Solving the Quantum Harmonic Oscillator Problem

Schrödinger's equation for the harmonic oscillator potential is given by:

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi}{\partial x^{2}}+\frac{1}{2} K x^{2} \Psi=i \hbar \frac{\partial \Psi}{\partial t} \tag{1}
\end{equation*}
$$

For stationary, bound-state solutions $\Psi(x, t)=\psi(x) e^{-i \frac{E}{\hbar} t}$ and the x-dependent part satisfies:

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}+\frac{1}{2} K x^{2} \psi(x)=E \psi(x) . \tag{2}
\end{equation*}
$$

It is not obvious how to solve the above equation to find the allowed values of E and the corrresponding wavefunction $\psi(x)$. In fact, there are some general techniques for solving differential equations. However, this problem can be solved (exactly !) using a beautiful trick invented by Schrödinger:

Let's define $\omega=\sqrt{\frac{K}{m}}$ and $y=\sqrt{\frac{m \omega}{\hbar}} x$ or $d y=\sqrt{\frac{m \omega}{\hbar}} d x$. Note, that ω is the classical oscillator speed: $x=x_{0} \cos \omega t$, which satisfies: $m \frac{d^{2} x}{d t^{2}}=-K x$. Therefore, substituting $x=\sqrt{\frac{\hbar}{m \omega}} y$ and $d x=\sqrt{\frac{\hbar}{m \omega}} d y$ into the above Schrödinger's equation (Eq. 2), we get:

$$
-\frac{\hbar^{2}}{2 m} \frac{1}{\left(\sqrt{\frac{\hbar}{m \omega}}\right)^{2}} \frac{d^{2} \psi}{d y^{2}}+\frac{1}{2}\left(m \omega^{2}\right)\left(\sqrt{\frac{\hbar}{m \omega}}\right)^{2} y^{2} \psi=E \psi
$$

and

$$
\begin{equation*}
\frac{d^{2} \psi}{d y^{2}}-y^{2} \psi=-\frac{2 E}{\hbar \omega} \psi \quad \quad \text { or } \quad\left[\frac{d^{2}}{d y^{2}}-y^{2}\right] \psi=-\frac{2 E}{\hbar \omega} \psi \tag{3}
\end{equation*}
$$

This can be written as

$$
\begin{equation*}
\left[\left(\frac{d}{d y}-y\right)\left(\frac{d}{d y}+y\right)-1\right] \psi=-\frac{2 E}{\hbar \omega} \psi \tag{4}
\end{equation*}
$$

To see this:

$$
\begin{aligned}
& \left(\frac{d}{d y}-y\right)\left(\frac{d}{d y}+y\right) \psi-\psi=\left(\frac{d}{d y}-y\right)\left(\frac{d \psi}{d y}+y \psi\right)-\psi \\
= & \frac{d^{2} \psi}{d y^{2}}-y \frac{d \psi}{d y}+y \frac{d \psi}{d y}+\psi-y^{2} \psi-\psi=\frac{d^{2} \psi}{d y^{2}}-y^{2} \psi .
\end{aligned}
$$

So Schrödinger's equation for the harmonic oscillator becomes:

$$
\begin{equation*}
\left(\frac{d}{d y}-y\right)\left(\frac{d}{d y}+y\right) \psi=\left(1-\frac{2 E}{\hbar \omega}\right) \psi \tag{5}
\end{equation*}
$$

Let's now "operate" on this equation from the left side with $\left(\frac{d}{d y}+y\right)$. Then we obtain:

$$
\left(\frac{d}{d y}+y\right)\left(\frac{d}{d y}-y\right)\left(\frac{d}{d y}+y\right) \psi=\left(1-\frac{2 E}{\hbar \omega}\right)\left(\frac{d}{d y}+y\right) \psi .
$$

But

$$
\begin{aligned}
& \left(\frac{d}{d y}+y\right)\left(\frac{d}{d y}-y\right) f=\left(\frac{d}{d y}+y\right)\left(\frac{d f}{d y}-y f\right) \\
= & \frac{d^{2} f}{d y^{2}}+y \frac{d f}{d y}-y \frac{d f}{d y}-f-y^{2} f=\left(\frac{d^{2}}{d y^{2}}-y^{2}-1\right) f .
\end{aligned}
$$

This is true for any function of y, for example $f=\left(\frac{d}{d y}+y\right) \psi$. Therefore,

$$
\left(\frac{d^{2}}{d y^{2}}-y^{2}\right)\left(\frac{d}{d y}+y\right) \psi-\left(\frac{d}{d y}+y\right) \psi=\left(1-\frac{2 E}{\hbar \omega}\right)\left(\frac{d}{d y}+y\right) \psi .
$$

Rearranging gives:

$$
\left(\frac{d^{2}}{d y^{2}}-y^{2}\right)\left[\left(\frac{d}{d y}+y\right) \psi\right]=\left(2-\frac{2 E}{\hbar \omega}\right)\left[\left(\frac{d}{d y}+y\right) \psi\right] .
$$

or

$$
\begin{equation*}
\left(\frac{d^{2}}{d y^{2}}-y^{2}\right)\left[\left(\frac{d}{d y}+y\right) \psi\right]=-\frac{2(E-\hbar \omega)}{\hbar \omega}\left[\left(\frac{d}{d y}+y\right) \psi\right] . \tag{6}
\end{equation*}
$$

But recall Eq. 3

$$
\left(\frac{d^{2}}{d y^{2}}-y^{2}\right) \psi=-\frac{2 E}{\hbar \omega} \psi .
$$

These equations have the same form if we define $\psi^{\prime}=\left(\frac{d}{d y}+y\right) \psi$ and $E^{\prime}=E-\hbar \omega$. Because then:

$$
\begin{equation*}
\left(\frac{d^{2}}{d y^{2}}-y^{2}\right) \psi^{\prime}=-\frac{2 E^{\prime}}{\hbar \omega} \psi^{\prime} \tag{7}
\end{equation*}
$$

What this means is that if we have found a solution $\psi(y)$ corresponding to energy E, then $\left(\frac{d}{d y}+y\right) \psi=\frac{d \psi}{d y}+y \psi$ will also be a solution, and its corresponding energy will be $(E-\hbar \omega)$.

We can just keep going like this. Each time the energy is lowered by $\hbar \omega$. This means that the spacing of the energy levels of the quantum harmonic oscillator is $\hbar \omega$.

