Review on Complex Atoms

Physics 390 Fall 2004

Wolfgang Lorenzon 2-Nov-05

Molecules

- Atoms bind together when the combination has a lower total energy (is more tightly bound
- Binding is mostly born of asymmetry in electron orbitals
- Ultimately all electromagnetic effects

- Types of bonds:
 - Ionic: Coulomb attraction between charged atoms (one atom 'wants' an electron the other is willing to surrender: NaCl)
 - 2. Covalent: Bonding by electron sharing (both atoms really want an electron: H_2 , F_2 , CO, etc.)

Ionic Bond: Electron is transferred, then charged atoms attract one another....

Binding energy from (electron affinity – ionization energy + Coulomb attraction)

Covalent bond: sharing of a valence electron. This happens when both atoms 'want' an electron about equally badly.

Which bond will occur?

- Whichever one lowers
 If atoms have the energy the most!
 different
- Ionic vs. Covalent can be determined by "electronegativity" calculated for each atom
 - Electronegativity = Ionization energy + electron affinity

- If atoms have *different* electronegativities an ionic bond will form
- If atoms have similar electronegativities, a covalent bond will form
- In reality all bonds are partly both!

Intermolecular bonds

- Once an atom has joined a molecule and satisfied its chemical desires, why bond further?
- Why are there solids and liquids?
- What remains to bond them together?

- Weak attractions collectively called "van der Waal's forces"
- + and charge in molecules is not uniformly distributed

One more type: Hydrogen bonds

- Bonds only atoms which include N, O, or F
- Connects the above through a hydrogen as in A – H – B in a straight line
- 10 times as strong as van der Waals when it can occur

- Responsible for many organic compounds
- Also affects solvent capability of water
- H-bonds are key to protein structure: basic to the functioning of life
- Others (Li bonds for example) don't happen. H is very small

Energy stored in molecules

- Energy can be stored in molecules in many ways
 - Energy of translation
 - Energy of electron states
 - Energy of vibration
 - Energy of rotation
- We discussed rotation and vibration, the energies associated with locations of the atoms in the molecule...

Internuclear separation

Molecular spectroscopy

- Most transitions are in the infrared (longer wavelength than optical)
- Infrared spectroscopy pioneered by David Dennison here at Michigan
- Used to reveal the presence of molecules in the atmosphere (pollutants, ozone...) and in space
- Interstellar clouds contain water, ammonia, etc.

Classical Statistical Mechanics

Physics 390 Fall 2004

Wolfgang Lorenzon 2-Nov-05

Classical Statistical Mechanics

- Turn from the study of individual objects (atoms, molecules) to something more practical: statistical study of really *enormous* groups of objects
- Atoms are tiny.
 Everything is made of enormous numbers...

- Following the detailed behavior of each is impossible
- Instead we measure 'macroscopic' properties, like temperature and density
- Today we will revisit Classical statistical mechanics and discuss Quantum statistical mechanics.

Physics and change

- Laws of physics: forces and fields
 - Gravity
 - Electromagnetism
 - Strong and Weak nuclear
- All have time symmetry! Basic processes can all be reversed.

- Conservation laws, things which *never* change
 - Energy
 - Momentum
 - Angular momentum
- Change reduced to exchange, flow of permanent quantities

Energy flow

- Energy takes many related forms
 - Kinetic
 - Gravitational
 - Elastic
 - Electric
 - Heat
 - Mass
- Energy is a convertible quantity

- Total energy content is fixed
- Laws tell us what conversions can happen, they don't tell us which will happen...
- Something more is needed to determine what *will* happen

Irreversibility

- In the world, energy flow constraints *allow* some transformations which never occur
- How do we determine which among the possible outcomes will occur?
- Make the simplest assumption:

⇒ All possible outcomes are equally probable

A model system

- Gas atoms in a box
 - Initial positions and velocities
 - Every collision conserves energy and momentum
 - Use laws to predict motion
- Computers can do a 'Monte Carlo simulation' of this
- Prediction here is simple and secure

Micro & macrostates

- Microstate: details for each atom
 - Position and velocity
- Macrostate: some feature of positions and velocities of all atoms
 - Average position?
 - Average velocity?
 - Are they all on top?

Timescales

- This system rearranges itself on some timescale
 – ~ length / velocity
- Ask too soon, microstate cannot change
- Wait a few characteristic times before asking, the microstate will be rearranged
- All allowed arrangements *will* occur.

An example: 1 atom

- How often are all the particles on top?
- One atom: can be on top or bottom
 - (# top arrangements / total # arrangements)
 - 50%

An example: 4 atoms

- How often are all the particles on top?
- Four particles, each on top or bottom
- 16 microstates here
- Each microstate is equally likely
- 1 microstate has them all on top

Macrostates

- Example macrostate, all the atoms on top
- All are on top 1/16th of the time
- Other probabilities from counting microstates
- This is a question about what happens. All are allowed, which ones actually occur?

The point

- Some macrostates are made by many microstates (1/2 the atoms on each side)
- Some macrostates are made by very few microstates (all on one side)
- If all microstates are all equally probable, some macrostates will happen a *lot* more often.
- All on one side happens 1/2^N of the time (N = # of atoms)

Is this irreversibility?

- 1 atom: 1/2
- 4 atoms: 1/16
- 10 atoms: 1/1024
- 20 atoms: 1/10 million
- 40 atoms: 1/trillion

- Consider an 80 atom system:
 - Assume
 rearrangement
 happens a million
 times a second
 - How long before we see them all on top?
 - 10¹⁸ seconds
 - 30 billion years.....

A realistic example

- 1 cm³ of air
- ~2x10¹⁹ atoms
 - Assume rearrangement a million times a second
- All on one side every $10^{7.5 \times 10^{18}}$ seconds

- This is an irreversible process:
 - Start with all on one side
 - Release them
 - They could all come back, but never do…

After