
Deriving n(λ) = 8π
λ4

Consider a cubical cavity with side L, filled with e-m standing waves that have vanishing
~E fields at the cavity walls.
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So:

~E = ~E0 sin(Kxx + Kyy + Kzz)

with

Kx L = mx π

Ky L = my π

Kz L = mz π

mx = 0, 1, 2, ...
my = 0, 1, 2, ...
mz = 0, 1, 2, ...

The wave vector ~K = (Kx, Ky, Kz) is related to the wavelength λ by:
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Each wave can be represented by a point in a 3-dimensional (mx, my, mz) space. Consider
the number of points in a spherical volume bounded by some maximum m value. (Since
mx > 0, my > 0, mz > 0, we are actually dealing with 1/8 of the volume of the sphere).
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where the extra factor of 2 results from two possible polarizations.

Now,
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