Classical Statistical Mechanics

Physics 390 Winter 2006

Wolfgang Lorenzon 8-Mar-06

Classical Statistical Mechanics

- Turn from the study of individual objects (atoms, molecules) to something more practical: statistical study of really *enormous* groups of objects
- Atoms are tiny.
 Everything is made of
 enormous numbers...
- Following the detailed behavior of each is impossible
- Instead we measure 'macroscopic' properties, like temperature and density
- Today we will revisit Classical statistical mechanics and discuss Quantum statistical mechanics.

Physics and change

- Laws of physics: forces and fields
 - Gravity
 - Electromagnetism
 - Strong and Weak nuclear
- All have time symmetry! Basic processes can all be reversed.
- Conservation laws, things which *never* change
 - Energy
 - Momentum
 - Angular momentum
- Change reduced to exchange, flow of permanent quantities

Energy flow

- Energy takes many related forms
 - Kinetic
 - Gravitational
 - Elastic
 - Electric
 - Heat
 - Mass
- Energy is a convertible quantity

Total energy content is fixed

- Laws tell us what conversions can happen, they don't tell us which will happen...
- Something more is needed to determine what *will* happen

Irreversibility

- In the world, energy flow constraints *allow* some transformations which never occur
- How do we determine which among the possible outcomes will occur?
- Make the simplest assumption:
 - \Rightarrow All possible outcomes are equally probable

- Microstate: details for each atom
- Position and velocityMacrostate: some
- feature of positions and velocities of all atoms
 - Average position?
 - Average velocity?Are they all on top?

Is this irreversibility?

- 1 atom: 1/2
- 4 atoms: 1/16
- 10 atoms: 1/1024
- 20 atoms: 1/10 million
- 40 atoms: 1/trillion
- 80 atoms: 1/1,200,000,000,000, 000,000,000,000
- Consider an 80 atom system:
 - Assume
 - rearrangement happens a million times a second
 - How long before we
 - see them all on top? - 10¹⁸ seconds

 - 30 billion years.....

A realistic example

- 1 cm³ of air
- ~2x10¹⁹ atoms

 Assume rearrangement a million times a second
- All on one side every $10^{7.5 \times 10^{18}}$ seconds
- This is an irreversible process:
 - Start with all on one side
 - Release them
 - They could all come back, but never do…

