Classical Statistical Mechanics

Physics 390
Winter 2007

Physics and change

- Laws of physics: forces and fields
- Gravity
- Electromagnetism
- Strong and Weak nuclear
- All have time symmetry! Basic processes can all be reversed.
- Conservation laws, things which never change
- Energy
- Momentum
- Angular momentum
- Change reduced to exchange, flow of permanent quantities

Energy flow

- Energy takes many related forms
- Kinetic
- Gravitational
- Elastic
- Electric
- Heat
- Mass
- Energy is a
convertible quantity
- Total energy content is fixed
- Laws tell us what conversions can happen, they don't tell us which will happen...
- Something more is needed to determine what will happen

A model system

- Gas atoms in a box
- Initial positions and velocities
- Every collision conserves energy and momentum
- Use laws to predict motion
- Computers can do a 'Monte Carlo simulation' of this
- Prediction here is simple

- Following the detailed behavior of each is impossible
- Instead we measure 'macroscopic' properties, like temperature and density
- Today we will revisit Classical statistical mechanics and discuss Quantum statistical mechanics.
- Turn from the study of individual objects (atoms, molecules) to something more practical: statistical study of really enormous groups of objects
- Atoms are tiny. Everything is made of enormous numbers...

Classical Statistical Mechanics

and secure

Micro \& macrostates

- Microstate: details for each atom
- Position and velocity
- Macrostate: some feature of positions and velocities of all atoms
- Average position?
- Average velocity?

- Are they all on top?

Timescales

- This system rearranges itself on some timescale ~ length / velocity
- Ask too soon, microstate cannot change
- Wait a few characteristic times before asking, the microstate will be rearranged

- All allowed arrangements will occur.

An example: 1 atom

- How often are all the particles on top?
- One atom: can be on top or bottom
- (\# top arrangements /
total \# arrangements)
- 50\%

Macrostates

- Example macrostate, all the atoms on top
- All are on top $1 / 16^{\text {th }}$ of the time
- Other probabilities from counting microstates
- This is a question about what happens. All are allowed, which ones actually occur?

- Some macrostates are made by many microstates (1/2 the atoms on each side)
- Some macrostates are made by very few microstates (all on one side)

The point

- If all microstates are all equally probable, some macrostates will happen a lot more often.
- All on one side happens $1 / 2^{N}$ of the time ($\mathrm{N}=\#$ of atoms)

Is this irreversibility?

- 1 atom: $1 / 2$
- 4 atoms: $1 / 16$
- 10 atoms: $1 / 1024$
- 20 atoms: $1 / 10$ million
- 40 atoms: 1/trillion
- 80 atoms: 1/1,200,000,000,000, 000,000,000,000
- Consider an 80 atom system:
- Assume rearrangement happens a million times a second
- How long before we see them all on top?
- 10^{18} seconds
- 30 billion years......

A simple Example:

Four identical, distinguishable particles with total Energy E=8

A realistic example

- $1 \mathrm{~cm}^{3}$ of air
- $\sim 2 \times 10^{19}$ atoms
- Assume rearrangement a million times a second
- All on one side every $10^{7.5 \times 10^{18}}$ seconds
- This is an irreversible process:
- Start with all on one side
- Release them
- They could all come back, but never do...

A simple Example: Four identical, distinguishable particles with total Energy $\mathrm{E}=8$

