Deriving $\mathbf{n}(\lambda)=\frac{8 \pi}{\lambda^{4}}$

Consider a cubical cavity with side L, filled with e-m standing waves that have vanishing \vec{E} fields at the cavity walls.

So:

$$
\vec{E}=\vec{E}_{0} \sin \left(K_{x} x+K_{y} y+K_{z} z\right)
$$

with

$$
\begin{array}{ll}
K_{x} L=m_{x} \pi & m_{x}=0,1,2, \ldots \\
K_{y} L=m_{y} \pi & m_{y}=0,1,2, \ldots \\
K_{z} L=m_{z} \pi & m_{z}=0,1,2, \ldots
\end{array}
$$

The wave vector $\vec{K}=\left(K_{x}, K_{y}, K_{z}\right)$ is related to the wavelength λ by:

$$
K=|\vec{K}|=\sqrt{K_{x}^{2}+K_{y}^{2}+K_{z}^{2}}=\frac{2 \pi}{\lambda}=\frac{\pi}{L} \sqrt{m_{x}^{2}+m_{y}^{2}+m_{z}^{2}} \equiv \frac{\pi}{L} m
$$

or

$$
m=\frac{2 L}{\lambda}
$$

Each wave can be represented by a point in a 3 -dimensional (m_{x}, m_{y}, m_{z}) space. Consider the number of points in a spherical volume bounded by some maximum m value. (Since $m_{x}>0, m_{y}>0, m_{z}>0$, we are actually dealing with $1 / 8$ of the volume of the sphere).

$$
n(m) \equiv \frac{\text { number of states }}{\text { physical volume }}=\frac{N}{L^{3}}=\frac{1}{8}\left(\frac{4}{3} \pi m^{3}\right) \frac{2}{L^{3}}=\frac{\pi m^{3}}{3 L^{3}}
$$

where the extra factor of 2 results from two possible polarizations.
Now,

$$
\frac{d n}{d m} d m=\frac{d n}{d \lambda}|d \lambda| \equiv n(\lambda)|d \lambda|
$$

so

$$
n(\lambda)=\frac{d n}{d m}\left|\frac{d m}{d \lambda}\right|=\frac{\pi m^{2}}{L^{3}} \frac{2 L}{\lambda^{2}}=\frac{\pi}{L^{3}} \frac{4 L^{2}}{\lambda^{2}} \frac{2 L}{\lambda^{2}}=\frac{8 \pi}{\lambda^{4}}
$$

or

$$
n(\lambda)=\frac{8 \pi}{\lambda^{4}}
$$

