Classical Statistical Mechanics

Physics 390 Winter 2007

Classical Statistical Mechanics

- Turn from the study of individual objects (atoms, molecules) to something more practical: statistical study of really enormous groups of objects
- Atoms are tiny.
 Everything is made of enormous numbers...
- Following the detailed behavior of each is impossible
- Instead we measure 'macroscopic' properties, like temperature and density
- Today we will revisit Classical statistical mechanics and discuss Quantum statistical mechanics.

Physics and change

- Laws of physics: forces and fields
 - Gravity
 - Electromagnetism
 - Strong and Weak nuclear
- All have time symmetry! Basic processes can all be reversed.
- Conservation laws, things which never change
 - Energy
 - Momentum
 - Angular momentum
- Change reduced to exchange, flow of permanent quantities

Energy flow

- Energy takes many related forms
 - Kinetic
 - Gravitational
 - Elastic
 - Electric
 - Heat
- Mass
- Energy is a convertible quantity
- Total energy content is fixed
- Laws tell us what conversions can happen, they don't tell us which will happen...
- Something more is needed to determine what will happen

Irreversibility

- In the world, energy flow constraints *allow* some transformations which never occur
- How do we determine which among the possible outcomes will occur?
- Make the simplest assumption:
 - ⇒ All possible outcomes are equally probable

A model system

- Gas atoms in a box
 - Initial positions and velocities
 - Every collision conserves energy and momentum
 - Use laws to predict motion
- Computers can do a 'Monte Carlo simulation' of this
- Prediction here is simple and secure

Micro & macrostates

- Microstate: details for each atom
 - Position and velocity
- Macrostate: some feature of positions and velocities of all atoms
 - Average position?
 - Average velocity?
 - Are they all on top?

Timescales

- This system rearranges itself on some timescale
 - ~ length / velocity
- Ask too soon, microstate cannot change
- Wait a few characteristic times before asking, the microstate will be rearranged
- All allowed arrangements will occur.

An example: 1 atom

- How often are all the particles on top?
- One atom: can be on top or bottom
 - (# top arrangements / total # arrangements)
 - 50%

An example: 4 atoms

- How often are all the particles on top?
- Four particles, each on top or bottom
- 16 microstates here
- Each microstate is equally likely
- 1 microstate has them all on top

Macrostates

- Example macrostate, all the atoms on top
- All are on top 1/16th of the time
- Other probabilities from counting microstates
- This is a question about what happens. All are allowed, which ones actually occur?

The point

- Some macrostates are made by many microstates (1/2 the atoms on each side)
- Some macrostates are made by very few microstates (all on one side)
- If all microstates are all equally probable, some macrostates will happen a lot more often.
- All on one side happens 1/2^N of the time (N = # of atoms)

Is this irreversibility?

1 atom: 1/24 atoms: 1/16

10 atoms: 1/102420 atoms: 1/10 million40 atoms: 1/trillion

• 80 atoms: 1/1,200,000,000,000, 000,000,000,000

 Consider an 80 atom system:

- Assume rearrangement happens a million times a second
- How long before we see them all on top?
- 10¹⁸ seconds
- 30 billion years.....

A realistic example

- 1 cm3 of air
- ~2x10¹⁹ atoms
 - Assume rearrangement a million times a second
- All on one side every $10^{7.5x10^{18}}$ seconds
- This is an irreversible process:
 - Start with all on one side
 - Release them
 - They could all come back, but never do…

A simple Example:

Four identical, distinguishable particles with total Energy E=8

Configuration index (Macrostates)	E1	E2	E3	E4	E5	Number of different combinations for Distinguishable particles (Microstates)	boson	Fermion with spin
1	0	00	0			4(E1)*3(E3)=12	1	1
2	00	0		0		4 (E2)*3(E4)=12	1	1
3	00		00			6 (E1) =6	1	1
4	000				0	4(E5) =4	1	х
5		0000				1	1	x