Lutz Kilian
Winter 2015

Economics 457: Financial Econometrics

Lecture: Monday/Wednesday 4:00PM-5:30PM in Lorch 173.
Office hours: Monday after class.
First Day of Class: Wednesday, January 7.
Last Day of Class: Monday, April 20.
Email: lkilian@umich.edu.

Requirements:

The course covers topics in time series analysis with an emphasis on applications rather than statistical theory. The aim of the course is to equip students with a working knowledge of important econometric techniques used in macroeconomics, international finance, and financial economics. Substantial emphasis will be placed on the development of programming skills in MATLAB (a matrix algebra program). Regression analysis will be conducted primarily in matrix notation.

This is not a finance course; I will not teach you how to succeed as a trader. Rather the emphasis is on understanding and learning how to apply the econometric tools used by academics and practitioners working in financial economics and related fields. The course will be helpful for anyone interested in pursuing a graduate degree in a quantitative field, but equally helpful for students interested in working at research institutions or financial institutions. Rather than focus narrowly on the application of econometric tools in finance, I will try to convey a deeper understanding of the most important tools used in applied time series analysis, their proper use and their limitations, illustrated by applications to questions considered in finance.

Students taking Econ 457 are expected to have completed Econ 453. They must have completed or take concurrently Econ 454 (or equivalently Econ 503/504 for MAE students). If (and only if) Econ 454 is not offered, Econ 452 will be treated as a substitute in conjunction with 453. Students having passed Stats 426 may obtain permission of the instructor to take Econ 457 on a case by case basis. I will take for granted a thorough understanding of the material taught in Econ 453. Unlike in Econ 454, my focus will be on time series analysis, making Econ 454 and Econ 457 somewhat complementary. In addition, I will take for granted a good understanding of matrix algebra and calculus. The mathematical prerequisites are Calc I-III.

MAE students must consult me and obtain my permission prior to enrolling in 457. Past experience has shown that unless you have A grades in 503/504 and the required background in linear algebra, differential calculus and algebra, this course is not for you.

Grading:

There will be no midterm or final exams in this course. Course grades for Economics 407 will be based on a course paper (33%) and regular homework assignments (66%). This may not sound like much, but this course is quite work-intensive and will involve long hours in the computer
You should anticipate that this course is likely to be the most time-demanding course you will experience as an undergraduate. If you do not have the time to give this course your full attention, you should take the course at some other time.

The problem set questions typically consist of programming exercises in the matrix algebra software MATLAB and questions that test your understanding of the material. They may be prepared in groups of up to three students, but must be written up and handed in individually. Everyone is responsible for writing their own code.

Please indicate the other group members, as applicable, and include all of the code along with your written interpretation of the results. Problem sets will be graded on a scale of $\sqrt{+}$, $\sqrt{\cdot}$, $\sqrt{-}$, and fail. These grades will be converted to numerical grades. Make sure to include all MATLAB code for the assignment. The problem set answers should be presented in the same manner as one would in a professional setting. All problem sets must be submitted in class (or under my office door by the end of class) on the due date. Electronic submissions are not acceptable. There will be no extensions.

All problem sets for this course must be coded in MATLAB. There are no exceptions. One of the aims of this course is to make you proficient in MATLAB programming, so you can tackle new challenges on your own. MATLAB is used extensively among practitioners and among researchers and is indispensable for your career whether you plan to go to Wall Street, the Federal Reserve Board or a research institution. It might not be the only software you will have to master, but it will be the most useful and versatile software. All students have virtual access to MATLAB from any Macintosh or Windows computer with an Internet connection. Alternatively, you may access MATLAB from one of the university computing centers.

The term project involves identifying an econometric technique and applying it to financial or macroeconomic time series. You will write MATLAB code implementing this technique. The code should be well documented and accompanied by a readme-file with instructions, by a description of how this technique works and what it accomplishes, and an empirical application to actual data. The empirical application may replicate some findings in the literature, but it has to be of substantive interest. The empirical analysis should be concisely written and clearly spell out the question of interest and the findings. You may also substitute a methodological question for the empirical application. All topics are subject to my approval.

The course paper should not normally exceed about 10 pages in length. The format of the papers should adhere to the standards required for submission to an academic journal (including a separate title page with an abstract summarizing the paper; a complete list of references; a list of data sources). The presentation should be explicit enough for a classmate to be able to replicate all results. Data sources must be documented and modeling choices should be defended. You should clearly explain what the research question is, why the question is interesting, and what you have learned. You may find it useful to consult my homepage for examples of the format of unpublished papers. A short, but polished paper is vastly preferred to a longer, but shoddy one. Papers must not be co-authored. You may not use the same paper to satisfy requirements for multiple courses. The papers are due on April 24 at 12:00 noon without fail. Please drop them off
at my office. Electronic submissions are not acceptable. All Matlab code used for the paper should be included in a separate appendix (not included in the page count).

I will be out of town for conferences on February 25 and March 18. In the interest of frontloading the material, so you can get started early with the term paper, I plan to have a double make-up class on Friday, January 9 from 4:00PM-7:00PM. The details still have to be confirmed.
Readings:
Upon reviewing possible choices for textbooks, I discovered that no book adequately covers the material I have in mind. Hence, I will draw selectively on various sources, depending on the topic. The discussion of the vector autoregressive model will follow chapters 1-7 of Lütkepohl (2005, also available as a paperback). This book is helpful when it comes to coding the vector autoregressive model because it provides detailed instructions and numerical examples. It also contains a useful review of matrix algebra in the appendix.

Since this book is available online in pdf-format from mirlyn, you are not required to purchase a copy, but if anyone plans on using time series econometrics as a graduate student or as a practitioner, this book is a good investment.

An earlier version of this book (also available as a paperback) will do just as well for this course and may be less expensive:

I will make extensive use of my lecture notes in class. A pdf copy of my lecture notes will be posted on ctools. The coursepack is required. You may download or print the notes from ctools. I will also ask Dollarbill (on Church Street near the intersection with South University) to prepare bound copies for your convenience. You will be expected to bring those lecture notes to class.

* * *

The list below contains additional textbooks and monographs that you may find useful for this class. I will not follow any one book closely.

Financial Econometrics:

Time Series Econometrics:

Unit Roots and Cointegration:

Forecasting:

Applications in International Finance:

Econometrics Background:
Part 1: Basic Regression Analysis

1. Introduction to MATLAB .. 3
 1. MATLAB as a language .. 3
 1.2. Basics ... 3
 1.3. Script Files and Function Files 4
 1.4. File Management Inside MATLAB 5
 1.5. Variables .. 5
 1.6. Loading and Saving Data .. 7
 1.7. Mathematical Operators .. 8
 1.8. Pausing and Terminating Programs 10
 1.9. Using Logical Statements and Writing Loops 10
 1.10. Random Number Generators and Distributions 12
 1.11. Some Useful Functions for Generating Descriptive Statistics ... 13
 1.12. The Basics of Plotting Data in MATLAB 14
 1.13. Data Sources for Economic Time Series 16
 1.14. Check Your Data .. 18
 1.15. Simple Data Transformations 18

2. The Notion of Repeated Sampling 20
 2.1. The i.i.d. Model ... 20
 2.2. Random Number Generators and Seeds 20
 2.3. Drawing from a Pre-Specified Distribution 21
 2.4. From Histograms to Kernel Density Estimates 22

3. The Basic Linear Regression Model with i.i.d. Errors in Matrix Notation 26
 3.1. From the i.i.d. Model to the Linear Regression Model 26
 3.2. The Same Model in Matrix Notation 28
 3.3. Assumptions .. 28
 3.4. Estimating the Regression Parameters by Ordinary Least Squares 30
 3.4.1. Loss Functions and Curve Fitting 30
 3.4.2. The OLS Estimator of β in the Basic Linear Regression Model 33
 3.4.3. Regression Fit and Prediction 34
 3.4.4. Statistical Properties of $\hat{\beta}$ 36
 3.4.5. Statistical Properties of $\hat{\sigma}^2$ 38
 3.4.6. Asymptotic Normality of the OLS Estimator 39
 3.4.7. Regression t-tests, Confidence Intervals and p-Values 40
 3.4.8. Economic Versus Statistical Significance 42
 3.5. The MLE of the Basic Linear Regression Model 43
 3.5.1. The Idea Behind Maximum Likelihood Estimation 43
 3.5.2. Closed-Form MLE for the Basic Linear Regression Model 46
 3.5.3. Asymptotic Properties of the MLE 49
 3.6. Inference on Transformations of Regression Parameters 49
 3.6.1. The Taylor Series Expansion 49
 3.6.2. The Delta Method 51
 3.6.3. The Wald Test ... 51
 3.6.4. Testing Restrictions on the Regression Model with Wald and t-Tests 52
 3.6.5. One-Sided versus Two-Sided Tests 55

4. MLE by Numerical Methods in the i.i.d. Case 56
 4.1. Numerical Optimization in MATLAB 56
 4.2. Alternative Approaches to Numerical Optimization 57
Part 2: Univariate Time Series Models
5. Basic Concepts in Time Series Analysis ... 60
 5.1. The Origins of Time Series Econometrics in Business Cycle Theory 60
 5.1.1. Periodic Cycles? ... 60
 5.1.2. Irregular Cycles ... 61
 5.2. Stochastic Processes .. 62
 5.2.1. Stationarity ... 63
 5.2.2. Ergodicity ... 64
 5.3. White Noise .. 65
 5.4. The Wold Representation Theorem .. 65
6. Approximating the Wold Representation ... 66
 6.1. MA(q) Models .. 67
 6.2. AR(p) Models .. 68
 6.3. Impulse Response Functions .. 73
 6.4. ARMA(p,q) Models .. 74
7. Data Transformations .. 76
 7.1. Time-Varying Variances ... 77
 7.2. Time-Varying Means ... 77
 7.2.1. Deterministic Detrending .. 77
 7.2.2. Log-Differencing .. 79
 7.2.3. The Hodrick-Prescott (HP) Filter ... 81
 7.2.4. Other Forms of Detrending ... 82
 7.3. Seasonality .. 83
 7.3.1. Seasonal Dummies .. 83
 7.3.2. Seasonal Differencing .. 83
 7.3.3. Other Forms of Seasonal Adjustment .. 83
 7.3.4. Seasonality in High-Frequency Financial Data 84
 7.4. The Danger of Applying the Wrong Transformation to Economic Time Series 84
 8.1. OLS Estimator and Conditional MLE of AR Models 87
 8.2. Numerical MLE of MA and ARMA Models .. 90
9. Nonparametric Analysis of Time Series .. 91
10. Measuring Volatility .. 93
 10.1. ARCH Models .. 93
 10.1. GARCH Models ... 95
 10.3. The ARCH-in-Mean Model ... 97
 10.4. Other Models of Conditional Heteroskedasticity 97
11. Measuring Risk .. 98
 11.1. Forecasting in the Standard GARCH Model ... 98
 11.2. Value at Risk .. 99
 11.3. Other Risk Measures ... 100
12. What if the Regression Errors are not i.i.d.? Robust Regression Standard Errors 102
 12.1. Regression Error Heteroskedastic, but Serially Uncorrelated 103
 12.2. Regression Error Serially Correlated and Heteroskedastic of Unknown Form 104

Part 3: Multivariate Time Series Models
13. Estimating Reduced-Form Vector Autoregressions ... 108
 13.1. From Structural to Reduced-Form Models .. 108
 13.2. Multivariate LS Estimation of VAR Models ... 111
 13.3. Cross-Sectional Aggregation of Time Series Models 113
14. AR and VAR Lag Order Selection .. 114
Part 6: Bootstrapping

25. Bootstrapping Time Series Models ... 178
 25.1 What is Bootstrapping? .. 178
 25.1.1. Motivation .. 178
 25.1.2. The Bootstrap Analogy: An Illustrative Example 179
 25.2. A Primer on Bootstrap Techniques for Linear Regression Models 183
 25.2.1. Bootstrapping i.i.d. Observations ... 183
 25.2.2. Bootstrapping in the Fixed Regressor Model with i.i.d. Innovations 185
 25.2.3. Bootstrapping in the Random Regressor Model with i.i.d. Innovations ... 186
 25.2.4. Bootstrapping in the Dynamic Regressor Model with i.i.d. Innovations ... 187
 25.2.5. Bootstrapping if the Assumption of i.i.d. Innovations is Violated 189
 Heteroskedasticity in the Innovations ... 189
 Serial Correlation in the Innovations ... 190
 25.3. Uses of the Bootstrap Approximation ... 194
 25.3.1. A Selective Review of Two-Sided Bootstrap Confidence Intervals 195
 25.3.2. Which Interval Should We Use? .. 197
 25.3.3. Bootstrap Confidence Intervals for VAR Impulse Responses 198
 25.3.4. Bootstrap Approximations and Near Unit Roots 199
 25.3.5. Bootstrap Confidence Intervals in the Presence of Unit Roots 201
 25.3.6. Bootstrap Critical Values for ADF Tests .. 203

Appendix 1: Advice on Writing the Research Paper ... 205

Appendix 2: Examples of Ideas for Paper Topics .. 207