 − (pc)2 = (E ′)2 − (pxc)
2 − (pyc)

2 − (pzc)
2 is also invariant:

E2 − (pc)2 = (E ′)2 − (p′c)2 =
(
meff c2

)2
,

where meff c2 is the “effective” mass of the system · · · and where meff c2 is the same in
all Lorentz frames.

To complete the story, Newton’s equation of motion

~F = m~a =
d~p

dt
becomes ~F =

d

dt


 m√

1− v2

c2

~v


 .
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