Insulators:

- Valence band is completely filled. Energy gap ΔE large (≤ 7 eV) with $\Delta E \gg kT$.
- At high T, if $kT \approx \Delta E$ get some conducting.

Semiconductors:

- No sharp distinction between insulator and semiconductor at $T \approx 0K$. Except ΔE is smaller with ΔE typically ≤ 1 eV. At high T, some electrons will be excited into valence band.

Conductors:

- Highest occupied band is only partially filled. At $T \approx 0K$ electrons can easily get into nearby empty energy levels. $\Delta E \approx kT$ for $T \approx 0K$.

Fermi-Dirac Distribution:

$$f_{FD}(E) = \frac{1}{e^{(E-E_F)/kT} + 1}$$

And $\Delta E = E - E_F$.