
Physics 390 Fall 2004: Exam #1 Practice Solutions 

These are a few problems comparable to those you will see on the exam. They 
were picked from previous exams. I will provide a sheet with useful constants 
and equations for the exam. 

 



1:  The energy reaching the Earth from the Sun at the top of the atmosphere is described 
by the ‘Solar Constant’: 1360 W/m2. The radius of the Earth is 6.4x106m. Assume that 
the Earth radiates like a blackbody at a uniform temperature.  

a) What value would you estimate for the equilibrium temperature of the Earth? 
b) What would be the peak wavelength for thermal emission from the Earth? 

 

 
 
 
 
2:  An electron is trapped in an infinitely deep one-dimensional potential well. The width 
of the well is 10-9m. 

a) Write an expression for the solutions to the Schrodinger equation for this 
potential. Your solutions need not be normalized, but they should meet the 
boundary conditions appropriate for this potential well. 

b) Draw the wave function for the n=5 state. 
c) What is the difference in energy between the n=4 and the n=5 state? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

U=0 
L=10-9 m 

a) The wave functions are the usual free wave solutions, but they must go to 
zero at x=0 and x=L, so they are: 
 ψ(x)=sin(nπx/L) 
These waves have energy En = ћ2π2n2/2mL2 = n2*(0.37 eV) 
 
b) The n=5 state has five peaks in it, and is shown on the drawing to the right. 
 
c) The energy difference is E5 – E4 = (25 – 16)*0.37 eV = 3.36 eV 

a) The Earth is both absorbing solar radiation and emitting its own thermal radiation. These two 
processes will balance at the equilibrium temperature: 
Absorbed solar light: The sun energy arriving is 1360 W/m2. The area of the Earth which faces the 
sun is given by πr2 = 1.3x1014 m2. It’s not half the surface area of the Earth, because the Sun 
doesn’t shine down on every point. This means that the total energy arriving at the top of the 
atmosphere is about: 
 1360 W/m2 * 1.3x1014m2 = 1.8x1017 W 
Emitted thermal radiation: Assuming the entire Earth is at a uniform temperature, it emits a total 
power of Area * σT4 = 4πr2 * σT4 = 2.9x107 W/K4 * T4 
Equating these two yields : T4 = 1.8x1017 W / 2.9x107 W/K4 = 6.2x109 K4 or an equilibrium 
temperature of T = 280 K. 
 
b) λmaxT = 2.9x10-3 mK or λmax = 1.0x10-5m, or 10µm. 



3: In a repeat of the Davisson and Germer electron diffraction experiment a beam of 
electrons with kinetic energy of 54 eV are fired at a clean surface of Nickel.  

a) What is the wavelength of these electrons? 
b) If the Ni atoms are arranged in a regular cubic lattice with a spacing of 0.45 nm, 

what is the largest angle at which a strong signal of scattered electrons will be 
seen? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4: X-rays tubes used in dentist’s offices often have an accelerating voltage of 80 kV. 

a) What is the minimum wavelength such an x-ray tube can produce? 
b) What is the maximum wavelength such an x-ray can have after Compton 

scattering off an electron inside your tooth? 
c) Estimate the maximum wavelength such an x-ray can have after scattering off a 

calcium nucleus in your tooth. A calcium nucleus contains 20 protons and 20 
neutrons. 

 

a) The wavelength is given by λ = h / p = 1.67x10-10 m 
 
b) The scattering relation for electrons off a surface is nλ = Dsinθ or 

sinθ = nλ / D = n(1.67x10-10 / 4.5x10-10) = n*0.371 
For this, the largest allowed value of n is 2, and then we have  
 θ = sin-1(0.742) = 47.9° 

a) An electron accelerated through 80 kV and slammed into a target can create, by Bremmstrahlung 
radiation, a photon with an energy of 80 keV.  This is a wavelength λ=hc/E = 1.55x10-11 m 
 
b) In Compton scattering the photon gives up some of its energy to an electron. It will give up the largest 
possible part of its energy when it scatters directly back along the path on which it entered. Shifts in 
wavelength due to Compton scattering are given by: 
 λ’ - λ = (h/mec)(1 - cosθ) 
When the photon scatters straight back, θ=180°, and cosθ = -1, so 
 λ’ - λ = 2(h/mec)  or λ’ = λ + 2(h/mec) 
where this factor (h/mec) = 2.4x10-12 m is called the Compton wavelength of the electron. This tells us: 
 λ’max = λ + 4.8x10-12 m = 2.03x10-11 m 
 
c) Scattering off the calcium nucleus is just like scattering off an electron except that the calcium nucleus is 
roughly 40*1800 = 72,000x as heavy as the electron. This means the Compton wavelength of this nucleus is 
72,000 times as small as that of the electron. Shifts in the wavelength of backscattered photons are similarly 
reduced. Since the shifts are so tiny, the incoming photon scatters back with just about its original energy. 



5: Draw qualitative wavefunctions which represent solutions to the Schroedinger 
equation for particles with the energies shown confined by the following potentials. 
Please note with words any particular features you wish to stress. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

E

E

Goes to zero 
at both ends 

Longer λ in the middle, 
same on both sides

Shorter λ in the middle, 
gradually longer on both sides 

Does not go to 
zero at the edge, 
but penetrates a bit



6: One solution for a particle in a one dimensional infinite square well of width L which 
extends from x=0 to x=L is: 
 ψ2(x) = [√(2/L)]sin(2πx/L) 

This is a properly normalized wave function. That is ∫ψ2
*ψ2dx = 1. The operator for the 

momentum is Op = (ћ/i)∂/∂x. 
 

a) Calculate the expectation value for the momentum <p> 
b) Calculate the expectation value for the momentum squared <p2> 
c) What is the uncertainty in the momentum ∆p for this state? 
d) Show that this is roughly the value you would expect from the Heisenberg 

uncertainty principle.  
 
In answering these you may find the following relation useful: 
 sinAcosB = ½[sin(A+B) + sin(A-B)] 
 
 

a) <p> = ∫ψ*(ћ/i)∂/∂xψdx = (2/L)∫sin(2πx/L)(ћ/i)(2π/L)cos(2πx/L)dx 
Note, in this case the wavefunction is non-zero only from 0 to L, so the integration is taken over only this range. 
The above can be rewritten: 
 <p> = ∫ψ*(ћ/i)∂/∂xψdx = (2πћ/iL2)∫L

0 sin(2πx/L)cos(2πx/L)dx 
This is the integral of an even function (the sin) times an odd function (the cos) so the integral is zero. There are 
several other ways you could see this. You could use the substitution given above and work this out, or you could 
just recognize that for a particle trapped in a box the average momentum must be zero! It can’t, on average, be 
moving anywhere, because it’s trapped in a box! 
 
b) <p2> = ∫ψ*(-ћ2)∂2/∂x2ψdx = (2/L)∫sin(2πx/L)(-ћ2)∂2/∂x2sin(2πx/L)dx = (8π2ћ2/L3)∫0

Lsin2(2πx/L)dx 
Here the integral of the sin2 over any number of half wavelengths is equal to ½ times the range over which you 
integrate. In this case that’s L/2. This fact is one you should eventually know, that the average value of sin2 or cos2 
is ½. It comes into knowing that the RMS value of something which is varying sinusoidally is ½ the maximum 
value for example. This gives: 
 <p2> = 4π2ћ2/L2 
 
c) The momentum uncertainty can be estimated: 
 σp = √(<p2> - <p>2) = 2πћ/L 
 
d) Combining this with the uncertainty in x (which is about L), we find 
 ∆x∆p = L * (2πћ/L) = 2πћ 
This is certainly allowed by the uncertainty principle. What would we have to do to make a state with minimum 
uncertainty? We would have to combine several states of fixed energy (the energy eigenfunctions) to build up a 
wave packet with minimum x and p uncertainty. 




