Economics 676: Macroeconometrics

Requirements:
The course covers topics in time series analysis with an emphasis on applications in
macroeconomics. The aim of the course is to equip students with a working knowledge of
important econometric techniques used in monetary economics, financial economics,
international economics, and econometric theory. Substantial emphasis will be placed on the
development of programming skills in MATLAB (a matrix algebra program).

Students taking 676 are required to have completed the first-year Ph.D. sequence in
econometrics (Economics 671/672). Ph.D. students taking international finance or advanced
macroeconomics are strongly advised to take Economics 676 concurrently. The course is not
open to Master students.

Grading:
Course grades for Economics 676 will be based on a course paper (40%) and regular homework
assignments (60%). This may not sound like much, but this course is quite work-intensive and
will involve long hours at the computer. If you do not have the time to give this course your full
attention, you may want to take the course at some other time. The investment will be worth it
once you embark on your thesis.

The problem sets typically consist of programming exercises in the matrix algebra software
MATLAB. They may be prepared in groups of up to three students, but must be written up and
handed in individually. Everyone is responsible for writing their own code. Please indicate the
other group members, as applicable, and include all of the code along with your interpretation of
the results. All problem sets must be stapled. Electronic submissions are not acceptable. The
problem sets are due in class (or under my door by the end of class) on the due date. There will
be no extensions.

All problem sets for this course must be coded in MATLAB. There are no exceptions. One of the
aims of this course is to make you proficient in MATLAB programming, so you can tackle new
challenges on your own, when you start writing your thesis. MATLAB is used extensively
among practitioners and among researchers and is indispensable for your career whether you
plan to go to Wall Street, the Federal Reserve Board or a research university. It might not be the
only software you will have to master, but it will be the most useful and versatile software.
MATLAB is available on UNIX and on the PCs in the department’s econometrics lab. In addition, the university provides virtual access to MATLAB.

The term project involves identifying an econometric technique for time series that has not been covered in class. You are supposed to write MATLAB code implementing this technique. The code should be well documented and accompanied by a readme.txt file, by a description of how this technique works and what each file accomplishes. Most papers will focus on an empirical application to actual data. The empirical application may replicate some findings in the literature, but it has to be of substantive interest. The empirical analysis should be concisely written and clearly spell out the question of interest and the findings. You may also substitute a methodological question for the empirical application. All topics are subject to my approval.

The course paper should not normally exceed 15-20 pages in length and is due at the end of the course without fail. Electronic submissions are not acceptable. The format of the papers should adhere to the standards required for submission to a journal. Papers that do not meet these standards will not be accepted. Please consult my homepage for examples of acceptable formats. A short, but polished paper is vastly preferred to a longer, but shoddy one. Papers must not be co-authored. The paper is due on April 23 at noon. Please drop them off at my office. There will be no extensions of this deadline.

I will be out of town for a conference on Wednesday, March 23. I plan to have a double make-up class on Friday, January 15, 4:00-7:00PM. The details are to be confirmed.

Readings:
There will be a coursepack for this course (available for purchase at Dollar Bill and online at ctools). You are expected to bring the coursepack to class. The coursepack will form the backbone of this course. In addition, there are selective readings from journal articles on each topic and there are two required textbooks:

Both books are worthwhile having on your shelf, whether you are interested in finance, macroeconomics, international finance or econometrics. Hamilton (1994) is best thought of as a reference book. It is somewhat dated, but still the only graduate-level textbook that covers all aspects of time series econometrics. Lütkepohl’s book is a substantially revised version of his earlier book Introduction to Multiple Time Series Analysis. Rather than cover a wide range of time series methods, it focuses on multivariate time series models only. This includes the vector autoregressive framework which has become the workhorse model of applied time series analysis. For the purpose of this course, either version of this book will do. Lütkepohl’s book is especially useful for this course in that it is very explicit, which facilitates the programming of econometric procedures in a matrix algebra software such as MATLAB. Lütkepohl’s book is also available online through mirlyn. You should nevertheless buy the book in my view. It is a worthwhile investment.
Another good resource is the Handbook of Econometrics, the Handbook of Statistics and the Handbook of Economic Forecasting. The selective list below contains additional textbooks and monographs that you may find useful:

General Books on Macroeconometrics:

Spectral Analysis:

Nonlinear Models:

Unit Roots and Cointegration:

Forecasting:

Applications:

Historical Perspective:

Econometrics Background:

Table of Contents

Part 1: Preliminaries
1. Introduction to MATLAB ... 3
 1.1. MATLAB as a language ... 3
 1.2. Basics ... 3
 1.3. Script Files and Function Files .. 4
 1.4. File Management Inside MATLAB ... 5
 1.5. Variables ... 5
 1.6. Loading and Saving Data ... 7
 1.7. Mathematical Operators ... 8
 1.8. Pausing and Terminating Programs ... 10
 1.9. Using Logical Statements and Writing Loops 10
 1.10. Random Number Generators and Distributions 12
 1.11. Some Useful Functions for Generating Descriptive Statistics 13
 1.12. The Basics of Plotting Data in MATLAB 14
 1.13. Data Sources for Economic Time Series 16
 1.14. Check Your Data ... 18
 1.15. Simple Data Transformations .. 18
 1.16. MATLAB Exercises .. 19
 1.16.1. Random Draws ... 20
 1.16.2. Estimating Distributions of Sample Statistics 21
 1.16.3. Numerical ML Estimation ... 24

Part 2: Univariate Time Series Models
2. Basic Concepts in Time Series Analysis .. 28
 2.1. The Origins of Time Series Econometrics in Business Cycle Theory ... 29
 2.1.1. Periodic Cycles? ... 29
 2.1.2. Irregular Cycles ... 30
 2.2. Stochastic Processes ... 32
 2.2.1. Stationarity ... 33
 2.2.2. Ergodicity .. 33
 2.3. White Noise ... 34
 2.4. The Wold Representation Theorem .. 34
3. Approximating the Wold Representation ... 35
 3.1. MA(q) Models ... 36
 3.2. AR(p) Models ... 37
 3.3. Impulse Response Functions ... 43
 3.4. ARMA(p,q) Models ... 44
4. Data Transformations .. 47
 4.1. Time-Varying Variances ... 48
 4.2. Time-Varying Means .. 48
 4.2.1. Deterministic Detrending .. 48
 4.2.2. Log-Differencing ... 50
 4.2.3. The Hodrick-Prescott (HP) Filter ... 53
 4.2.4. Other Forms of Detrending ... 54
 4.3. Seasonality .. 54
 4.3.1. Seasonal Dummies ... 54
 4.3.2. Seasonal Differencing .. 55
 4.3.3. Other Forms of Seasonal Adjustment 55
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.4. Seasonality in High-Frequency Financial Data</td>
<td>55</td>
</tr>
<tr>
<td>4.4. The Danger of Applying the Wrong Transformation to Economic Time Series</td>
<td>56</td>
</tr>
<tr>
<td>4.4.1. If there is a unit root, what’s the harm of expressing the model in levels?</td>
<td>57</td>
</tr>
<tr>
<td>4.4.2. If there is no unit root, what’s the harm of differencing?</td>
<td>61</td>
</tr>
<tr>
<td>5.1. OLS Estimator and Conditional MLE of AR Models</td>
<td>61</td>
</tr>
<tr>
<td>5.2. Numerical MLE of MA and ARMA Models</td>
<td>65</td>
</tr>
<tr>
<td>6. Nonparametric Analysis of Time Series</td>
<td>67</td>
</tr>
<tr>
<td>7. Unobserved Components Models</td>
<td>69</td>
</tr>
<tr>
<td>8. Measuring Volatility</td>
<td>71</td>
</tr>
<tr>
<td>8.1. ARCH Models</td>
<td>71</td>
</tr>
<tr>
<td>8.1. GARCH Models</td>
<td>73</td>
</tr>
<tr>
<td>8.3. The ARCH-in-Mean Model</td>
<td>75</td>
</tr>
<tr>
<td>8.4. Other Models of Conditional Heteroskedasticity</td>
<td>76</td>
</tr>
<tr>
<td>9. Measuring Risk</td>
<td>76</td>
</tr>
<tr>
<td>9.1. Forecasting in the Standard GARCH Model</td>
<td>76</td>
</tr>
<tr>
<td>9.2. Value at Risk</td>
<td>77</td>
</tr>
<tr>
<td>9.3. Other Risk Measures</td>
<td>78</td>
</tr>
<tr>
<td>Part 3: Multivariate Time Series Models</td>
<td></td>
</tr>
<tr>
<td>10. Nonparametric Methods for Multivariate Time Series</td>
<td>82</td>
</tr>
<tr>
<td>11. Reduced-Form Vector Autoregressions</td>
<td>86</td>
</tr>
<tr>
<td>11.1. From Structural to Reduced-Form Models</td>
<td>86</td>
</tr>
<tr>
<td>11.2. Cross-Sectional Aggregation of Time Series Models</td>
<td>89</td>
</tr>
<tr>
<td>11.3. Some Useful Vector Operators</td>
<td>89</td>
</tr>
<tr>
<td>11.3.1. The vec Operator</td>
<td>90</td>
</tr>
<tr>
<td>11.3.2. The vech Operator</td>
<td>90</td>
</tr>
<tr>
<td>11.3.3. The Kronecker Product</td>
<td>91</td>
</tr>
<tr>
<td>11.3.4. Some Useful Rules for Combining the vec and Kronecker Operators</td>
<td>92</td>
</tr>
<tr>
<td>11.4. Multivariate LS Estimation of Unrestricted VAR Models</td>
<td>92</td>
</tr>
<tr>
<td>11.5. Equation-by-Equation LS Estimation of Unrestricted VAR Models</td>
<td>94</td>
</tr>
<tr>
<td>11.6. The Relationship between Equation-by-Equation LS and Multivariate LS</td>
<td>95</td>
</tr>
<tr>
<td>11.7. Sufficient Conditions for the Consistency and Asymptotic Normality</td>
<td>96</td>
</tr>
<tr>
<td>11.8. Other VAR Estimators</td>
<td>96</td>
</tr>
<tr>
<td>11.8.1. Yule-Walker Estimator</td>
<td>96</td>
</tr>
<tr>
<td>11.8.2. Burg Estimator</td>
<td>96</td>
</tr>
<tr>
<td>11.8.3. Conditional MLE</td>
<td>96</td>
</tr>
<tr>
<td>11.9. Estimation of VAR Models Subject to Parameter Constraints</td>
<td>97</td>
</tr>
<tr>
<td>11.9.1. Linear Restrictions on Autoregressive Coefficients</td>
<td>97</td>
</tr>
<tr>
<td>11.9.2. Nonlinear Restrictions on Autoregressive Coefficients</td>
<td>99</td>
</tr>
<tr>
<td>11.9.3. Bayesian VAR Estimation</td>
<td>99</td>
</tr>
<tr>
<td>Deriving the Posterior in VAR Models with Gaussian Priors</td>
<td>101</td>
</tr>
<tr>
<td>How to Interpret Posterior Error Bands</td>
<td>104</td>
</tr>
<tr>
<td>The Relationship of the Bayesian Estimator with Unrestricted LS</td>
<td>105</td>
</tr>
<tr>
<td>The Minnesota or Litterman Prior (Stationary Case)</td>
<td>105</td>
</tr>
<tr>
<td>Proper and Improper Priors</td>
<td>107</td>
</tr>
<tr>
<td>Why there is No Genuine Ignorance Prior</td>
<td>108</td>
</tr>
<tr>
<td>What if the Prior is Wrong?</td>
<td>109</td>
</tr>
<tr>
<td>Bayesian Model Comparisons</td>
<td>109</td>
</tr>
<tr>
<td>12. AR and VAR Lag Order Selection</td>
<td>111</td>
</tr>
<tr>
<td>12.1. Specific to General: Tests for Omitted Serial Correlation</td>
<td>111</td>
</tr>
</tbody>
</table>
14.5. Forecasting Model Selection and Structural Change .. 163
14.6. Real-Time Data versus Ex-Post Revised Data ... 163
14.7. Forecast Efficiency Tests ... 164

15. Forecasting a Scalar Time Series with Large Cross-Sections 166
15.1. Shrinkage Methods ... 166
15.2. Model Averaging ... 168
15.3. Approximate Factor Models .. 169

16. Predictability Tests .. 172
17. Pseudo Out-of-Sample Tests of Equal Predictive Accuracy 173
18. Tests of Forecast Encompassing .. 174
19. In-Sample versus Pseudo Out-of-Sample Tests of Predictability 175
20. Testing Forecastability ... 176
21. Direction-of-Change Tests .. 178
22. Data Mining .. 179
22.1. What is Data Mining? .. 179
22.2. Cures for Data Mining ... 180

Part 5: Bootstrapping
23. Bootstrapping Stationary Time Series Models .. 184
23.1 What is Bootstrapping? .. 184
23.1.1. Motivation ... 184
23.1.2. The Bootstrap Analogy: An Illustrative Example 185
23.2. A Primer on Bootstrap Techniques for Linear Regression Models 189
23.2.1. Bootstrapping i.i.d. Observations ... 189
23.2.2. Bootstrapping in the Fixed Regressor Model with i.i.d. Innovations 191
23.2.3. Bootstrapping in the Random Regressor Model with i.i.d. Innovations 192
23.2.4. Bootstrapping in the Dynamic Regressor Model with i.i.d. Innovations ... 193
23.2.5. Bootstrapping if the Assumption of i.i.d. Innovations is Violated 195
Heteroskedasticity in the Innovations .. 195
Serial Correlation in the Innovations .. 196
23.3. Bootstrap Approximations to Distributions of Estimators 200
23.4. Uses of the Bootstrap Approximation ... 202
23.4.1. A Selective Review of Two-Sided Bootstrap Confidence Intervals 203
23.4.2. Which Interval Should We Use? ... 205
24. Confidence Intervals for VAR Impulse Responses ... 206
24.1. The Delta Method ... 206
24.2. Bootstrap Confidence Intervals .. 207
24.3. Other Methods .. 209

Part 6: Unit Roots, Spurious Regressions and Cointegration
25. Testing the Unit Root Hypothesis .. 211
25.1. The Dickey-Fuller (DF) Test ... 212
25.2. The Augmented Dickey-Fuller (ADF) Test .. 213
25.2.1. Bootstrap Critical Values for ADF Tests ... 215
25.2.2. Which Critical Values Are More Accurate? ... 217
25.2.3. Size Problems with Unit Root Tests ... 218
25.2.4. Power Problems with Unit Root Tests ... 220
25.2.5. Unit Root Tests Against Trend Break Alternatives 222
25.2.6. Other Unit Root Tests .. 224
Panel Data Unit Root Tests .. 224
Efficient Unit Root Tests ... 224

viii
Tests Based on Covariates .. 224
Tests of the I(0) Null Hypothesis .. 225
25.2.7. Summary of the Literature on Unit Root Tests 226
Testing Economic Theories ... 226
Data Description ... 228
Forecasting .. 228
Pre-Tests for 2nd Stage Inference .. 228
26. Robust Inference in the Presence of Possible Autoregressive Unit Roots .. 229
 26.1. Asymptotic Approximations and Near Unit Roots 229
 26.2. Confidence Intervals in the Presence of Possible Unit Roots 231
 26.3. Other Approaches ... 232
 26.4. ARFIMA Models ... 233
27. The Quantitative Importance of Unit Roots 235
 27.1. The Beveridge-Nelson Decomposition 235
 27.2. The Variance Ratio .. 237
 27.3. Other Measures of Persistence .. 239
 27.3.1. Long-Run Impulse Responses .. 239
 27.3.2. Sum of AR Coefficients .. 240
 27.3.3. Half-Life ... 240
28. Unit Root Regressions ... 241
 28.1. Regressions of I(1) Variables on Deterministic Time Trends 241
 28.2. Regressions of one I(1) Variable on an Unrelated I(1) Variable 242
 28.3. Regressions of an I(0) Variable on an I(1) Variable 244
29. Cointegration ... 247
 29.1. Implications of Cointegration for the Vector MAR 249
 29.2. Implications of Cointegration for the VAR Representation 250
 29.3. The VEC Representation of Cointegrated VAR Models 252
 29.4. Cointegration Tests ... 253
 29.4.1. Single-Equation Methods .. 253
 Known Cointegrating Vector .. 253
 Unknown Cointegrating Vector ... 253
 29.4.2. Systems Methods ... 254
 Known Cointegrating Vector .. 254
 Unknown Cointegrating Vector ... 254
 29.4.3. Other Tests ... 263
 29.5. Summary of the Estimation Methods for Cointegrated VAR Models .. 263
 29.6. Pitfalls in Interpreting Estimates of Cointegrating Vectors 264
 29.7. Model Selection ... 265
 29.8. Identification of Structural Shocks 265
 29.9. Cointegrated VAR(∞) Models .. 266
 29.10. Inference in Possibly Cointegrated VAR Models 266

Part 7: Nonrecursive Structural VAR Models
30. Identification ... 269
 30.1. Short-Run Identifying Restrictions 269
 30.1.1. Exactly Identified Models .. 269
 30.1.2. Overidentified Models ... 270
 30.1.3. Where Do the Restrictions Come From? 270
 30.2. Long-Run Identifying Restrictions 271
 30.2.1. Overview ... 271
 30.2.2. Examples ... 273