The Allocative Cost of Price Ceilings in the U.S. Residential Market for Natural Gas

Lucas W. Davis Lutz Kilian*

May 2010

Abstract

A direct consequence of imposing a ceiling on the price of a good for which secondary markets do not exist, is that, when there is excess demand, the good will not be allocated to the buyers who value it the most. The resulting allocative cost has been discussed in the literature as a potentially important component of the total welfare loss from price ceilings, but its practical importance has yet to be established empirically. In this paper, we address this question using data for the U.S. residential market for natural gas which was subject to price ceilings during 1954-1989 and is well suited for such an empirical analysis. Using a household-level, discrete-continuous model of natural gas demand, we estimate that the allocative cost in the U.S. residential market for natural gas averaged $3.6 billion annually, nearly tripling previous estimates of the net welfare loss to U.S. consumers. We quantify the evolution of this allocative cost and its geographical distribution during the post-war period, and we highlight implications of our analysis for the regulation of other markets.

Key Words: Price Ceilings, Allocative Cost; Natural Gas Regulation;
JEL: D45, L51, L71, Q41, Q48

*(Davis) Haas School of Business, University of California, Berkeley and National Bureau of Economic Research (Kilian) Department of Economics, University of Michigan and Centre for Economic Policy Research. Comments from Jim Adams, Jim Hines, Kai-Uwe Kühn, Peter Reiss, Dan Silverman, Gary Solon, two referees and the editor as well as and numerous seminar participants substantially improved the paper.
1 Introduction

A large literature in economics has examined the welfare costs of price ceilings. Among the markets that have received the most attention are rental housing, telecommunications, insurance, energy, and health care.\(^1\) In traditional welfare analysis, price ceilings reduce the quantity transacted below the competitive level, imposing deadweight losses on both buyers and sellers. In this paper we concentrate on an additional component of welfare loss that is often ignored. Notably, when there is excess demand for a good for which secondary markets do not exist, a welfare loss occurs when the good is not allocated to the buyers who value it the most. This allocative cost has been studied, for example, by Glaeser and Luttmer (2003), but its practical importance has yet to be established empirically.\(^2\)

Our analysis focuses on the U.S. residential market for natural gas. Anecdotal evidence suggests that price ceilings imposed in this market during the post-war period led to severe misallocation of natural gas across households. While some households were enjoying access to cheap price-controlled natural gas, other households were locked out of the market altogether as new residential connections were unavailable in many parts of the country.\(^3\) Many of the households without access to natural gas may well have been willing to pay more than households with access, but there was no mechanism that allowed such welfare-improving reallocations to occur. The allocative cost of these price ceilings refers to the total increase in welfare that could have been obtained by reallocating natural gas to the households with the highest willingness to pay.

The natural gas market is a good candidate for an empirical study of allocative costs for several reasons. First, natural gas is a homogeneous good, eliminating the concerns about differences in quality that complicate the estimation of allocative costs in other markets. Second, whereas secondary markets may act to mitigate the costs of misallocation in some markets such as rental housing, there are no resale markets for natural gas. Third, the residential market for natural gas

\(^2\)The problem of allocative costs is aptly described in Friedman and Stigler (1946). An early theoretical treatment can be found in Weitzman (1977). The analogous problem of misallocation due to minimum wages has been discussed as early as Welch (1974) and has been studied in Luttmer (2007).

\(^3\)As described in American Gas Association (1975, p. 67) the gas shortage caused widespread restrictions on new residential customers and severely limited expansion into new residential customer markets by many utilities. See also MacAvoy and Pindyck (1975, p. 2), Herbert (1992, p. 127) and American Gas Association (1976, p. 125). Related discussion can be found in MacAvoy (1971), Breyer and MacAvoy (1973), MacAvoy and Pindyck (1973), and MacAvoy (1983).
affects millions of consumers, suggesting that allocative costs could be very large. Fourth, this market was continuously regulated between 1954 and 1989 before experiencing complete deregulation. This allows us to observe market behavior both under regulation and in the absence of regulation. Fifth, the fact that some states remained unregulated throughout this period allows us to evaluate the out-of-sample fit of our model in settings where markets operate freely. Sixth, this market lends itself to empirical analysis, given the availability of unusually comprehensive household-level data by state and year as well as the corresponding state-level price data.

We construct estimates of the allocative costs associated with the regulation of natural gas prices by exploiting the fact that by the 1990s, the natural gas market had been completely deregulated and, unlike during the period of regulation, all households purchasing new homes were free to choose natural gas heating systems. Our empirical strategy is to ask how much natural gas would have been consumed in 1950-2000 based on the household preferences revealed in the 1990s data. We first estimate household preferences based on heating system choices made by households who purchased new homes in the 1990s after the end of price regulation. Controlling for household demographics and housing characteristics that affect heating demand, we then compare households’ actual choices under regulation with what they would have liked to choose in an unconstrained world, as implied by an economic model of consumer choice. This allows us to calculate physical shortages of natural gas and to measure the allocative cost of price ceilings.

Our paper provides for the first time a detailed picture of the evolution of physical shortages in the U.S. natural gas market during the post-war period. Whereas previous studies have traditionally measured the degree of disequilibrium in the natural gas market using shortfalls in contractually-obligated deliveries to pipelines, our measure of the physical shortage correctly incorporates not only demand from existing delivery contracts, but the unrealized demand from prospective new customers as well.\(^4\) This distinction is particularly important in the residential market because shortages were accommodated by restricting access to potential new customers rather than by rationing existing users. We find that during the period 1950-2000 demand for natural gas exceeded sales of natural gas by an average of 19.4%, with the largest shortages during the 1970s and 1980s. Compared to previous studies, we find that the shortages began earlier, lasted longer, and were larger in magnitude.

\(^4\)For example, Vietor (1984) reports that shortfalls in contractually-obligated deliveries to pipelines increased steadily beginning in 1970, reaching approximately 3 trillion cubic feet in 1976. This is a significant amount considering that total natural gas consumption in the U.S. in that year was 20 trillion. As large as these curtailments were, results from our model show that they understate the true level of disequilibrium in the market because they fail to account for demand from prospective new customers.
Physical shortages are important in describing the effect of price ceilings, but do not provide a measure of their economic costs. Using a household-level, discrete-continuous model of natural gas demand following Dubin and McFadden (1984) we estimate that the allocative cost from price ceilings averaged $3.6 billion annually in the U.S. residential market during 1950-2000.\(^5\) This represents, on average, 14\% of total residential expenditure on natural gas. As a point of comparison, our methodology implies estimates of allocative cost that are about half as large as the annual deadweight loss estimated by MacAvoy (2000) based on data for the period 1968 through 1977. Because the allocative cost arises in addition to the conventional deadweight loss, our estimates imply that total welfare losses from natural gas regulation were considerably larger than previously believed. Moreover, our household-level approach provides insights into the distributional effects of regulation that could not have been obtained using a model based on national or even regional data. In particular, we are able to identify which states were the biggest losers from regulation. We show that the allocative cost of regulation was borne disproportionately by households in the Northeast and Midwest.\(^6\)

Our analysis has several policy implications. First, regulators need to be aware that price ceilings only benefit consumers that have access to regulated markets. When there is a shortage of a good, not all consumers will have access to the market, and those who have access will not necessarily be the consumers who value the good the most. Second, the adverse effects of price ceilings can last much longer than the regulatory policies themselves. With natural gas, since households change heating systems infrequently, households who are barred from adopting natural gas heating systems because of a price ceiling will continue to use inferior technologies for years to come. This lock-in effect helps explain the persistence and the magnitude of the allocative costs that we find, and highlights the difficulty of predicting the duration of the effects of price regulation. Third, our analysis underscores the difficulty of determining in advance how the allocative cost of price regulation will be distributed geographically.

The format of the paper is as follows. Section 2 demonstrates the existence of an allocative cost from price ceilings in addition to the conventional deadweight welfare loss for goods for which there is no secondary market. Section 3 briefly reviews the history of regulation in the U.S. natural gas

\(^5\)All dollar amounts are expressed in year 2000 dollars.

\(^6\)Our analysis is germane to a substantial literature that examines regulation in the U.S. natural gas industry. Early studies such as MacAvoy (1971), MacAvoy and Pindyck (1973), Breyer and MacAvoy (1973) and MacAvoy and Pindyck (1975) document gas shortages in the early 1970s and use structural dynamic simultaneous equation models to simulate hypothetical paths for prices, production and reserves under alternative regulatory regimes. Several of these studies present estimates of the deadweight loss from natural gas price ceilings, but only Braeutigam and Hubbard (1986) and Viscusi, Harrington and Vernon (2005) discuss the issue of allocative cost.
industry since the 1950s, emphasizing characteristics of the regulatory policies that are relevant to our analysis. Sections 4 and 5 introduce our household-level model of demand for natural gas and discuss its empirical implementation. In section 6, we discuss the estimates of physical shortages as well as allocative cost and the out-of-sample fit of the model. Section 7 contains concluding remarks.

2 Price Ceilings and Allocative Cost

Figure 1 describes the standard problem of imposing a price ceiling. At the competitive equilibrium, the market clears at price P^* and quantity Q^*. Now consider the effect of a price ceiling P^{**}. At this price level, demand $D(P^{**})$ exceeds supply $S(P^{**})$. Compared to the competitive equilibrium, households pay $P^* - P^{**}$ less per unit resulting in a transfer $cdgf$ from sellers to buyers. They also incur the deadweight loss given by the triangle bed because of the decrease in quantity. Firms are unambiguously worse off. They pay a transfer of $cdgf$ and incur a deadweight loss of deg. The total deadweight loss is given by the area beg.

The welfare cost of price ceilings, however, is not necessarily limited to the deadweight loss. Upon further inspection it becomes clear that welfare losses will be limited to the deadweight loss triangle beg if and only if the good is allocated to the buyers who value it the most. In this efficient rationing case, buyers represented by the demand curve between a and b receive the good, while those represented by the demand curve between b and h do not. In some markets it may be reasonable to assume that a good is allocated efficiently. For example, when there is a secondary market where goods can be resold, this secondary market ensures that buyers with the highest willingness to pay receive the good. However, in many other markets such as the market for natural gas there is no mechanism that ensures that customers with the highest reservation price will receive the good. In these markets the welfare costs of price regulation also depend on how the good is allocated. Inefficient rationing imposes additional welfare costs.

A commonly used benchmark in illustrating these additional welfare costs is the case in which goods are allocated randomly to buyers (see figure 2).\footnote{This analysis follows closely Braeutigam and Hubbard (1986), Glaeser and Luttmer (2003) and Viscusi, Harrington and Vernon (2005).} The random allocation is inefficient because it does not allocate goods to buyers with the highest willingness to pay. At the price ceiling P^{**}, demand for the good is $D(P^{**})$, but supply is only $S(P^{**})$. If supply is allocated randomly then only a fraction $S(P^{**})/D(P^{**})$ of buyers with a reservation price above P^{**} will be able to buy the
This random allocation corresponds to the curve \(D(P)S(P^{**})/D(P^{**}) \). Now, in addition to the deadweight loss, \(beg \), there is an additional welfare loss, \(abg \), that is the result of the loss of efficiency from not allocating the good to the consumers with the highest reservation price. This additional welfare loss represents the allocative cost of regulation in this example. In general, the allocative cost can be measured as the difference between the consumer surplus under efficient rationing and the consumer surplus under the actual rationing. If the good is allocated to the buyers at random as in figure 2, the allocative cost corresponds to the difference between the consumer surplus \(abgf \) and the consumer surplus \(agf \).

In practice, the level of the allocative cost depends not only on how the good is rationed, but also on the distribution of reservation prices across households. In the market for natural gas heterogeneity in reservation prices arises mainly for two reasons. First, there are differences across households in preferences for different types of heating systems. For example, households differ in how much they value the cleanliness and convenience of natural gas. Second, households differ in how much they value different heating systems because of technological considerations. Compared to electric heating systems, natural gas and oil heating systems are expensive to purchase but inexpensive to operate. As a result, households with high levels of demand for home heating tend to prefer natural gas or heating oil. This suggests that in estimating the allocative cost it is important to specify a model that accounts for the heterogeneity of households.

The allocative cost depends on the location and shape of the demand curve and the observed level of price and quantity, but not on the shape of the supply curve. Accordingly, our analysis abstracts from the supply side of the natural gas market. A limitation of our approach is that without an empirical representation of the supply curve, we cannot calculate a measure of the conventional deadweight loss. For estimates of the deadweight loss see MacAvoy and Pindyck (1975) and MacAvoy (2000). With our model we are able to simulate demand for natural gas at the prices actually observed in the market during this period and to calculate shortages, but we are not able to say what equilibrium price levels would have prevailed without price ceilings or under alternative forms of regulation. The latter question indeed is of no relevance for the measurement of the allocative cost.
3 History of Natural Gas Regulation in the U.S.

Most natural gas in the United States is produced in gas fields concentrated in the Southwest and transported by pipeline to gas consumers in the Midwest and Northeast. The traditional problem in the U.S. natural gas industry in the 1930s and 1940s had been one of overproduction. This situation changed in the 1950s. As the domestic pipeline system expanded, supply could barely keep up with rising demand for natural gas among urban consumers in the Midwest and Northeast. Prices increased, much to the dismay of consumer advocates, and pressures arose to regulate interstate sales of natural gas, culminating in a 1954 Supreme Court decision that imposed federal price controls on natural gas sold in the interstate market. Because federal jurisdiction only extended to interstate sales of natural gas, natural gas markets in the four main gas-producing states of Texas, Louisiana, New Mexico, and Oklahoma were left unregulated.

The price ceilings stimulated consumer demand, while at the same time discouraging supply. The natural consequence was a growing shortage of natural gas. Starting in the 1950s, utility companies attempted to meet this shortage by denying access to new residential customers rather than rationing existing residential customers. The shortage became widely apparent in the 1970s, when utility companies were forced to curtail deliveries to the industrial sector. Evidence of increasing physical shortages finally brought the issue of natural gas regulation to the attention of the legislature and led to the passage of the Natural Gas Policy Act in 1978, which specified a phased deregulation of the price of natural gas. The 1978 Act was a political compromise intended to reduce shortages without completely eliminating the distortions of the old pricing system. After 1978, natural gas prices temporarily spiked, supplies expanded and curtailments were eliminated, but it was only in 1989 that all forms of price controls were officially terminated (see Bradley 1996).

Thus, residential natural gas prices in the United States were subject to price ceilings during a 35-year period from 1954 to 1989. The purpose of this paper is to quantify the allocative costs associated with these price ceilings. We exploit the fact that by the 1990s, natural gas was widely available in the U.S. and, unlike in previous decades, all households purchasing new homes were free to choose natural gas heating systems. Our empirical strategy is to ask how much natural gas would have been consumed in 1950-2000 based on choices made by households living in homes built during the 1990s. Controlling for the covariates that affect heating demand, these choices allow

8This decision was made in spite of the fact that by all accounts U.S. natural gas production is a highly competitive industry. In 1953, the 30 largest natural gas producers controlled less than half of all reserves, and accounted for only one third of sales to interstate pipelines (Vietor 1984). See also Lindahl (1956), Cookenboo (1958), and Neuner (1960).
the estimation of household preferences. This strategy addresses one of the central difficulties in estimating the allocative cost of price ceilings. In particular, during periods of price regulation, one only observes households’ behavior under the constraints imposed by regulation, making it difficult to identify households’ unconstrained preferences. Our study sidesteps this difficulty by taking advantage of the fact that in the 1990s we observe unconstrained household behavior. Comparing households’ actual choices with what they would have liked to choose in an unconstrained world, as implied by the econometric model discussed in Section 4, allows us to measure the allocative cost of price ceilings. In the following sections we develop this empirical strategy in more detail.

4 Demand Model

Calculating the allocative cost of price ceilings in the U.S. residential natural gas market requires a model of household behavior that can accurately represent households’ choices of heating systems and their utilization of heating fuels. We use the structure of this demand model to run a counterfactual analysis of the gains from having natural gas allocated to those who value it the most. Our approach requires making explicit assumptions about households’ preferences and constraints. Below we describe this parametric framework, highlighting the key modeling choices.

Residential demand for heating equipment and for heating fuels is modeled as the solution to a household production problem. Households make two choices. First, households decide which type of heating system to purchase (natural gas, electricity, or heating oil). Second, conditional on the choice of the heating system, households decide how much heating fuel to use. Joint discrete-continuous models of the form described in this section have been the standard for modeling energy demand at the household-level since Hausman (1979), Dubin and McFadden (1984) and Dubin (1985).

We postulate that households choose which heating system to purchase by evaluating an indirect utility function of the form:

$$u_{ij} = \alpha_{0j} + \alpha_{1j}p_{ij} + \alpha'_{2j}w_i + \alpha'_{3j}p_{ij}z_i + \epsilon_{ij}. \quad (1)$$

The utility for household i of heating system j is a function of p_{ij}, the price of energy.9

9The approach of using a discrete choice model to model explicitly durable goods purchase decisions has been widely adopted by more recent studies of energy demand including Bernard, Bolduc and Belanger (1996), Goldberg (1998), West (2004), Feng, Fullerton, and Gan (2005), Mansur, Mendelsohn and Morrison (2008), and Bento, Goulder, Jacobsen, and von Haefen (2009).
Thermal Units or BTUs), and \(w_i \), a vector of household and housing characteristics including heating degree days, household size, household income, number of rooms, and the number of units in the building. The parameter \(\alpha_{0j} \) incorporates heating-system specific factors such as purchase and installation costs as well as preferences for particular heating systems that are common across households. The parameter \(\alpha_{1j} \) reflects households’ willingness to trade off the price per unit of heat against other heating system characteristics, and the parameter vector \(\alpha_{2j} \) describes interactions between household characteristics and heating system alternatives. This specification allows households living in cold climates to prefer natural gas heating systems, for example. We also allow for interactions between the price of energy and \(z_i \), a vector that includes heating degree days, household size, and number of rooms. The parameter vector \(\alpha_{3j} \) allows the importance of different fuel prices to vary across households with different levels of demand for heat. For example, households living in cold climates may be more sensitive to natural gas prices.

The probability that household \(i \) selects alternative \(k \) is the probability of drawing \(\{\epsilon_{i1}, \epsilon_{i2}, ..., \epsilon_{iJ}\} \) such that \(u_{ik} \geq u_{ij} \) \(\forall j \neq k \). The error term, \(\epsilon_{ij} \), captures unobserved differences across households’ preferences for particular heating systems. We follow the literature in assuming that \(\epsilon_{ij} \) has a type 1 extreme value distribution and is i.i.d. across households and heating systems with a mean equal to Euler’s constant and a variance of \(\pi^2/6 \). Under this assumption, the probability that household \(i \) selects heating system \(k \) takes the well-known conditional logit form

\[
P R_{ik} = \frac{\exp\{\alpha_{0k} + \alpha_{1k}p_{ik} + \alpha_{2k}w_i + \alpha_{3k}p_{ik}z_i\}}{\sum_{j=1}^{J} \exp\{\alpha_{0j} + \alpha_{1j}p_{ij} + \alpha_{2j}w_i + \alpha_{3j}p_{ij}z_i\}}
\]

and the heating-system choice model can be estimated using maximum likelihood.

Conditional on choosing a natural gas heating system, the demand function for natural gas is assumed to take the form:

\[
x_i = \beta_0 + \beta_1 p_{ig} + \beta'_2 w_i + \eta_i,
\]

where \(x_i \) denotes annual consumption of natural gas measured in BTUs. Demand for natural gas depends on \(p_{ig} \), the price of natural gas, \(w_i \), household characteristics including household income, and \(\eta_i \), which reflects unobserved differences across households in the demand for heat. The parameter \(\beta_1 \) measures the responsiveness of demand to changes in price, and the parameter vector \(\beta_2 \) describes how demand for natural gas varies across households with different characteristics.

Following Dubin and McFadden (1984), we allow for correlation between the discrete and con-
tinuous components of the model. This correlation might arise for many reasons. For example, households who prefer warm homes may be prone to choosing natural gas heating systems as well as prone to consuming more natural gas. As a result, the distribution of η_i among households who select natural gas may not be the same as the unconditional distribution of η_i. This endogeneity problem is addressed by postulating that the expected value of η_i is a linear function of $\{\epsilon_{i1}, \epsilon_{i2}, ..., \epsilon_{iJ}\}$ and using the density of the extreme value distribution to evaluate the conditional expectation of η_i analytically. A set of selection correction terms can be derived that are functions of the predicted choice probabilities from the heating-system choice model. When these terms are included in the heating demand function (3), the parameters β_0, β_1, and β_2 can be estimated consistently.

Our specification follows previous studies in assuming that current prices are a reasonable proxy for future prices. This assumption is natural when energy prices are well approximated by a random walk and changes in energy prices are unpredictable. In most contexts this will be a reasonable assumption, although a case could be made that during the late 1970s when deregulation was imminent, it might have been reasonable to expect natural gas prices to increase. We are also implicitly assuming that observed choices reflect the preferences of the household and not preferences of some other party. In the case where home builders or landlords are involved, we assume that the relevant market is sufficiently competitive so that these parties act effectively as agents for the household.

In estimating the model we take the stand that variation in energy prices is not driven by unmodeled fluctuations in the residential demand for heating. There are several reasons why standard concerns about price endogeneity are likely to be much less of a problem here than in other contexts. First, a significant advantage of the Census data is that it allows for an unusually rich specification of demand. By flexibly describing the responsiveness of demand to climate, household and housing characteristics, we control for many demand determinants that might be expected to be correlated with price. Second, the identification of the parameters in equations (1) and (3) is aided by institutional characteristics of U.S. retail energy markets. For example, residential natural gas prices are largely driven by cross-sectional differences in transportation and distribution costs. Prices are consistently higher in the Northeast than in the South where most gas is produced. Transmission costs, of course, have decreased over time, but most analysts attribute these savings to regulatory reform and technological change rather than changes in residential demand (Leitzinger and Collette, 2002). In addition, the fact that there is an integrated national
wholesale market for natural gas means that local changes in demand tend not to result in large local price changes. Thus, there is little scope in general for unmodeled regional demand shocks to influence prices.

Similar arguments can be made for electricity and heating oil prices. First, cross-sectional variation in electricity prices is largely driven by differences in the composition of electricity generation. States with coal-burning power plants and federally-subsidized hydroelectric facilities tend to have considerably lower prices than states with natural gas and nuclear power plants. Second, time series data for electricity prices show sustained declines in prices over almost the entire period (see Figure 3). These price reductions are due to substantial improvements in the operating efficiency of power plants rather than changes in demand (see, e.g., Fabrizio, Rose, and Wolfram 2007). Similarly, the cross-sectional variation in heating oil prices is largely driven by differences in transportation costs across states, whereas the time-series variation mainly reflects changes in global crude oil prices, especially in the late 1970s and early 1980s, which represent supply shocks from the point of view of heating oil producers.

5 Empirical Implementation

The estimation of the model is based on a data set that we compiled from industry sources, governmental records and the U.S. Census 1960-2000. The Census provides a forty-year history of household heating fuel choices, household demographics, and housing characteristics. We use 1% samples for 1960 and 1970 and 5% samples for 1980, 1990, and 2000. We also put considerable effort into constructing a 50-year panel of state-level residential prices for natural gas, electricity, and heating oil. Figure 3 shows the residential prices by region. This data set, together with the Census data, makes it possible to represent formally the alternatives available to households in the U.S. during this period.

Table 1 reports estimates of the heating-system choice model. The model is estimated using households living in homes built between 1990 and 2000 after the complete deregulation of natural gas prices. Whereas prior to 1990 one only observes households’ behavior under the constraints imposed by regulation, these households faced no constraints in choosing their preferred heating system. The first set of parameters corresponds to fuel prices and the interactions of fuel prices with household characteristics. We allow the parameters for natural gas and heating oil prices to differ from the parameters for electricity prices because electric heating systems do not require
combustion and thus are much more efficient in converting energy into heat. The coefficients for price are negative and strongly statistically significant, indicating that all else equal households prefer heating systems with a low energy price. The price interaction terms for natural gas and heating oil are large and statistically significant. The remaining parameters correspond to household characteristics interacted with indicator variables for natural gas or electricity. For example, the negative coefficient on rooms for electric heating systems indicates that electric heating systems become less attractive relative to heating oil as the number of rooms increases. The other coefficients may be interpreted similarly. The positive constants indicate that natural gas and electricity are more attractive to households than oil heating systems, perhaps reflecting that oil systems are not as clean-burning as other heating systems, require more space, and are less convenient.

Table 2 presents estimates of the parameters of the heating demand function given in equation (3). Whereas the heating system choice model is estimated using only households living in homes built during the 1990s, the heating demand function is estimated using all households in the 1980, 1990 and 2000 census that use natural gas as their primary source of home heating. Our use of a longer sample exploits the fact that during the period of regulation existing natural gas users were not rationed and could use as much natural gas as they wished. A potential concern with using this longer sample is selection bias. In estimating equation (3) we face two levels of selection. First, natural gas consumption is only observed for households that chose natural gas heating. As discussed in Section 4, we address this form of selection following Dubin and McFadden (1984) by including in these regressions a set of selection correction terms that are functions of the predicted choice probabilities from the heating-system choice model. Second, not included in this sample are households who preferred natural gas, but were excluded from the market because of shortages. To the extent that the underlying rationing mechanism is correlated with unobserved components of heating demand, this could bias our estimates. We aim to minimize this bias by including a rich set of household and housing characteristics in the regressions.

We estimate equation (3) separately by decade. Estimating separate regressions makes it possible to capture changes in heating demand over time that are not captured by observable characteristics. It also helps us capture slow-moving changes in the energy efficiency of homes which is important in constructing the counterfactuals in section 6.10 The dependent variable in table

10We would have preferred to estimate the heating demand function for the 1960 and 1970 census as well, but households did not report energy expenditures prior to the 1980 Census. We deal with the incomplete data prior to 1980 by using the estimated parameters for 1980 in predicting heating demand. The resulting estimates are conservative because natural gas consumption prior to 1980 would have tended to be higher than consumption in 1980 due to the increasing availability of energy efficient building materials starting in the 1970s.
2 is annual consumption of natural gas in millions of BTUs, constructed by dividing reported annual expenditure on natural gas by the average residential price of natural gas for the appropriate state and year. When estimating equation (3), we instrument for the price of natural gas using regional indicator variables to address any spurious correlation between demand and price caused by measurement error in price. The parameter estimates in Table 2 indicate decreasing price sensitivity over time. The point estimates imply price elasticities ranging from -0.34 in 1980 to -0.10 in 2000. As a point of comparison, Dubin and McFadden (1984) find a price elasticity for electricity demand among households with electric heating ranging from -0.20 to -0.31. Table 2 also shows that natural gas consumption responds to household and housing characteristics with the expected signs. Temperature is one of the most important determinants of natural gas consumption, and the coefficients for heating degree days are strongly statistically significant. Natural gas consumption increases with household size, the number of rooms and with the age of the home. Households in multi-unit structures tend to use less natural gas than households in single-family residences, perhaps because of shared walls and other scale effects. Finally, four of the six selection terms are statistically different from zero indicating that the unobserved determinants of heating demand and heating system choices are indeed correlated.

Estimates of the heating-system choice model and heating demand function, together with observed energy prices and household characteristics are used to simulate heating system choices and heating demand by state and year for the period 1950-2000. Households are assumed to buy a new heating system in the year the residence is constructed. In addition, we assume that all households, including households living in homes built before the 1950s, replace their heating system according to annual retirement probabilities from EIA (2006a). These retirement probabilities imply that on average a household replaces its heating system once every 17.5 years. In the following section we compare households’ actual choices with the choices implied by the model. This allows us to calculate physical shortages of natural gas and to measure the allocative cost of price ceilings.

11Little previous work has been done to assess the reliability of these self-reported measures of expenditure. Accordingly, in section 6.1 we compare the self-reported measures of expenditure with residential gas sales reported by natural gas utilities. Generally, the two measures are similar suggesting that the magnitude of the bias in the self-reported measures is small.
6 Results

6.1 Physical Shortages

This section contrasts our model’s predictions of residential demand for natural gas during the period 1950-2000 with actual consumption. Although our ultimate objective is to measure the allocative cost of price regulation during this period, the measures of shortage that are discussed in this section provide a first check on the ability of the model to replicate the well-known qualitative pattern of physical shortages during this period. Moreover, these results are of independent interest in that they provide the most comprehensive assessment to date of the magnitude, timing, and geographic distribution of physical shortages.

Figure 4 describes residential demand for natural gas in the U.S. by year for 1950-2000. The figure plots two alternative measures of the actual level of natural gas consumption. The dashed line is residential consumption of natural gas in the U.S. as reported by natural gas utilities in EIA (2006b). The dotted line is residential consumption of natural gas from the Census data. Both measures of actual consumption increase steadily between 1950 and 1970 and then level off during the later period. Although the fit is not perfect, it is reasonably close. This comparison suggests that our Census data provide a reasonably accurate measure of natural gas consumption.

The solid line in figure 4 is the level of natural gas demand predicted by our model. Since our heating-system choice model is estimated using choices observed after natural gas deregulation, the model is able to describe the important counterfactual of what demand would have been at observed prices, had all households had access to natural gas. Our empirical methodology reveals how much natural gas would have been consumed during 1950-2000 based on preferences revealed in the post-regulation period, and controlling for household demographics and housing characteristics that affect heating demand. Simulated demand follows actual consumption reasonably closely during the 1950s and 1960s, although even at the beginning of the sample period there is evidence of a small but growing physical shortage of natural gas. The figure indicates large differences between simulated demand and actual consumption during the 1970s and 1980s, with the gap narrowing during the 1990s. The finding of a substantial natural gas shortage during the 1970s is consistent with previous studies.\(^\text{12}\)

\(^\text{12}\) According to Vietor (1984), shortfalls in contractually-obligated deliveries to pipelines began in the early 1970s and reached 15% of the entire market for natural gas in 1976. MacAvoy (1983, p.85) reports even larger shortfalls, “Forced curtailments of committed deliveries increased from 12% of total interstate demand in 1973 to 30% in 1975. Further curtailments caused the short deliveries to exceed 40% of the total in 1978.”
Figure 5 describes residential demand by region for the same period. The pattern for the Northeast is similar to the national pattern, with large differences between simulated and actual demand throughout the period. The Midwest also experiences shortages, but they are smaller in magnitude and less persistent. In other regions there is very little shortage. In the West, in particular, there is essentially no difference between simulated demand and actual consumption. The smaller shortages in the South and West likely are due to several factors. First, these regions include the natural gas producing states, where one would expect to see no shortage. Second, the warmer climate and greater access to cheap hydroelectric electricity in many of these states implies a lower overall level of demand for natural gas and thus less scope for shortages. Third, following deregulation there was much more new housing construction in these regions than in the Northeast and Midwest, allowing the effects of regulation to be overcome more quickly than elsewhere.

We find that during 1950-2000 total U.S. demand for natural gas exceeded observed sales of natural gas by an average of 19.4%, with the largest shortages during the 1970s and 1980s. Our estimates of the physical shortage provide a more complete description of the degree of disequilibrium in the natural gas market than previously-used measures such as the curtailment of gas deliveries. In particular, our measure correctly incorporates not only demand from existing delivery contracts, but the unrealized demand from prospective new customers as well. The need for such a comprehensive measure of shortages has long been recognized in the literature. For example, MacAvoy (1983, p. 85) notes:

“The excess demand of those excluded from gas markets was not listed as a ‘shortage,’ and yet substantial numbers of potential new residential and commercial customers denied service by state and federal regulations were ‘short’ by the entire amount of their potential demands.”

Our estimates provide quantitative content to MacAvoy’s conjecture that curtailments understate the degree of disequilibrium in the market because they fail to incorporate demand from potential new customers who are prevented from adopting gas heating by their local utilities in an effort to preserve service to existing customers.

Finally, our analysis sheds new light on the persistence of the effects of price regulation. Previous studies assumed that the effects of regulation were quickly alleviated after the Natural Gas Policy Act in 1978. For example, many observers have pointed to the apparent “gas glut” in the early 1980s as evidence of the end of the effects of price regulation. In sharp contrast, we find that simulated demand exceeded actual consumption of natural gas throughout the 1980s and well after the complete deregulation of wellhead prices in 1989. These highly persistent legacy effects
of earlier heating system choices only become apparent owing to our use of a microeconometric model, illustrating the importance of explicit modeling of household decisions. At any point in time, demand is derived from households that purchased their home heating systems many years ago. Thus, even many years after complete deregulation, a substantial fraction of households continued to be locked into suboptimal heating system choices, prolonging the effects of regulatory policies long beyond the official end of regulation. For example, under our assumptions, 71% of households in 2000 are living in homes with heating systems that were purchased prior to complete deregulation in 1989. This helps explain the fact that simulated demand continues to exceed actual consumption even in 2000.

6.2 Allocative Costs

In this section we use the demand model described in Section 4 to estimate the allocative cost of price ceilings in the U.S. residential market. As defined in Section 2, the allocative cost of a price ceiling is the welfare loss which results from not allocating a good to the buyers that value it the most, measured as the difference between the consumer surplus under the actual allocation and the consumer surplus under the allocation when buyers are rationed efficiently. Under efficient rationing, the good is provided to the buyers with the highest reservation prices and welfare cannot be improved upon by reallocating the good among buyers. In an unregulated market this allocation is achieved with a national market clearing price. In a regulated market, the actual allocation typically does not provide the good to the buyers who value it the most and the allocative cost refers to the welfare gains that can be realized from replacing the actual allocation by the allocation under efficient rationing. The calculation of the allocative cost involves the following steps:

In step 1, we compute the reservation price for each household i. The reservation price, p_i^*, is the natural gas price that makes household i indifferent between natural gas and the next best heating alternative (i.e., electricity or heating oil):

$$p_i^* = \frac{\max (u_{ie}, u_{io}) - \alpha_0g - \alpha_2gw_i - \epsilon_{ig}}{\alpha_1g + \alpha_3g z_i},$$

where g, e, and o index natural gas, electricity, and heating oil. We evaluate u_{ie} and u_{io} according to the indirect utility function defined in equation (1) using electricity and heating oil prices, p_{ie} and p_{io}, the observable characteristics w_i and z_i for each household from the Census data, estimates of the parameters α_0e, α_1e, α_{1o}, α_2e, α_{2o}, α_3e, and α_{3o} in table 1, and the random components ϵ_{ie}, and ϵ_{io}. We compute p_i^* from equation (4) using these estimates of u_{ie} and u_{io}, estimates of
the parameters $\alpha_{0g}, \alpha_{1g}, \alpha_{2g},$ and α_{3g} in table 1, and the random component ϵ_{ig}. All the random components are i.i.d. draws from the extreme value distribution described in Section 4.13

In step 2, we calculate the consumer surplus for each household. Let $p_{i\tau}$ denote the actual price of natural gas for household i in the year τ in which the heating system was purchased. A household’s annual consumer surplus is the difference between its reservation price and $p_{i\tau}$, multiplied by the household’s annual demand for gas, \hat{x}_{ig}, predicted from equation (3) using all of the parameter estimates in table 2:

$$CS_i = (p_i^* - p_{i\tau}) \hat{x}_{ig}. \quad (5)$$

In step 3, we compute total consumer surplus for all households under efficient rationing:

$$CS^{er}_t = \sum_{i=1}^{n} CS_i \cdot 1(\text{er}_{it}) \quad (6)$$

where $1(\text{er}_{it})$ is an indicator variable equal to 1 if household i receives natural gas in year t under efficient rationing. Under efficient rationing, natural gas is allocated to the households with the highest reservation price first, until all available gas has been allocated. We repeat this procedure for each year, assuming that households that received natural gas in the past will be able to continue to receive natural gas, so that the allocation problem is limited to reallocating gas among potential new customers.

In step 4, we calculate θ_{st}, the fraction of households that had access to natural gas among all households in state s and year t that would have wanted to choose natural gas heating,

$$\theta_{st} = \frac{\sum_{i \in s,t} \hat{x}_{ig} \cdot 1(\text{census}_{it})}{\sum_{i \in s,t} \hat{x}_{ig} \cdot 1(p_i^* > p_{st})} \quad (7)$$

where $1(\text{census}_{it})$ is an indicator variable equal to 1 if in the Census data household i receives natural gas in year t and the indicator variable $1(p_i^* > p_{st})$ is equal to one for households with a reservation price that exceeds the actual price for natural gas in state s and year t. Thus, $1 - \theta_{st}$ is a percent measure of the shortage of natural gas for a given state and year.14 The numerator in

13This procedure introduces simulation error because for each household the calculated reservation price represents one possible realization. However, because the number of households in our sample is very large, the procedure introduces little variation in national and state measures of the allocative cost. Moreover, the bootstrap standard errors reported in the paper take this simulation error into account.

14It is important to clarify that θ_{st} is calculated as a function of new demand rather than total demand. New demand refers to demand for natural gas derived from households that adopt natural gas during a particular year, either because they are purchasing a new home or because they are replacing the heating technology in an existing
equation (7) represents the actual consumption of natural gas in state s among households choosing a heating system in year t, as observed in the Census data. The denominator is simulated demand, i.e., the level of demand predicted by the model had all households in the market for heating systems in year t had access to natural gas at the observed market price.

In step 5, we compute the total consumer surplus under actual rationing. For this calculation we use the actual allocation of natural gas across states. We assume that during shortages the within-state allocation of natural gas was random among households with a reservation price higher than the observed price. Thus, we randomly assign natural gas to the fraction θ_{st} of households in a particular state and year with a reservation price higher than the observed price. As in step 3, we postulate that households that received natural gas in the past are able to continue to receive natural gas, so that this allocation is only among households making a heating system choice in a particular year. Total consumer surplus under the actual allocation is then calculated by summing over all households

$$CS_{ar}^t = \sum_{i=1}^{n} CS_i * 1(ar_{it})$$

(8)

where $1(ar_{it})$ is an indicator variable equal to 1 if household i receives natural gas in year t under actual rationing.

In step 6, we compute the allocative cost in year t as

$$AC_t = CS_{er}^t - CS_{ar}^t.$$

(9)

It is important to stress that the estimation of the allocative cost relies on the parametric econometric model of Section 4. Our econometric analysis builds on the framework developed in Dubin and McFadden (1984). The possibility that this parametric model may be misspecified has to be taken seriously. For example, the assumption of rational optimizing behavior embodied in the model may not reflect actual household behavior. In related work, Hausman (1979) discusses the idea that households may not be as forward-looking as postulated in typical parametric models of durable goods purchases. In addition, our empirical results hinge on the premise that, controlling for covariates, households’ unconstrained choices in the 1990s can be used to predict the choices that households would have made during earlier decades in the absence of regulation. To the extent that these assumptions are violated, the estimates of allocative cost will be biased. In recognition of this concern we assess the out-of-sample fit of the model in section 6.3 and show that the parametric

Total demand for natural gas is calculated by summing new demand over time.
The household model appears to provide a good approximation of the aggregate data. Apart from hinging on the model structure, our estimate of the allocative cost also hinges on the assumption that the within-state allocation of natural gas was random among households with a reservation price above the observed price. This is a reasonable approximation a priori given that natural gas retailers had no incentive to target available supplies to households with high willingness to pay. Moreover, there was limited scope for queuing in the retail natural gas market because households had to select a heating system when they moved in or when their heating system failed. We have also examined the within-state allocation empirically and found that it was essentially random among households that, according to the model, would have preferred natural gas. Nevertheless, this assumption is only an approximation, and to the extent that there are departures from the random allocation, one would expect our estimates of allocative cost to be biased.

Table 3 reports estimates of the mean annual allocative cost. During the period 1950-2000, the mean annual allocative cost in the U.S. was $3.6 billion with a peak of $5.0 billion in 1980. This represents, on average, 14% of total residential expenditure on natural gas. The table also reports bootstrap standard errors. Bootstrap replicates are constructed by reestimating all model parameters for each bootstrap sample and simulating the implied allocative cost. As one would expect given the large sample size, the standard errors are generally small. Our estimates of the allocative costs are about half as large as previous estimates in the literature for the conventional deadweight loss. MacAvoy (2000), for example, reports a mean annual deadweight loss of $10.5 billion between 1968 and 1977. We find that during this same period, the mean annual allocative cost in the residential market was $4.8 billion (which is somewhat higher than the mean estimate for the full period). Because this allocative cost is in addition to the conventional deadweight loss, our estimates show that total welfare losses from natural gas price regulation were considerably larger than previously believed.\footnote{These large allocative effects are consistent with theoretical evidence about the relative size of allocative cost and conventional deadweight loss. Glaeser and Luttmer (2003) show that allocative cost exceeds conventional deadweight loss when the demand curve is linear and price ceilings reduce quantity supplied by less than 50%.

The allocative cost can be decomposed into a within-state component and an across-state component. The within-state component is the gain in consumer surplus from reallocating gas within states to households with the highest reservation prices, holding constant the allocation across states. The across-state component is the gain in consumer surplus from reallocating natural gas across states, assuming efficient rationing within states. All else equal, total consumer surplus
increases when natural gas is reallocated toward states where the marginal household has a high reservation price. We find that, during the period 1950-2000, the mean annual within-state allocative cost was $2.93 billion and the mean annual across-state allocative cost was $0.63 billion. This decomposition reveals that the bulk of the allocative cost comes from the misallocation of natural gas within states.

Most of these costs were borne by households in the Northeast, Midwest and South, with households in the West bearing a smaller amount. Total allocative cost in the Midwest and South decreased substantially during the 1980s and 1990s, though in neither case did costs disappear by 2000. In the Northeast costs were more persistent, with large costs remaining in 2000. The adjustment was particularly slow in the Northeast because there was less new housing construction compared to the South or West.

Table 3 reports the results by state for the ten most affected states. It is interesting to note that price regulation was supported in Congress even by states where households faced large allocative costs. For example, in the 1973 Buckley Amendment (S2776) most Senators from states in the Northeast and Midwest voted to continue regulating prices. We have documented this pattern, confirming a statistically significant positive correlation between allocative costs and congressional support for regulation. These findings are consistent with the view that during the period of regulation politicians focused on the benefits of price regulation for existing customers and discounted the costs to customers without access to natural gas. Although it is possible that the transfers received from gas-producing states may have outweighed the combined deadweight and allocative costs in some states, we know that this was not the case at the national level.

6.3 Out-of-Sample Fit of the Model

Our empirical results in sections 6.1 and 6.2 hinge on the parametric specification of the model and on the premise that, conditional on observables, households’ unconstrained choices in the 1990s can be used to predict the choices that households would have made during earlier decades in the absence of regulation. There are several approaches to verifying the validity of this empirical strategy. In this subsection we show that our estimation procedure yields only minimal estimates of allocative cost when applied to settings where the market operates freely. The fact that the model performs reasonably well in these out-of-sample contexts adds credibility to the results presented in the previous subsections.

One approach is to evaluate the out-of-sample fit of the model for Texas, Louisiana, New Mexico
and Oklahoma, the four states accounting for the bulk of U.S. natural gas production during the period of regulation. A key feature of the price regulation implemented during this period is that it applied only to *interstate* sales of natural gas. Because federal regulators did not have jurisdiction over intrastate sales, prices for gas sold within gas-producing states were unregulated. Thus, there is no reason to expect shortages in Louisiana, New Mexico, Oklahoma or Texas. Simulated demand for these states should closely follow actual consumption. We find that our estimated model passes this test of out-of-sample fit. The model estimates imply no shortages in gas-producing states. Moreover, allocative cost within gas-producing states is effectively zero, averaging only $5.4 million (or $0.83 per capita) annually, compared with $152.4 million (or $25.59 per capita) for states in the Northeast.

An alternative approach to evaluating the out-of-sample fit of the model involves estimating the allocative cost for households that installed heating systems after deregulation of natural gas prices was completed in 1989. Since these households did not face price ceilings, their allocative cost should be negligible. We test this proposition by splitting the 2000 Census data into two random samples. One of the subsamples is used to estimate household preferences conditional on covariates; the model is then used to predict allocative cost for the households in the other subsample. We find that the mean annual allocative cost among households who made heating system choices during the period of regulation was $80.81 per household. In contrast, the mean annual allocative cost among households living in homes purchased in 2000 was $11.02 per household. The latter amount is small compared to the allocative cost estimated for the earlier period but is not zero. If we interpret that estimate as a measure of the potential model misspecification, an alternative estimate of the mean annual allocative cost can be constructed by subtracting this baseline from the estimate of $3.6 billion, resulting in a mean annual allocative cost of $3.1 billion, which is smaller than the original estimate of $3.6 billion but still of the same order of magnitude.

7 Conclusion

Whereas the importance of allocative costs is well recognized as a theoretical matter, its quantitative importance in real-life markets has remained uncertain, owing to the difficulties of empirically quantifying such costs. Our study is the first to demonstrate how allocative costs in a market subject to price ceilings may be estimated. We focused on the U.S. residential market for natural gas.

16Natural gas is more expensive to transport than oil and thus most natural gas consumed in the U.S. is produced in North America. Net imports of natural gas increased from less than 1% in 1950 to 15.2% in 2000, with 94% of the natural gas imports in 2000 coming from Canada (see EIA 2006c, table 6.3).
Our analysis showed that the allocative cost in this market averaged $3.6 billion annually during the period of 1950-2000. While our estimates of allocative cost are large, total allocative cost for all consumers is likely to be even larger than the magnitudes reported here, given that our analysis has been restricted to the residential market.

Our analysis illustrates the importance of careful ex ante economic analysis. Price ceilings for natural gas were supposed to help consumers, particularly consumers in northern markets, who in the 1950s were concerned about rising natural gas prices. We found that these very consumers ended up bearing a disproportionately large share of the allocative cost. While consumers with access to natural gas indeed benefited from lower prices, not all consumers had access to the market, and those who had access were not necessarily the consumers with the highest willingness to pay.

From a national perspective, the costs to consumers of regulating the price of natural gas outweighed the benefits to consumers. MacAvoy (2000) estimates that at the national level between 1968 and 1977 natural gas price ceilings transferred an average of $6.9 billion annually from producers to consumers while causing consumers a deadweight loss of $9.3 billion. Thus, even abstracting from allocative cost, price ceilings made consumers worse off by $2.4 billion. Adding the allocative cost nearly triples the estimated net welfare loss to U.S. consumers.

Our analysis is not only relevant for understanding the consequences of regulation in the U.S. natural gas market, but it has implications for other markets as well. Allocative costs due to price ceilings arise more generally whenever the good in question cannot be readily traded in secondary markets, as would be the case, for example, in insurance, health care, or telecommunications markets. The broader conclusion of our paper is that policymakers in conducting an ex ante economic analysis of regulatory reform ought to take careful account of the allocative cost of price regulation in addition to the conventional deadweight loss. In particular, our analysis showed that the effects of price ceilings may be very uneven across households and states, that it is difficult to determine in advance how the cost will be distributed geographically, and that the adverse effects of price ceilings tend to last much longer than the regulatory policies themselves.
References

Figure 1: Conventional Welfare Analysis of the Effect of Price Ceilings

![Figure 1: Conventional Welfare Analysis of the Effect of Price Ceilings](image)

Figure 2: Allocative Cost Under Random Assignment

![Figure 2: Allocative Cost Under Random Assignment](image)
Figure 3: Residential Energy Prices in the U.S., By Region

- **Natural Gas**

- **Heating Oil**

- **Electricity**

Figure 4: Residential Demand for Natural Gas in U.S.

- Simulated Demand
- Actual Consumption (census microdata)
- Actual Consumption (reported by utilities)
Figure 5: U.S. Residential Demand for Natural Gas by Region, 1950-2000
Table 1
Estimates of the Heating-System Choice Model

<table>
<thead>
<tr>
<th></th>
<th>Gas and Oil</th>
<th>Electric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Prices and Interactions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Price (per BTU)</td>
<td>-0.383 (0.003)</td>
<td>-0.119 (0.0006)</td>
</tr>
<tr>
<td>Price and HDD (1000s)</td>
<td>-0.057 (0.002)</td>
<td>0.003 (0.0004)</td>
</tr>
<tr>
<td>Price and Number of Rooms</td>
<td>-0.020 (0.001)</td>
<td>0.004 (0.0003)</td>
</tr>
<tr>
<td>Price and Number of Household Members</td>
<td>-0.020 (0.002)</td>
<td>-0.006 (0.0004)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Gas</th>
<th>Electric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heating Degree Days (HDD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDD (1000s)</td>
<td>-0.99 (0.03)</td>
<td>-1.93 (0.04)</td>
</tr>
<tr>
<td>HDD Squared (10,000,000s)</td>
<td>0.37 (0.03)</td>
<td>0.50 (0.03)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Gas</th>
<th>Electric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographic Characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two Household Members</td>
<td>-0.15 (0.02)</td>
<td>-0.03 (0.03)</td>
</tr>
<tr>
<td>Three Household Members</td>
<td>-0.32 (0.02)</td>
<td>-0.04 (0.03)</td>
</tr>
<tr>
<td>Four Household Members</td>
<td>-0.37 (0.02)</td>
<td>-0.08 (0.04)</td>
</tr>
<tr>
<td>Five Household Members</td>
<td>-0.42 (0.03)</td>
<td>-0.06 (0.05)</td>
</tr>
<tr>
<td>Six or More Members</td>
<td>-0.39 (0.04)</td>
<td>0.06 (0.07)</td>
</tr>
<tr>
<td>Total Family Income (10,000s)</td>
<td>0.02 (0.00)</td>
<td>-0.02 (0.00)</td>
</tr>
<tr>
<td>Homeowner Dummy</td>
<td>0.15 (0.03)</td>
<td>-0.13 (0.03)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Gas</th>
<th>Electric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing Characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Rooms</td>
<td>0.14 (0.01)</td>
<td>-0.31 (0.01)</td>
</tr>
<tr>
<td>Building Has 2 Units</td>
<td>0.85 (0.06)</td>
<td>0.71 (0.06)</td>
</tr>
<tr>
<td>Building Has 3-4 Units</td>
<td>1.33 (0.06)</td>
<td>1.59 (0.06)</td>
</tr>
<tr>
<td>Building Has 5-9 Units</td>
<td>1.93 (0.07)</td>
<td>2.39 (0.07)</td>
</tr>
<tr>
<td>Building Has 10-19 Units</td>
<td>2.08 (0.08)</td>
<td>2.66 (0.08)</td>
</tr>
<tr>
<td>Building Has 20-49 Units</td>
<td>1.30 (0.06)</td>
<td>1.95 (0.06)</td>
</tr>
<tr>
<td>Building Has 50+ Units</td>
<td>1.05 (0.06)</td>
<td>1.92 (0.06)</td>
</tr>
<tr>
<td>Constant</td>
<td>5.73 (0.09)</td>
<td>12.70 (0.13)</td>
</tr>
</tbody>
</table>

Note: Maximum likelihood estimates based on 621,478 households.
Table 2
Estimates of the Heating Demand Function

<table>
<thead>
<tr>
<th></th>
<th>1980</th>
<th>1990</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price of Natural Gas</td>
<td>-7.70</td>
<td>-3.54</td>
<td>-1.29</td>
</tr>
<tr>
<td>Heating Degree Days (HDD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDD (1000s)</td>
<td>46.5</td>
<td>29.1</td>
<td>26.9</td>
</tr>
<tr>
<td>HDD Squared (10,000,000s)</td>
<td>-31.9</td>
<td>-18.2</td>
<td>-21.3</td>
</tr>
<tr>
<td>Demographic Characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two Household Members</td>
<td>8.1</td>
<td>4.9</td>
<td>3.6</td>
</tr>
<tr>
<td>Three Household Members</td>
<td>19.8</td>
<td>12.7</td>
<td>9.5</td>
</tr>
<tr>
<td>Four Household Members</td>
<td>23.9</td>
<td>15.4</td>
<td>10.9</td>
</tr>
<tr>
<td>Five Household Members</td>
<td>32.9</td>
<td>22.4</td>
<td>16.3</td>
</tr>
<tr>
<td>Six or More Members</td>
<td>50.2</td>
<td>33.9</td>
<td>23.0</td>
</tr>
<tr>
<td>Total Family Income(10,000s)</td>
<td>0.6</td>
<td>1.5</td>
<td>0.9</td>
</tr>
<tr>
<td>Homeowner</td>
<td>7.2</td>
<td>2.2</td>
<td>2.9</td>
</tr>
<tr>
<td>Housing Characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Rooms</td>
<td>11.1</td>
<td>8.6</td>
<td>5.2</td>
</tr>
<tr>
<td>Home Built in 1940's</td>
<td>-10.2</td>
<td>-8.7</td>
<td>-6.2</td>
</tr>
<tr>
<td>Home Built in 1950's</td>
<td>-17.9</td>
<td>-13.5</td>
<td>-10.5</td>
</tr>
<tr>
<td>Home Built in 1960's</td>
<td>-21.6</td>
<td>-15.9</td>
<td>-12.5</td>
</tr>
<tr>
<td>Home Built in 1970's</td>
<td>-41.4</td>
<td>-21.2</td>
<td>-15.9</td>
</tr>
<tr>
<td>Home Built in 1980's</td>
<td>-26.6</td>
<td>-19.2</td>
<td>(0.20)</td>
</tr>
<tr>
<td>Home Built in 1990's</td>
<td>-29.0</td>
<td>-19.2</td>
<td>(0.20)</td>
</tr>
<tr>
<td>Building Has 2 Units</td>
<td>14.7</td>
<td>6.3</td>
<td>7.6</td>
</tr>
<tr>
<td>Building Has 3-4 Units</td>
<td>-10.5</td>
<td>-10.5</td>
<td>-3.0</td>
</tr>
<tr>
<td>Building Has 5-9 Units</td>
<td>-27.7</td>
<td>-27.2</td>
<td>-14.5</td>
</tr>
<tr>
<td>Building Has 10-19 Units</td>
<td>-32.6</td>
<td>-32.5</td>
<td>-18.2</td>
</tr>
<tr>
<td>Building Has 20-49 Units</td>
<td>-41.6</td>
<td>-42.4</td>
<td>-28.1</td>
</tr>
<tr>
<td>Building Has 50+ Units</td>
<td>-30.5</td>
<td>-42.0</td>
<td>-21.6</td>
</tr>
<tr>
<td>Selection Terms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electricity Selection Term</td>
<td>-12.0</td>
<td>-0.47</td>
<td>40.8</td>
</tr>
<tr>
<td>Heating Oil Selection Term</td>
<td>13.7</td>
<td>-1.93</td>
<td>-43.8</td>
</tr>
<tr>
<td>Constant</td>
<td>-7.7</td>
<td>2.49</td>
<td>23.2</td>
</tr>
</tbody>
</table>

\[n = 1,719,743 \quad R^2 = 0.25 \]
\[n = 1,882,971 \quad R^2 = 0.24 \]
\[n = 2,177,998 \quad R^2 = 0.17 \]

Note: This table reports parameter estimates from three separate regressions, one for each decade. The dependent variable is annual natural gas consumption in millions of BTU. We instrument for the price of natural gas using regional indicator variables for each of the nine Census regions. These instruments generate large first-stage F-statistics. Heteroskedasticity-robust standard errors are in parentheses.
Table 3
Estimates of Average Annual Allocative Cost
In Millions of Year 2000 Dollars

<table>
<thead>
<tr>
<th></th>
<th>Cost</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nationwide</td>
<td>$3560</td>
<td>(34.1)</td>
</tr>
<tr>
<td>Ten Most Affected States:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New York</td>
<td>$1081</td>
<td>(12.4)</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>$652</td>
<td>(10.3)</td>
</tr>
<tr>
<td>New Jersey</td>
<td>$284</td>
<td>(4.9)</td>
</tr>
<tr>
<td>North Carolina</td>
<td>$259</td>
<td>(5.1)</td>
</tr>
<tr>
<td>Virginia</td>
<td>$253</td>
<td>(4.9)</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>$196</td>
<td>(4.0)</td>
</tr>
<tr>
<td>Maryland</td>
<td>$162</td>
<td>(4.0)</td>
</tr>
<tr>
<td>Indiana</td>
<td>$145</td>
<td>(5.2)</td>
</tr>
<tr>
<td>Connecticut</td>
<td>$125</td>
<td>(3.0)</td>
</tr>
<tr>
<td>South Carolina</td>
<td>$81</td>
<td>(3.0)</td>
</tr>
</tbody>
</table>

Note: Bootstrap standard errors based on 100 replications are shown in parentheses.