Midterm \#4 Practice Exam Questions - Solutions

Topics in relativity:
Michelson-Morley and ether drift
Postulates of special relativity
Simultaneity
Lorentz transformations
Length contraction
Relativistic velocity addition
Relativistic Doppler effect
Spacetime intervals and causality
Energy momentum invariant
Relativistic momentum
Relativistic total energy
Rest energy
Massless particles

1: Two events occur in the stationary frame S with coordinates:

$$
\begin{aligned}
& 1: x=x_{0} t=x_{0} / 2 c \\
& 2: x=4 x_{0} t=x_{0} / c
\end{aligned}
$$

Assume that the origins of S and S^{\prime} are the same at $t=t^{\prime}=0$. What velocity must a reference frame S^{\prime} be travelling for these two events to occur at the same time in S^{\prime} ?

The easiest way is to use the Lorentz transformations:

$$
\begin{aligned}
& \Delta \mathrm{x}^{\prime}=\gamma(\Delta \mathrm{x}-\mathrm{v} \Delta \mathrm{t}) \\
& \Delta \mathrm{t}^{\prime}=\gamma\left(\Delta \mathrm{t}-\mathrm{v} \Delta \mathrm{x} / \mathrm{c}^{2}\right)
\end{aligned}
$$

I want to make $\Delta \mathrm{t}^{\prime}=0$, so:

$$
\gamma\left(\Delta t-v \Delta x / c^{2}\right)=0 \quad \text { or } \quad \Delta t=v \Delta x / c^{2}
$$

and

$$
\mathrm{v}=\mathrm{c}^{2} \Delta \mathrm{t} / \Delta \mathrm{x}=\mathrm{c}^{2}\left(\mathrm{x}_{0} / 2 \mathrm{c}\right) /\left(3 \mathrm{x}_{0}\right)=\mathrm{c} / 6
$$

2: A pair of atomic clocks are synchronized on the ground. Clock A is then placed in an airplane which flies in circles above clock B at constant velocity $\mathrm{v}=300 \mathrm{~m} / \mathrm{s}$ for 1 week, stopping only briefly to refuel. Estimate the time difference between the two clocks.

It is reasonable, for these low velocities and accelerations, to treat this airplane as an inertial reference frame. What sets the limit? Well it is reasonable to consider the Earth, for most purposes, as an inertial frame, even though it is spinning, orbiting the sun at $10 \mathrm{~km} / \mathrm{s}$ and plowing through the galaxy at $200 \mathrm{~km} / \mathrm{s}$. So here we have time dilation, with $\beta=300 \mathrm{~m} / \mathrm{s} / 3 \times 10^{8} \mathrm{~m} / \mathrm{s}=10^{-6}$:

$$
\Delta t^{\prime}=\gamma \Delta t=\left(1-\beta^{2}\right)^{-1 / 2} \Delta t
$$

with numbers this small it pays to use the binomial expansion:

$$
(1+x)^{n} \approx 1+n x+(1 / 2) n(n-1) x^{2}+\ldots
$$

Which here implies:

$$
\Delta t^{\prime}=\left(1-\beta^{2}\right)^{-1 / 2} \Delta t \approx\left(1+1 / 2 \beta^{2}\right) \Delta t=\left(1+0.5^{*} 10^{-12}\right) \Delta t
$$

here $\Delta \mathrm{t}=1$ week $=7$ days $* 24$ hours $/$ day $* 3600 \mathrm{sec} /$ hour $=6.05 \times 10^{5} \mathrm{~s}$
So $\Delta \mathrm{t}^{\prime}-\Delta \mathrm{t}=-0.5 * 10^{-12 *} 6.05 \times 10^{5} \mathrm{~s}=-3.0 \times 10^{-7} \mathrm{~s}$
Or about $0.3 \mu \mathrm{~s}$.

3: Two events are simultaneous, but separated by a distance x_{0} in one reference frame S. What velocity must reference frame S^{\prime} be moving with to cause the two events to occur in the same place? In other words, what velocity is needed to make $\Delta \mathrm{x}^{\prime}=0$.

These two events are separated by a spacetime interval:

$$
\mathrm{s}^{2}=\mathrm{c}^{2} \Delta \mathrm{t}^{2}-\Delta \mathrm{x}^{2}=0-\mathrm{x}_{0}{ }^{2}
$$

which is a negative number. This means that the interval is "spacelike". A spacelike interval is intrinsically spatial, it cannot be made a pure time interval. It is impossible to move in such a way that you can make $\Delta x=0$. Remember that this interval must be the same in every frame. If you want to find a frame in which $\Delta x^{\prime}=0$, you would measure an interval:

$$
\mathrm{s}^{2}=\mathrm{c}^{2} \Delta \mathrm{t}^{2}
$$

which must be positive. So there's no way to find a reference frame in which these events occur at the same place.

You can also see this from $\Delta x^{\prime}=\gamma(\Delta x-v \Delta t)=\gamma \Delta x$. To make $\Delta x^{\prime}=0$ requires $\gamma=0$, which cannot occur. γ can only equal zero if v^{2} is negative and much larger than c^{2}. Note that it is possible to make $\Delta \mathrm{t}>0$, but only by making $\Delta \mathrm{x}$ larger, not smaller.

4: People sometimes imagine travelling to nearby stars by accelerating to something near the speed of light gradually and then coasting. Imagine that our spacecraft reaches a speed of 0.95 c relative to the galaxy as a whole. As it travels through interstellar space it collides with hydrogen atoms which are at rest relative to the galaxy. The rest mass of hydrogen is about 0.94 GeV .
What is the energy of each hydrogen atom in the reference frame of the spacecraft?
The gamma factor for this motion is:

$$
\gamma=\left(1-0.95^{2}\right)^{-1 / 2}=3.2
$$

so the energy of the hydrogen atoms observed by the ship is:

$$
\mathrm{E}=\gamma \mathrm{m}_{0} \mathrm{c}^{2}=3.2(0.94 \mathrm{GeV})=3.0 \mathrm{GeV}
$$

5: What fractional error does one make when calculating the kinetic energy using the Newtonian equation $K E=1 / 2 \mathrm{mv}^{2}$ instead of the relativistic equation for an object travelling with a speed of $10^{4} \mathrm{~m} / \mathrm{s}$?

Compare $1 / 2 \mathrm{mv}^{2}$ to $(\gamma-1) \mathrm{mc}^{2}$
Take the difference over the correct answer:

$$
\left[1 / 2 \mathrm{mv}^{2}-(\gamma-1) \mathrm{mc}^{2}\right] /(\gamma-1) \mathrm{mc}^{2}=1 / 2 \mathrm{mv}^{2} /(\gamma-1) \mathrm{mc}^{2}-1
$$

here $\gamma=1.0000000005$, so

$$
\text { Error }=1 / 2\left(10^{4}\right)^{2} / 5.555 \times 10^{-10}\left(3 \times 10^{8}\right)^{2}-1=5 \times 10^{7} / 4.999995 \times 10^{7}-1=0.000001
$$

The exact value would require a more accurate calculator. The most important point is that it is less than one ten thousanth of one percent.

6: Two events occur at the same time in reference frame S and are separated by 1 km along the x axis. What is the time difference between these two events when measured in a reference frame S^{\prime} moving with constant velocity along x if the spatial separation in S^{\prime} is 2 km ?

We know here that $\Delta \mathrm{x}=1 \mathrm{~km}, \Delta \mathrm{x}^{\prime}=2 \mathrm{~km}$, and $\Delta \mathrm{t}=0$, so

$$
\Delta x^{\prime}=\gamma(\Delta x-v \Delta t)=\gamma \Delta x
$$

so

$$
\gamma=2 \text { which implies } \mathrm{v}=0.75^{1 / 2} \mathrm{c}
$$

given this we can find Δt^{\prime} from

$$
\Delta \mathrm{t}^{\prime}=\gamma\left(\Delta \mathrm{t}-\mathrm{v} \Delta \mathrm{x} / \mathrm{c}^{2}\right)=2\left(-0.75^{1 / 2} \mathrm{c}(1 \mathrm{~km}) / \mathrm{c}^{2}\right)=-2 * 0.75^{1 / 2} *\left(1 \mathrm{~km} / 3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)=-5.8 \times 10^{-6} \mathrm{~s}
$$

7: Consider two reference frame S, and S^{\prime} moving with velocity v along the x axis of S. If a particle travels in reference frame S with $u_{x}=c$, what is its velocity $u_{x}{ }^{\prime}$ in reference frame S^{\prime} ?

The speed of light is the same in every reference frame, so $\mathrm{u}_{\mathrm{x}}{ }^{\prime}=\mathrm{c}$.

8: A set of π^{0} mesons is produced with total energies ranging from 6.0×10^{9} to $18.0 \times 10^{9} \mathrm{eV}$. The rest energy of the π^{0} is $135.1 \times 10^{6} \mathrm{eV}$ and its lifetime measured in its rest frame is $2 \times 10^{-16} \mathrm{~S}$.
a) What is the range of speeds of these pions?
b) What is the range of distances through which they travel (on average) before decaying?
a) $\mathrm{E}=\gamma \mathrm{mc}^{2}$, so the range of γ factors is:

$$
\begin{aligned}
& \gamma_{\text {low }}=6 \times 10^{9} / 135 \times 10^{6}=44.4 \\
& \gamma_{\text {high }}=18 \times 10^{9} / 135 \times 10^{6}=133.3
\end{aligned}
$$

Now we can use $\beta=\left(1-\gamma^{-2}\right)^{1 / 2}$ to get velocities:

$$
\beta_{\text {low }}=0.99975
$$

$$
\beta_{\text {high }}=0.999972
$$

b) In the second part, just figure out the time in the pion frame:

$$
\text { Lab lifetime }=\gamma \text { (pion rest lifetime })
$$

And
Distance $=\beta \mathrm{c} \gamma($ pion lifetime $)$
$\mathrm{D}_{\text {short }}=0.99975^{*} 3 \times 10^{8} \mathrm{~m} / \mathrm{s}^{*} 44.4 * 2 \times 10^{-16} \mathrm{~s}=2.66 \times 10^{-6} \mathrm{~m}$
$D_{\text {long }}=0.999972 * 3 \times 10^{8} \mathrm{~m} / \mathrm{s}^{*} 133.3 * 2 \times 10^{-16} \mathrm{~s}=8.0 \times 10^{-6} \mathrm{~m}$

9: Is the classical concept of an incompressible fluid valid in relativity?
An incompressible fluid is one who's density cannot be altered. Since relativity allows the possibility of length contraction, the density of a fluid is higher when measured in a moving reference frame, and changes with the velocity of the observer. So there are no incompressible fluids in relativity.

10: Take the rest radius of the Earth to be 6400 km , and its orbital speed around the sun to be $30 \mathrm{~km} / \mathrm{s}$. By how much is the Earth's radius foreshortened when seen by an observer on the Sun?

The motion is perpendicular to the line of sight, so there is no length contraction.

