Estimating the Effect of a Gasoline Tax on Carbon Emissions

Lucas W. Davis
University of Michigan and NBER

Lutz Kilian
University of Michigan and CEPR*

April 2009

Abstract

Several policymakers and economists have proposed the adoption of a carbon tax in the United States. It is widely recognized that such a tax in practice must take the form of a tax on the consumption of energy products such as gasoline. Although a large existing literature examines the sensitivity of gasoline consumption to changes in price, these estimates may not be appropriate for evaluating the effectiveness of such a tax. First, most of these studies fail to address the endogeneity of gasoline prices. Second, the responsiveness of gasoline consumption to a change in tax may differ from the responsiveness of consumption to an average change in price. We address these challenges using a variety of methods including traditional single-equation regression models, estimated by least squares or instrumental variables methods, and structural vector autoregressions. We compare the results from these approaches, highlighting the advantages and disadvantages of each. Our preferred approach exploits the historical variation in U.S. federal and state gasoline taxes. Our most credible estimates imply that a 10 cent per gallon increase in the gasoline tax would reduce carbon emissions from vehicles in the United States by about 1.5%.

Key Words: Carbon Tax, Gasoline Tax, Gasoline Consumption, Price Endogeneity, Global Warming

JEL: C53, Q41, Q48

*Department of Economics, University of Michigan, 611 Tappan Street, Ann Arbor, MI 48109, USA. Comments from Soren Anderson and Ryan Kellogg substantially improved the paper.
1 Introduction

Several policymakers and economists have proposed the adoption of a carbon tax in the United States.¹ In the United States 33.8% of carbon dioxide emissions are derived from the transportation sector, so the responsiveness of gasoline consumption to tax changes will play a significant role in determining the evolution of overall carbon dioxide emissions in response to policy interventions.² It is widely recognized that a carbon tax in practice must take the form of a tax on the consumption of energy products such as gasoline (e.g. Fullerton and West, 2002). A tax of $10.00 per ton of carbon dioxide, as suggested by Nordhaus (2007), for example, would increase gasoline taxes by approximately 9 cents.³ In this paper, we evaluate how effective a gasoline tax increase would be in reducing gasoline consumption.

Our most credible estimates imply that a 10 cent tax increase would decrease U.S. carbon emissions from the transportation sector by about 1.5% and decrease total U.S. carbon emissions by about 0.5%. To put this estimate in context, total U.S. carbon dioxide emissions increased by 1.1% annually between 1990 and 2007, so a 10 cent gasoline tax increase would approximately offset half a year of growth in total U.S. emissions.⁴ This estimate captures only the short-run response resulting from reduced discretionary driving and reduced driving speed, for example. The long-run response is likely to be considerably larger as drivers substitute toward more fuel-efficient vehicles.

Despite the policy relevance of the question to be addressed in this paper, empirical evidence on the effectiveness of gasoline taxes on carbon emissions is virtually nonexistent. A large related literature has examined the sensitivity of gasoline consumption to changes in prices. Reviews by Dahl and Sterner (1991) and Greene, Kahn and Gibson (1999) identify dozens of relevant econometric studies containing estimates of price elasticities. These estimates, however, are not appropriate for evaluating the effectiveness of gasoline taxes. First, most of these studies do not address the endogeneity of the price of gasoline. It is well known that increases in the demand

¹For example, in September 2007 Representative John Dingell, then chairman of the House Energy and Commerce Committee, proposed a $50 tax per ton of carbon ($13.64 per ton of carbon dioxide). See H. Josef Hebert “Plan Uses Taxes to Fight Climate Change,” Associated Press (October 2, 2007) for details.

³A carbon tax of $35 per ton from Nordhaus (2007) implies a tax of approximately $10 per ton of carbon dioxide because the atomic weight of carbon is 12 atomic mass units, while the weight of carbon dioxide is 44, so one ton of carbon equals 44/12 tons of carbon dioxide. To avoid confusion we use carbon dioxide throughout. The carbon dioxide content of gasoline is approximately 0.0088 metric tons per gallon, so a $10.00 tax per ton implies 8.8 cents per gallon.

for gasoline cause the price of gasoline to increase, resulting in a spurious correlation between the price and the regression error, and biasing estimates of the price elasticity toward zero. Second, the response of gasoline consumption to a change in tax is likely to differ from its response to an average change in price.

In this paper we address these challenges using a variety of methods including traditional single-equation regression models, estimated by least squares or instrumental variables methods, and structural vector autoregressions. We compare the results from these approaches, highlighting the advantages and disadvantages of each. Our preferred approach exploits the historical variation in U.S. federal and state gasoline taxes. Where possible, lessons learned from applying one model are used in specifying another. Although all models have their limitations, the overall exercise serves to document what can and what cannot be learned from the available data. Such a discussion seems warranted before adopting any policy proposal regarding gasoline taxes.

We begin by modeling gasoline consumption at the national level using monthly data from 1989 to 2008. The use of monthly data facilitates the identification of the causal effects of a gasoline tax increase. To allow a direct comparison with the previous literature, we first focus on the construction of price elasticities. Using a single-equation specification in log differences we find a price elasticity of -0.10, similar to results from a recent study by Hughes, Knittel, and Sperling (2008). Although we are sympathetic to the idea that the price elasticity is low, standard concerns about price endogeneity with respect to quantity suggest that this estimate may be biased toward zero. Next we model gasoline consumption at the state level using panel data methods. The advantage of the panel specification is that we can include time fixed effects to control for unobserved time-varying consumption factors that may have obscured the true elasticity in the national data. With this specification we find a price elasticity of -0.19 – still small, but significantly larger than the estimate based on the national data.

Even this panel approach, however, does not fully address the issue of price endogeneity. An alternative approach to this endogeneity problem has been the use of instruments for gasoline prices. While this approach is appealing, the challenge has been to find instruments that are both truly exogenous and strong in the econometric sense (see Stock, Wright and Yogo, 2002). In this

\footnote{A complete series of monthly data by state for gasoline consumption is not available prior to 1989.}

\footnote{For example, Ramsey, Rasche and Allen (1975) and Dahl (1979) use the relative prices of refinery products such as kerosene and residual fuel oil as instruments. As noted in Hughes, Knittel and Sperling (2008) the problem with this approach is that the relative prices of other refinery outputs are likely to be correlated with gasoline demand shocks. Instead, Hughes, Knittel and Sperling instrument using changes in global crude oil production such as a strike by oil workers in Venezuela in 2002. Although these instruments are arguably exogenous, Kilian (2008a) provides evidence that crude oil supply shocks are driven by exogenous political events are weak instruments, rendering estimation and
paper we use changes in gasoline taxes by state and month as an instrument. Even though tax legislation may respond to current prices, the implementation of tax changes typically occurs with a lag making it reasonable to believe that changes in tax rates are uncorrelated with unobserved changes in demand. In constructing our instrument we are careful to exclude \textit{ad valorem} gasoline taxes (used in many states) because they are functionally related to price, violating the endogeneity assumption.

For the national data our instrumental variable (IV) estimates rely on the historical variation in gasoline taxes over time. We find a price elasticity that is much larger, but not statistically distinguishable from zero, even after accounting for weak instruments. An alternative IV approach is to exploit additional variation in gasoline taxes across states. The resulting panel IV estimates are substantially larger than the OLS panel estimates. In our preferred estimates that restrict attention to dates of nominal state tax increases, we find a statistically significant price elasticity of -0.46. We examine a variety of alternative IV specifications including specifications that control for factors potentially correlated with gasoline tax changes and we consider alternative estimators. The results are remarkably similar across specifications. In addition, we contrast the IV estimates to alternative elasticity estimates obtained from recursively identified vector autoregressions in which the percent change in gasoline prices (or alternatively the percent change in gasoline taxes) is ordered first and the percent change in gasoline consumption is ordered second. With this approach the elasticity is identified under the assumption that changes in gasoline prices (or taxes) are predetermined with respect to all factors driving U.S. gasoline consumption.\footnote{The assumption of predetermined prices rules out instantaneous feedback from quantities to prices. In other words, gasoline prices respond to changes in demand only with a delay. This identifying assumption permits the consistent estimation of the expected response of consumption to innovation in prices. In conjunction with the assumption that there are no other exogenous events that are correlated with the exogenous gasoline price innovation, these responses can be interpreted as the causal effect of the price innovation. Similar impulse response models have been estimated by a variety of authors in related contexts (see, e.g., Edelstein and Kilian 2007, Hamilton 2009).}

Overall, our results indicate that gasoline consumption is more sensitive to gasoline taxes than would be implied by recent estimates of the gasoline price elasticity. A likely reason is that price changes induced by tax changes are more persistent than other price changes and thus induce larger behavioral changes. In addition, gasoline tax increases are often accompanied by extensive media coverage. Even under the largest plausible estimates, however, gasoline tax increases of the magnitude that have been discussed would have only a moderate short-run impact on total U.S. gasoline consumption and carbon emissions based on our estimates. A natural conjecture is that the long-run elasticities will be larger, but standard econometric models based on historical data inference by standard methods invalid.
do not allow us to predict such long-run effects.

The format of the paper is as follows. Section 2 describes the data used for the analysis and describes the evolution of gasoline taxes in the United States over the period 1989-2008. Section 3 presents least squares and IV estimates from log differenced single-equation specifications. Section 4 presents results from structural VAR models. Section 5 assesses the effects of the proposed gasoline tax on carbon emissions, and section 6 summarizes the policy implications.

2 Data

Figure 1 describes national gasoline prices, consumption, and taxes over the period 1989-2008 from the U.S. Department of Energy and U.S. Department of Transportation. The data are monthly. Our sample period covers January 1989 through March 2008. We focus on this period because a continuous time series of gasoline consumption by state is not available prior to 1989. Moreover, recent evidence from Hughes, Knittel, and Sperling (2008) indicates that gasoline price elasticities have declined since the mid 1980s, making the 1990s and 2000s the most relevant period for understanding current demand behavior. Both the price and quantity time series exhibit a clear seasonal pattern. Real prices fluctuate between $1.50 and $2.00 between 1989 and 2004 before increasing to $3.00 and above in 2005.8 Gasoline consumption increases steadily during the 1990s and then appears to level off after 2005.9 Tax per gallon increases with federal tax increases at the end of 1990 and in 1993, and then steadily erodes in real terms.

Prices from the U.S. Department of Energy exclude federal, state, and local taxes. Accordingly, for this study we constructed a comprehensive panel of state-level gasoline tax rates, and calculated after-tax prices.10 In constructing taxes we were careful to distinguish between “per unit” and \textit{ad valorem} taxes. The most common method for taxing gasoline is to establish a ”per unit” tax per

\footnotesize
8 Gasoline prices are from U.S. Department of Energy, Energy Information Administration, “Petroleum Marketing Monthly Report – Gasoline Prices by Formulation, Grade, Sales Type”. Prices are collected by the E.I.A. using the EIA-782B, a monthly survey of approximately 2,200 gasoline resellers and retailers and reflect average prices for sales to end users of all grades of motor gasoline. Here and throughout where appropriate we calculate national average prices weighting by volume.

9 Sales volumes come from U.S. Department of Energy, Energy Information Administration, “Petroleum Marketing Monthly Report - Prime Supplier Sales Volumes by Product and Area”. Sales volumes are collected by the E.I.A. using the EIA-782C, a monthly survey of all prime suppliers, a small group of currently 185 firms nationwide that produce, import, or transport petroleum products across state boundaries and local marketing areas. The EIA-782C measures sales volumes within each state. Accordingly, respondents are asked to report gasoline sales to local distributors, local retailers, and local end users, excluding sales to other prime suppliers and to other companies that transport gasoline across state lines.

10 U.S. Department of Transportation, “Highway Statistics”, 1990-2008 publishes state tax rates for gasoline by year as well as the exact dates of all changes.
gallon. This is the method used for the federal gasoline tax and most states. However, a handful of states use *ad valorem* taxes in addition to “per unit” taxes. Gasoline sales in California, for example, are subject to the state’s 6% sales tax. As gasoline prices have increased, these states have seen large increases in tax receipts. We include *ad valorem* taxes in our measure of after-tax prices. However, it is important to exclude this variation in taxes when we use tax as an instrumental variable because these changes fail the exogeneity test; indeed the gasoline tax in these states is functionally related to price. Finally, as an overall test of the validity of our measure of the after-tax price of gasoline, we compare our measure (weighted by volume) to the city average price of gasoline from the Bureau of Labor Statistics in Figure 2. It is reassuring that the two series are very similar.

The advantage of this data source is that it provides data for all states and years. An alternative to using state-level aggregate prices and consumption would be to use available household surveys such as the Consumer Expenditure Survey (CEX) or the Residential Transportation and Energy Consumption Surveys (RTECS). For example, Schmalensee and Stoker (1999) use the RTECS to describe non-parametrically the relationship between gasoline consumption and household income. Whereas the RTECS is valuable for cross-sectional studies such as Schmalensee and Stoker (1999), it is not appropriate in our context because the survey is carried out only once every 3 years. Furthermore, whereas the RTECS measure of gasoline consumption is based on odometer readings, the CEX measure is calculated using self-reported expenditure on gasoline and thus is likely subject to more reporting error than the Department of Energy data.

Figures 3 and 4 describe the variation in tax rates across states and over time. States vary both in the size and frequency of tax rate changes. In real terms there is more variation during the first half of the period because the overall level of taxes is higher. Finally, Figure 5 shows the timing of tax increases and decreases that exceed 2 cents per gallon. The number of tax increases far exceeds the number of tax decreases. Since 2005 there have been no changes to the gasoline tax in any state.

3 Single-Equation Models of Gasoline Consumption

3.1 Least Squares Estimates

A key feature of our analysis is the use of monthly rather than yearly observations. Most importantly, this allows us, in later specifications, to describe the entire temporal path of the
response of gasoline consumption to changes in gasoline prices. The monthly measures also reveal variation in price and consumption that may be obscured in annual data.

We begin by modeling gasoline consumption at the national level. As a starting point, consider the following commonly used specification (see, e.g., Hughes, Knittel, and Sperling 2008). National gasoline consumption in month t in logs y_t is postulated to depend linearly on the volume-weighted average inflation-adjusted after-tax price of gasoline (in logs) p_t, month-of-the-year dummies λ_t, and unobserved idiosyncratic time-varying factors ϵ_t,

$$
y_t = \alpha_0 + \alpha_1 p_t + \lambda_t + \epsilon_t.
$$

Whereas most previous studies have estimated gasoline consumption equations in log levels, we estimate the national aggregate model using log differences, since both y_t and p_t are highly persistent and trending:

$$
\Delta y_t = \alpha_0 + \alpha_1 \Delta p_t + \lambda_t + \epsilon_t.
$$

Thus the response of gasoline consumption is identified using price changes rather than price levels.

In addition to this national specification, we estimate a state panel using our balanced panel of fifty states and the District of Columbia,

$$
\Delta y_{it} = \beta_0 + \beta_1 \Delta p_{it} + \rho_t + \omega_{it}.
$$

where gasoline consumption in logs y_{it} for state i and month t depends linearly on the after-tax price of gasoline in logs p_{it}, time fixed effects ρ_t, and unobserved idiosyncratic state-specific time-varying factors ω_{it}.

The coefficients of interest are α_1 in the national specification and β_1 in the state panel. With the log-log specification these coefficients describe the 1-month price elasticity. From a behavioral standpoint there is no particular interest in the one-month elasticity. Rather we would like to know how households respond over a longer period of time such as one year. It can be shown that including additional lags in models (1) and (2) does little to change the estimates of α_1 and β_1. This suggests that the estimates of these parameters may effectively be interpreted as one-year elasticities as well.

It is important to emphasize that the log differences specification controls implicitly for time invariant factors, rendering state fixed effects unnecessary. One disadvantage of this specification is that it makes it difficult to estimate the income elasticity, because income changes very slowly over time. Since the focus of our paper is the price elasticity, this is of little practical concern.
Table 1 presents parameter estimates and standard errors from the national aggregate and state panel specifications. In the national specification, the price elasticity is -0.10 and statistically significant at the 1% level. As a point of comparison, Hughes, Knittel, and Sperling (2008) using a level specification and similar data for 2001-2006 find a price elasticity of -0.04 which is not much different from our estimate after accounting for sampling uncertainty. In contrast, in the state panel specification, the price elasticity is almost twice as large. The estimate of -0.19 is statistically significant at the 1% level. In order to understand the difference between these two estimates it is helpful to recall the key identifying assumptions in each model. The estimate in the national specification is consistent if price changes are uncorrelated with ϵ_t:

$$E(\Delta p_t \epsilon_t) = 0 \quad \forall t.$$

This orthogonality condition is unlikely to hold because of standard price endogeneity considerations. Increases in gasoline consumption cause prices to increase, leading to a spurious correlation between Δp_t and ϵ_t. This correlation will, in general, cause estimates of the price elasticity to be biased toward zero as all of the predicted change in consumption is attributed to the change in price.

While this concern is of first-order importance in model (1), the state panel is less likely to suffer from standard price endogeneity concerns because of the time fixed effects that control for unobserved changes in demand over time. This helps explain the increase in the price elasticity estimate in Table 1. Even the panel approach, however, is an imperfect solution because state-level prices may still reflect state-specific differential changes in demand. In the following subsection we address the problem of price endogeneity more directly using an instrumental variable estimation strategy. Specifically, we are interested in identifying movements in gasoline prices driven by tax changes.

3.2 Instrumental Variables Estimates

3.2.1 Baseline Estimates

In both the national specification and in the state panel we instrument for price using inflation-adjusted changes in the log of the tax per gallon, Δtax_t and Δtax_{it}, $i = 1...51$. As described earlier, we are careful to exclude \textit{ad valorem} taxes in our measure of tax because this component of taxes is functionally related to price. For example, gasoline sales in New York state in January 1995 were
subject to an 18.4 cent federal tax and a 22.6 cent state tax. Our measure of the tax is therefore 41 cents, which we express in 2008 dollars. Gasoline sales in New York are also subject to the state’s sales tax, but we exclude this \textit{ad valorem} component in calculating our measure of the unit gasoline tax.

Table 2 reports results the IV estimates of models (1) and (2). In the national specification, the IV estimate of the effect of price on gasoline consumption is -2.38. This point estimate is dramatically larger than the OLS estimate of -0.10 reported in Table 1, though not statistically significant. The credibility of this estimate hinges on the instrument being valid and strong. Since the instrument F-statistic is near zero, we cannot reject the null hypothesis of a zero coefficient on Δtax_t in the first-stage equation, indicating a possible weak-instrument problem. It is perhaps not surprising that gasoline taxes are not a particularly strong instrument at the national level. Our measure of taxes in the national specification is an average of tax rates across states, weighted by the volume of gasoline consumption in each state, and thus includes both federal and state taxes. Although federal taxes clearly influence the national price, tax changes in individual states are typically too small to provide meaningful variation at the national level. The lack of correlation between tax changes and price changes at the national level causes the standard error on Δp_t to be large in magnitude and raises concerns about asymptotic bias in the estimate of α_1. Accordingly, we have also examined the confidence region for the coefficient on Δp_t based on the conditional likelihood ratio approach developed by Moreira (2003). The confidence set includes essentially all real numbers. We are left with the conclusion that IV estimates provide little information about the parameter of interest in the national data.

In addition to these weak-instrument concerns, there are concerns about the exogeneity of the instrument. For the IV estimator to be consistent, changes in taxes must be uncorrelated with the error term. This assumption cannot be tested, and we must make the case that $\text{cov}(\Delta tax_t, \epsilon_t) = 0$ based on economic arguments. At both the federal and the state level, gasoline tax legislation is made by democratically-elected legislators, and it stands to reason that policy decisions also reflect current economic conditions. If, for example, gasoline tax increases tend to be implemented during times when gasoline demand is decreasing, this would introduce negative correlation between Δtax_t and ϵ_t, biasing the IV estimate away from zero. These concerns would be particularly important if gasoline tax increases could be implemented quickly. In practice, however, even though tax legislation may respond to current conditions, the implementation of tax changes typically occurs with a considerable lag. This delay strengthens the case for the validity of tax changes as an
instrument.

Although there is little information in national IV estimates, a more promising IV strategy may be based on the additional variation in gasoline tax changes at the state level. In the state panel specification, the IV estimate is -1.14 and statistically significant at the 1% level. While smaller than the IV estimate from the national specification, this point estimate is still much larger than the panel OLS estimate of -0.19 reported in Table 1. The standard error of the elasticity estimate is large. After accounting for sampling variation one cannot rule out at the 95% confidence level the possibility that the true elasticity is only -0.58, for example.

Again it is important to evaluate the strength of the instrument. Unlike in the national specification, the instrument F-statistic in the state panel is large with a p-value near zero. Thus one normally would not suspect a weak-instrument problem. Nonetheless, we have also examined the confidence region for the coefficient on Δp_t based on the conditional likelihood ratio approach developed by Moreira (2003). The implied 95% confidence interval of $[-1.45, -0.86]$ is somewhat narrower than the panel estimate in Table 2, but in the same ballpark. It has to be noted, however, that Moreira’s approach does not allow for clustering at the state level in accounting for serial correlation, unlike the standard error reported in Table 2. Overall, the state panel does not appear to suffer from a weak-instrument problem. This highlights the usefulness of exploiting across-state variation in gasoline taxes in constructing the instrument.

The state panel IV estimate is considerably smaller than the national IV estimate, but still much larger than most previous estimates of the short-run price elasticity of gasoline demand reported in the literature. To understand better the mechanics underlying this result, in Table 3 we report additional least squares estimates for both the national aggregate and state panel specifications. First, changes in gasoline prices are regressed on changes in gasoline taxes. Second, changes in gasoline consumption are regressed on changes in gasoline taxes. Because the IV estimator is exactly identified, the IV estimates reported in Table 2 are a simple ratio of the estimates presented in Table 3. In the state panel the elasticity of gasoline prices with respect to gasoline taxes is 0.28. Evaluated at the average value of the after-tax gasoline price of $1.81 and the average value of the gasoline tax of $0.45 per gallon, this implies a near one-for-one relationship between taxes and prices, consistent with evidence from previous studies that have examined the incidence of gasoline taxes.\(^\text{12}\) In the state panel the elasticity of gasoline consumption with respect to gasoline taxes

\(^{12}\)Using evidence from gasoline sales tax moratorium in Illinois and Indiana, Doyle and Samphantharak (2008) find that 70% or more of state tax is borne by buyers. Studies that have used aggregate state-level data have also found near full shifting of state gasoline taxes. See, e.g. Chouinard and Perloff (2004) and Alm, Sennoga and Skidmore
Taken literally, this estimate implies that a doubling of the gasoline tax from $0.45 per gallon to $0.90 per gallon would reduce gasoline consumption by 32%. In an effort to assess the robustness of that result, below we explore a number of alternative specifications.

The identification in the IV model comes from changes in taxes over time. If consumers are responding to announcements of nominal tax changes rather than actual changes in real taxes, the IV estimate may be biased. This distinction seems plausible, as gradual real changes are difficult to detect for consumers. This reasoning suggests that we restrict attention to months in which discrete changes in nominal gasoline taxes occurred at the state level. Table 4 reports IV estimates of the price elasticity of gasoline consumption from six additional specifications. Although the first-stage F-statistic declines with the sample size, none of the six specifications appears to suffer from a weak-instrument problem.

In column (1), the sample is restricted to include states and months in which increases or decreases in nominal state gasoline taxes occurred. Note that out of 11,730 total state by month observations, only 268 were strict changes. In that specification $\hat{\beta}_1$ drops to -0.74. It may seem that larger tax changes would induce disproportionately larger responses, but further restricting the sample in columns (2) and (3) to include only nominal changes of at least 1 and 2 cents has little impact on the estimate. One might also expect that increases and decreases would have different impacts. Since the closest analogy to the gasoline tax increases recently contemplated by policymakers would be a nominal tax increase, column (4) restricts the sample to include only nominal increases. This reduces the sample size to 210 and causes the elasticity to fall to -0.46. That coefficient is statistically significant at the 5% level. We view this estimate as the most credible estimate of the likely effect of proposed gasoline tax increases. Finally, we investigate whether the elasticity increases disproportionately in the magnitude of the tax increase. In columns (5) and (6) the sample is restricted further to include only increases of at least one cent and at least two cents, respectively. As we restrict the sample to large increases, the point estimates of the price elasticity actually decline, while the standard errors increase. There is no evidence of nonlinear adjustment.

(2009). Our elasticity implies that (.28) * $\frac{1.81}{1.45}$ * 100 = 113% of the tax is shifted to prices with a standard error of 7%.

13 Between January 2004 and March 2008 average after-tax gasoline prices increased from $1.73 to $3.21 (see Figure 1). This is a 62% price increase. Abstracting from sampling uncertainty, a mechanical interpretation of the estimated price elasticities in Table 1 might suggest that this price increase would be associated with between a 6% and 12% drop in gasoline consumption. It would be misleading, however, to draw the conclusion that based on the IV estimate of the same elasticities in Table 2, this price increase should have been associated with a $(-1.14)(62\%) = 71\%$ predicted drop in gasoline consumption. The reason is that the IV estimate identifies only those movements in gasoline prices that are driven by tax increases whereas the observed increase in price was not associated with any increase in taxes.
3.2.2 Alternative Specifications

While the preferred parameter estimate in Table 4 is considerably smaller than the state panel IV parameter estimate reported in Table 2, the fact that the elasticity estimate is still large relative to the panel OLS estimate in Table 1 calls for additional robustness checks. Table 5 presents estimates from a number of alternative IV specifications based on the nominal tax increase specification in column (4) of Table 4. One possible concern is the presence of outliers. Column (2) in Table 5 shows that allowing for outliers does not alter the basic results. The median IV estimator $\hat{\beta}_1$ is almost identical to the baseline IV estimate.

Another possible concern is the possible endogeneity of changes in state gasoline taxes with respect to omitted variables. This concern did not arise in the national specification and may account for the difference between the panel IV estimates and the panel OLS estimate. It is instructive to review the typical rationales for state gasoline tax increases provided by policymakers. There are two main justifications that are used time and again. First, gasoline tax increases are often implemented in order to finance investments in states’ transportation infrastructure such as highways and bridges. Such tax increases are plausibly exogenous. Second, gasoline tax increases are often implemented in response to state budget deficits which are likely to be correlated with macroeconomic conditions at the state level such as a state’s unemployment rate.\(^{14}\) If state legislators are responding to unobserved changes in factors that are correlated with state-level demand for gasoline, this will violate the key identifying assumption for IV. In order to assess the validity of this concern, Table 5 presents results from three additional IV specifications. The specification in column (3) controls for changes in state-level unemployment rates.\(^{15}\) Another possible confounding factor is heterogeneity in population growth across states. The specification in column (4) controls for the percent change in the state population density.\(^{16}\) As a final check, the specification in column (5) allows for both changes in the unemployment rate and in the population density. In all cases the results are similar to the baseline IV estimate. The additional controls in columns (3),(4)

\(^{14}\)Specifically, high levels of employment and economic activity are associated with high levels of state revenue and low welfare expenditures. High levels of employment and economic activity also may be associated with high gasoline consumption. Thus, failing to control for employment may bias estimates of the price elasticity away from zero.

\(^{15}\)We also estimated a specification that includes both changes in state-level unemployment rates and lagged changes in state-level unemployment rates. The results were similar.

Table 5 demonstrates that omission of macroeconomic conditions at the state-level does not provide an explanation for the relatively high IV estimates. Yet another potential concern is that the timing of gasoline tax changes at the state level may depend on the overall level of gasoline prices. One reason is that at times state policymakers have chosen to cut gasoline taxes in an effort to assist consumers, when gasoline prices are unusually high. This was the case, for example, when Connecticut temporarily decreased their gasoline tax by 7 cents between July 2000 and January 2001 in response to anticipated higher than usual summer gasoline prices. Another reason is that policymakers may be reluctant to call for gasoline tax increases when prices are unusually high, but are likely to resume their efforts when gasoline prices have fallen. An obvious concern is that such behavior would induce a negative correlation between changes in gasoline taxes and changes in gasoline prices, causing a downward bias in the estimate of the effect of gasoline tax changes on gasoline price changes. It is unclear how pervasive this phenomenon is in the data, but the fact that the estimates in Table 3 imply a nearly proportionate relationship between tax changes and price changes suggests that the resulting bias must be negligible in practice.

It would be tempting to relate these estimates to well-known estimates of the price elasticity of gasoline consumption. Relative to that benchmark, these estimates may seem surprisingly large. This analogy is flawed, however, because IV methods are designed for the estimation of structural models. If we interpret regression model (2) as a structural model of the effect of gasoline tax changes on gasoline consumption, then \(\beta_1 \) captures changes in gasoline consumption caused by changes in gasoline prices that are induced by changes in gasoline taxes. In contrast, the same parameter in a reduced-form model to be estimated by OLS corresponds to the expected change in gasoline consumption given a change in gasoline prices whether induced by taxes or not. This distinction matters because gasoline price changes caused by tax changes are much more persistent than gasoline price changes caused by most other factors and may, for example, lead households to replace a fuel inefficient car when they would not have made that choice in response to a typical price change. In addition, gasoline tax changes are typically accompanied by extensive media coverage which may amplify the impact on gasoline consumption. For these reasons, it does not make sense to interpret our IV estimates as price elasticities and the comparison with conventional price elasticity estimates is misleading. In fact there is every reason to believe that the IV estimates

should be higher than conventional OLS estimates.

3.2.3 Policy Implications

When comparing the results from the OLS and IV approaches it is important to consider what the different estimates imply for the effect of a given change in gasoline taxes on gasoline consumption. The percent reduction in gasoline consumption resulting from a tax increase of \(\tau \) cents evaluated relative to a base after-tax price of \(p \) cents is

\[
\hat{\eta}_1 \left(\frac{\tau}{p} \right) 100,
\]

where \(\hat{\eta}_1 \) corresponds to the estimates \(\hat{\alpha}_{1,LS}, \hat{\beta}_{1,LS}, \) and \(\hat{\beta}_{1,IV} \). For expository purposes, we consider a 10 cent tax increase because it yields effects that are easily scalable and large enough to be of economic interest, yet within the range of changes for which there is some historical precedent. We evaluate the effect at the volume-weighted mean after-tax price of $3.21 in March 2008.

Table 6 reports the effect on gasoline consumption implied by our elasticity estimates. The OLS estimates from Table 1 imply that a 10 cent tax increase is associated with less than a 1% decrease in consumption. The IV estimate from column (4) of Table 4 implies much larger effects, with a 1.4% decrease in gasoline consumption. It is worth highlighting that during the second half of 2008, gasoline prices decreased dramatically, reaching $1.75 in December 2008. If instead the effects are evaluated at this lower base level, the effect of a 10 cent tax increase is approximately twice as large.

In calculating the effects in Table 6, we are assuming implicitly that the incidence of the tax is entirely on buyers. This is consistent with the state panel estimates in Table 3 that imply a near one-to-one relationship between tax increases and price increases. However, even if the supply of gasoline for individual states is perfectly elastic, one might be concerned that the supply curve for the entire United States is not. Indeed, although the national aggregate estimate in Table 3 does not rule out a one-to-one relationship between tax increases and price increases at conventional significance levels, the point estimate implies less than full shifting. To the extent that supply is less than fully elastic, part of the tax would be borne by the sellers. This would tend to lower the reduction in gasoline consumption associated with such a tax.
4 Vector Autoregressive Models

4.1 Price Specification

It is widely recognized that gasoline prices are endogenous with respect to macroeconomic aggregates that drive the consumption of gasoline (see, e.g., Kilian 2008a). An alternative to using instruments in identifying exogenous movements in gasoline prices is to focus on unpredictable changes (or innovations) in gasoline prices. To the extent that these innovations are predetermined with respect to the economic aggregates that drive gasoline consumption, the response of gasoline consumption to such an innovation can be estimated. This alternative approach is particularly appealing when working with monthly data, as we do in this paper, but less suitable for data measured at lower frequency.

Let Δp_t denote the percent change in inflation-adjusted after-tax prices of gasoline and Δy_t the percent change in real gasoline consumption. Consider the stylized structural model

$$
\begin{align*}
\Delta p_t &= \theta \Delta y_t + \varepsilon_{1t} \\
\Delta y_t &= \delta \Delta p_t + \varepsilon_{2t}
\end{align*}
\iff
\begin{bmatrix}
1 & -\theta \\
-\delta & 1
\end{bmatrix}
\begin{bmatrix}
\Delta p_t \\
\Delta y_t
\end{bmatrix} =
\begin{bmatrix}
\varepsilon_{1t} \\
\varepsilon_{2t}
\end{bmatrix}
\end{align*}
$$

where ε_{1t} and ε_{2t} are mutually uncorrelated structural errors. All deterministic terms and the dependence of both variables on lagged observations have been suppressed. Predeterminedness in this model means that $\theta = 0$ (see Cooley and LeRoy 1985). In other words, we rule out contemporaneous feedback from Δy_t to Δp_t. In conjunction with the assumption that there are no other exogenous innovations outside of the model that are correlated with the innovation in the real price of gasoline, the coefficient δ may be interpreted as the contemporaneous causal effect of the price innovation on real gasoline consumption.

The same logic applies in the more general VAR(p) model that allows for additional unrestricted delayed feedback between real gasoline consumption growth and real gasoline price changes up to some lag order p. Let $x_t \equiv \left(\Delta p_t \quad \Delta y_t \right)'$ and $\varepsilon_t \equiv \left(\varepsilon_{1t} \quad \varepsilon_{2t} \right)'$. Then the structural representation of the VAR(p) model is

$$
A_0 x_t = \sum_{i=1}^{p} A_i x_{t-i} + \varepsilon_t.
$$

In the benchmark model, we set the lag order p to 12. We also report alternative VAR results using estimated lag orders obtained by formal model selection using tools such as the Akaike Information
Criterion (AIC), as suggested by Ivanov and Kilian (2005). Predeterminedness in this VAR model implies an exclusion restriction on the upper right element of A_0. The reduced form representation of this model is

$$x_t = \sum_{i=1}^{p} B_i x_{t-i} + e_t,$$

where $B_i = A_0^{-1} A_i$, $i = 1, \ldots, p$, and $e_t = A_0^{-1} \varepsilon_t$. The reduced form may be estimated by the least squares method. Applying a lower triangular Cholesky decomposition to the estimate of the 2×2 variance-covariance matrix $\Sigma_{e_t} = A_0^{-1} A_0^{-1'}$ of the reduced form VAR errors allows us to estimate A_0^{-1} subject to the identifying restriction of predetermined changes in gasoline prices. Given an estimate of A_0^{-1}, it is straightforward to construct the dynamic responses of gasoline consumption to an exogenous change in the price of gasoline from this model.\(^{18}\)

How reasonable the exactly identifying assumption of predetermined changes in gasoline prices is, by construction, cannot be tested within the context of this VAR model. Rather the credibility of this assumption rests on an economic argument. Following Kilian (2009), we postulate that gas distributors charge a fixed markup on the wholesale price of gasoline. We postulate that the price of gasoline reflects without delay gasoline supply shocks arising at the refining stage and changes in the price of imported crude oil representing costs shocks for U.S. refiners. The model stipulates that the retail supply curve for gasoline is perfectly elastic in the short run. The presumption is that gas distributors have enough gasoline to supply the required quantities of gasoline at the current retail price in response to an unexpected increase in demand. Given that the consumption of gasoline typically evolves smoothly and predictably, we abstract from the possibility that gas distributors may run out of gas at the posted price. While unanticipated shifts in gasoline demand in the model do not move the price of gasoline instantaneously, they are allowed to affect the price of gasoline with a delay of one month. The rationale for this assumption is the difficulty of distinguishing a temporary blip in gasoline demand from a change in trend. Only if a change in demand is sustained and hence is expected to persist, will a gas distributor respond by raising the price of gasoline. Recognizing such persistent shifts in expected demand by construction requires

\(^{18}\)Essentially the same identification strategy has been used, for example, by Edelstein and Kilian (2007) and Hamilton (2009). Both papers focused on a broader measure of retail energy prices. Similar identifying assumptions are used routinely in the literature on estimating the dynamic responses to oil price shocks (see, e.g., Rotemberg and Woodford 1996; Blanchard and Gali 2007).
time, justifying the delayed price response. Under these assumptions, the model can be used to estimate the dynamic response of U.S. gasoline consumption to a 1% gasoline price increase, as discussed above.

It may seem that the VAR model should include in addition any number of macroeconomic aggregates since shifts in U.S. gasoline consumption are driven in part by U.S. macroeconomic events. The inclusion of such additional variables is not required for the identification of the gasoline price shock, however, as long as changes in gasoline prices are predetermined with respect to all omitted variables. To the extent that U.S. gasoline prices are predetermined with respect to these macroeconomic aggregates, there is no loss of generality in restricting the analysis to a bivariate model in prices and quantities, since we can view the bivariate model as a marginalized representation in which all additional variables other than the percent change in gasoline consumption have been integrated out. Kilian and Vega (2008), on the basis of daily data, have recently shown that there is no evidence of feedback from exogenous U.S. macroeconomic news to the U.S. retail price of gasoline (or for that matter the price of crude oil) within one month of such shocks, suggesting that the assumption that U.S. gasoline prices are predetermined with respect to U.S. macroeconomic aggregates is a good approximation.

Our VAR analysis focuses on aggregate data at the national level. All models include seasonal dummies. First, consider the bivariate VAR(12) model. The upper panel of Figure 6 shows the time path of the response of U.S. gasoline consumption to a 1% increase in volume-weighted gasoline prices. The impulse response coefficients have been normalized such that the coefficient estimates can be interpreted as elasticities. One-standard error bands have been computed based on the recursive-design wild bootstrap that allows for conditional heteroskedasticity of unknown form (see Goncalves and Kilian 2004). The use of a lower significance level makes sense in the context of unrestricted VAR models since these models involve many more parameters than the models underlying Tables 1 and 2. The elasticity estimate implied by the VAR is small and statistically insignificant on impact, but at longer horizons the price elasticity reaches near -0.12. This one-year price elasticity is similar in magnitude to the least-squares estimate of the impact elasticity in column (1) of Table 1, but that comparison is misleading since the VAR impact elasticity estimate of -0.02 is much smaller than the estimate of -0.10 reported in Table 1.

An important question is to what extent our estimates would change if the assumption of a flat

19 We have also examined elasticities separately by state. Average elasticities, weighted by volume, are very similar to the aggregate results.
short-run gasoline supply curve were not literally correct. To address this issue we experimented with VAR models that impose a weak degree of feedback from demand shifts to the price of gasoline. In practice, we impose a value for θ that is greater than zero and solve numerically for the remaining unrestricted parameter of A_0 conditional on that identifying assumption (for a similar approach see Abraham and Haltiwanger 1995). We investigated $\theta \in \{0, 0.1, 0.2, 0.3, 0.4, 0.5\}$. The choice of θ has implications for the supply curve. If θ is equal to zero, as assumed in our baseline model, the supply curve is flat. For $\theta > 0$ the supply curve is upward sloping. Relative to the benchmark of no feedback, the one-year price elasticity is remarkably robust to these alternative assumptions. Table 8 shows that the estimates at the 12-month horizon increases in absolute terms only slightly from -0.12 for $\theta = 0$ to -0.14 for $\theta = 0.5$. Thus, the additional evidence in Table 8 strengthens the case for our original identifying assumption. There is a more marked increase in absolute terms in the impact price elasticity from -0.02 to -0.09, as θ is increased, but that point is inconsequential for the policy question of interest in this paper. We conclude that the one-year price elasticity estimates are robust to alternative identifying assumptions.

4.2 Tax Specification

Although these initial VAR estimates provide a crude estimate of the response of U.S. gasoline consumption to a tax increase, they ignore the fact that tax increases may cause more persistent price changes than other shocks. We would expect a larger consumption response to a gasoline tax increase than to a gasoline price increase driven, for example, by a refinery outage (see Kilian 2009). A more direct estimate of the tax elasticity may be obtained by replacing Δp_t in the bivariate VAR(12) model by Δtax_t such that $x_t \equiv \left(\Delta \text{tax}_t \Delta y_t \right)'.$ As before, we focus on unit taxes and exclude ad valorem taxes, and all taxes have been deflated using the U.S. consumer price index. The model treats tax changes as predetermined with respect to changes in gasoline consumption. Since innovations in gasoline taxes arise from a slow legislative process, the identifying assumption of no contemporaneous feedback from U.S. gasoline consumption (or macroeconomic aggregates correlated with U.S. gasoline consumption) to innovations in gasoline taxes is uncontroversial, providing a particularly clean identification of the causal effects, provided consumers do not anticipate the tax increase. Of course, to the extent that consumers exhibit forward-looking behavior, one may question the appropriateness of a vector autoregressive model for identifying the causal effects in general. In our case, it is not clear in what sense forward-looking behavior would have contaminated the identification. Households have few margins of adjustment through
which they can respond to anticipated gasoline tax increases beyond filling up their gas tank one last time prior to the tax change. While it is conceivable that a household might choose to buy a more fuel-efficient car in anticipation of a pending gasoline tax increase, it seems unlikely that this type of behavior would have been quantitatively important in our data. The lower panel of Figure 6 shows the time path of the response of U.S. gasoline consumption to a one percent tax increase. The tax elasticity is much larger on impact than the corresponding price elasticity in the upper panel and statistically significant. While the dynamic response is more erratic and the error bands are wider, the one-year tax elasticity is about -0.13 and is statistically significant.

A natural conjecture is that the elasticity estimates may be further improved upon by letting the data help us in the selection of the lag order. We follow Ivanov and Kilian (2005) in selecting the VAR lag order based on the AIC that trades off the improvement in the fit of the model against the profligacy of parameters. Allowing for up to 12 lags, the AIC selects 9 lags for the model of the price elasticity and 11 lags for the model of the tax elasticity. The implied price and tax elasticity on impact are essentially unchanged relative to the model with a fixed number of 12 lags, but the one-year price elasticity falls to -0.07, whereas the one-year tax elasticity rises to -0.15, suggesting a greater responsiveness to tax changes than to average price changes (see Table 7). Regarding the sensitivity of the estimates to the degree of contemporaneous feedback from gasoline consumption to the price of gasoline for this final specification, the results are qualitatively the same as in the case of the VAR model with a fixed number of 12 lags. Increasing θ to 0.5 increases the one-year price elasticity to -0.09, which still falls short of the direct estimate of the one-year tax elasticity.

4.3 Policy Implications

As in the case of the single-equation models, it is important to translate these elasticity estimates into the effect of a gasoline tax increase of τ cents on gasoline consumption. In calculating these effects it is critical to distinguish between price elasticities and tax elasticities. For example, given a base price of p cents, the 12-month price elasticity of -0.12 implies a change in consumption of:

$$-0.12 \left(\frac{\tau}{p} \right) 100,$$

whereas the 12-month tax elasticity of -0.13 implies a much larger effect because it is relative to the base tax level, tax:

$$-0.13 \left(\frac{\tau}{tax} \right) 100.$$
As before, we evaluate these effects for a 10 cent tax increase at the volume-weighted mean after-tax price of $3.21 in March 2008. For the base tax level we use 38.4 cents, the mean volume-weighted tax level in March 2008.

Table 9 reports the effect of a 10 cent gasoline tax increase on gasoline consumption implied by the VAR estimates. The estimates based on the model with Δp_t yield less than a 1% decrease in consumption. These implied changes in gasoline consumption are similar in magnitude to the changes implied by the OLS estimates described in Table 6. The estimates from the model with Δtax_t yield considerably larger effects. The AIC model, for example, implies that a 10 cent tax increase would decrease gasoline consumption by 3.9%. When these effects are evaluated at the lower price levels in place in late 2008, the effects based on tax elasticities are unchanged but the results based on price elasticities are approximately twice as large.

There are two clear patterns in the estimates presented in Tables 6 and 9. First, estimates based on methods that attempt to control for endogeneity, namely the state panel IV estimates and the VAR estimates, are distinctly larger than other estimates. Second, the tax VAR estimates are much larger than the preferred IV estimate based on using tax changes as instruments. The apparent reason is that the VAR analysis does not restrict the sample to months in which discrete changes in nominal gasoline taxes occurred. In fact, the tax VAR estimates are very similar to the IV estimate implied by column (2) of Table 2 based on the unrestricted sample. In the latter case we would have obtained a reduction in gasoline consumption of -3.91 compared with a reduction of between -3.39 and -3.91 (depending on the lag specification) for the tax VAR. These results underscore the importance of restricting attention to dates of nominal tax increases in evaluating policy proposals for gasoline tax increases. Although the VAR approach provides an alternative to identifying the effects of tax changes, it is not clear how to incorporate such nonlinearities into the VAR framework (see, e.g., Kilian and Vigfusson 2009). This suggests caution in interpreting the tax VAR estimates. For the remainder of the paper we therefore focus on our preferred IV elasticity estimate of -0.46. This estimate provides a plausible upper bound on the likely effects of a gasoline tax increase on gasoline consumption within a year.

5 The Effect of a Gasoline Tax on Carbon Emissions

Estimating the effect of raising gas taxes on gasoline consumption, while interesting for other purposes, is only a first step in computing the effect of such a policy on carbon emissions. The
percentage change in total carbon dioxide emissions in the U.S. is calculated by multiplying the gasoline consumption effect by 0.338, the fraction of carbon dioxide emissions in the United States derived from the transportation sector:20

\((-1.43\%) \times 0.338 = -0.48\%\).

Here -1.43% is the change in gasoline consumption from a 10 cent gasoline tax increase based on the estimate from Table 6. A 10 cent gasoline tax reduces carbon emissions in the United States by 0.48% (see row 2 of Table 10). Although not negligible, this is small when compared to, for example, recent annual increases in carbon emissions. Sampling variation implies that the true effect could be much smaller. The effect could also be much larger, though it is unlikely to exceed a few percentage points. For example, one can rule out carbon emission decreases in excess of 1.0% with 95% confidence.

Carbon emissions are a global problem. In order to put these results into perspective, the third and fourth rows of Table 10 report the implied change in OECD and world emissions. These percentage changes are calculated by multiplying the percentage effect in the United States (shown in row 2) by 0.45 and 0.21, respectively, the fraction of OECD and world emissions represented by the United States.21 A 10 cent gasoline tax in the United States reduces OECD and world emissions by considerably less than 1%. This reflects the facts that vehicles in the United States represent a small and decreasing fraction of total OECD and global carbon dioxide emissions. Carbon dioxide emissions in the United States are growing less quickly than emissions in other countries, most notably China, India and Brazil. By 2030, according to predictions from the U.S. Department of Energy, the United States will represent only 16.1% of total world carbon dioxide emissions.22

It is worth reemphasizing that these estimates capture only the short-run response (up to one year). In the short-run, drivers can adjust discretionary driving patterns, drive slower, for example, or improve fuel efficiency by increasing tire pressure. The long-run price elasticity is likely to be larger as agents may employ additional margins of adjustment. For example, one would expect to see widespread substitution toward more fuel-efficient vehicles, some of which may not

even be available when the tax is first implemented. Because the vehicle stock turns over slowly, the full impact of a tax change will not be realized for many years. Likewise households may choose to relocate closer to their workplace in an effort to cut down on commuting or they may demand improved public transportation. Predicting such long-run effects is beyond the scope of any econometric model based on historical data. Energy experts such as Severin Borenstein have conjectured that the long-run elasticity may be between -0.6 and -0.8.23

These results highlight three mechanisms by which the global reduction in carbon emissions might be amplified. First, widespread international adoption of gasoline tax increases may have considerably larger effects. Our analysis is focused on the United States and differences in income levels and other factors suggest that the responsiveness of gasoline consumption to changes in gasoline taxes is likely to differ across countries. Moreover, many European countries already impose high gasoline taxes. Nonetheless, if one takes our elasticity estimate as representative for the world, a global 10 cent gasoline tax increase would decrease global emissions by 0.48%. This calculation, of course, abstracts from the general equilibrium effects of such a concerted action.

Second, the effectiveness of carbon taxes would be amplified by imposing a broad-based carbon tax on all sources of carbon dioxide rather than just gasoline. It is important to keep in mind, however, that emissions from transportation represent a substantial fraction of total emissions and that there is no reason to expect demand in other sectors to be substantially more elastic. Consider, for example, the electric power sector which is responsible for 40% of total carbon dioxide emissions. Electricity demand is commonly believed to be relatively inelastic (see, e.g. Reiss and White, 2008). Thus, a tax, for example, on emissions from U.S. coal power plants is likely to be less effective than a gasoline tax. Although there is scope for substitution toward low-carbon fuels within the power sector, much of the existing generating capacity is built around coal and natural gas.

Third, one could induce larger emission decreases with larger gasoline tax increases. Indeed, some of the policies currently being proposed would increase the gasoline tax by as much as $1.00 per gallon or more.24 Our results should be applied with extreme caution when extrapolating to such larger tax changes. Our estimates are based on examining the responsiveness of gasoline

24Gregory N. Mankiw “Raise the Gas Tax,” Wall Street Journal (October 20, 2006) advocates increasing the gas tax by $1 per gallon, phased in gradually by 10 cents per year over the next decade. Mankiw has formed the “Pigou Club”, a group of, “economists and pundits with the good sense to have publicly advocated higher Pigouvian taxes, such as gasoline taxes or carbon taxes’. Current members include Bill Nordhaus, Martin Feldstein, Gary Becker, Alan Greenspan, and others. See also Daniel Gross “Raise the Gasoline Tax? Funny, It Doesn’t Sound Republican,” New York Times (October 8, 2006) and Kenneth Rogoff “What America Must Do: Step on the Gas,” Foreign Policy (January/February 2008).
consumption to a series of relatively small tax changes implemented during the period 1989-2008.

There is no historical precedent for tax increases of more than 10 cents and it is unclear how well linear econometric models will fare when subject to variation so clearly beyond the available support, nor would it be possible to estimate such non-linear effects from historical data.

6 Concluding Remarks

Although interest in carbon taxes has quieted down recently as a result of the rapidly deteriorating global economic conditions, that situation is likely to be temporary. As the economy recovers, it will be only a question of time before these issues reemerge. Combating climate change is widely known to be one of the priorities of the Obama administration. The current respite provides an opportunity to reflect impassionately on the merits of a gasoline tax increase, as the leading example of how a carbon tax would be implemented in practice.

In this paper we provided for the first time a careful analysis of what can be learned from historical data about the likely effect of higher gasoline taxes on U.S. gasoline consumption. Such an analysis seems warranted before adopting any proposal regarding gasoline taxes. A natural approach to this question is to study the effects of historical variation in gasoline tax rates both over time and across states. We explored a variety of alternative econometric methods designed to account for the endogeneity of gasoline prices as well as the unique nature of the policy experiment in question. Our most credible estimates imply larger effects than suggested by previous estimates based on less appropriate econometric methodologies.

Nevertheless, our estimates imply that a gasoline tax increase of the magnitude currently contemplated by policymakers would have only a modest short-run impact on carbon emissions. For example, a 10 cent increase in gasoline taxes would lower U.S. emissions by about half of one percent after one year. Another way of putting these results in perspective is to observe that this is roughly equal to one-half of the typical annual increase in U.S. carbon emissions.

While our analysis makes full use of the available data, there are two obvious caveats. First, it is conceivable that at longer horizons a gasoline tax would reduce carbon emissions by more. For example, the introduction of more energy efficient vehicles, some of which would not even be available at the time when the policy is enacted, could amplify the long-run effect of a gasoline tax increase. On the other hand, the extent to which the fuel efficiency of cars would be increased and the extent to which the introduction of electric cars, for example, would reduce carbon emissions -
after accounting for emissions from the generation of the additional electricity - is an open question. Predicting such long-run effects is beyond the scope of standard econometric models based on historical data.

Second, one possible response to our estimates of likely carbon emission reductions would be to raise the gasoline tax even further to generate larger effects on carbon emissions. Indeed some pundits have recommended raising gasoline taxes cumulatively by as much as one dollar per gallon. Still, it has to be borne in mind that the resulting reduction in carbon emissions may not grow proportionately. Once we consider gasoline tax increases far larger than any gasoline tax increase in U.S. history, there is reason to doubt the accuracy of predictions generated from linear econometric models; nor is it possible to estimate such nonlinear effects from historical data.
References

Table 1
The Effect of Gasoline Prices on Gasoline Consumption
Least Squares Estimates

<table>
<thead>
<tr>
<th></th>
<th>National Aggregate</th>
<th>State Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta p_t)</td>
<td>-0.10</td>
<td>-0.19</td>
</tr>
<tr>
<td>(standard error)</td>
<td>(0.04)</td>
<td>(0.04)</td>
</tr>
<tr>
<td>Month of the year indicators</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Time fixed effects</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.71</td>
<td>0.50</td>
</tr>
<tr>
<td>Observations</td>
<td>230</td>
<td>11,730</td>
</tr>
</tbody>
</table>

Note: This table reports the price elasticity of gasoline consumption from the national aggregate and state panel specifications. In both specifications the dependent variable is the change in log monthly gasoline consumption. The sample includes monthly observations from January 1989 to March 2008. The state panel includes observations from all states and District of Columbia. The national specification includes month of the year indicators and the state panel includes separate indicators for all 230 months in the sample. In the state panel the standard error is clustered by state.
Table 2
The Effect of Gasoline Prices on Gasoline Consumption
Instrumental Variables Estimates

<table>
<thead>
<tr>
<th></th>
<th>National Aggregate</th>
<th>State Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δp_t</td>
<td>-2.38</td>
<td>-1.14</td>
</tr>
<tr>
<td>(standard error)</td>
<td>(6.88)</td>
<td>(0.25)</td>
</tr>
<tr>
<td>Month of the year indicators</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Time fixed effects</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Instrument F-statistic</td>
<td>0.11</td>
<td>242.6</td>
</tr>
<tr>
<td>(p-value)</td>
<td>(0.74)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>Observations</td>
<td>230</td>
<td>11,730</td>
</tr>
</tbody>
</table>

Note: This table reports the price elasticity of gasoline consumption from the national aggregate and state panel instrumental variables specifications. In both specifications the dependent variable is the change in log monthly gasoline consumption. The measure of gasoline taxes that we use as an instrument excludes *ad valorem* taxes. The sample includes monthly observations from January 1989 to March 2008. The state panel includes observations from all states and District of Columbia. The national specification includes month of the year indicators and the state panel includes separate indicators for all 230 months in the sample. In the state panel the standard error and instrument F-statistic are clustered by state.
Table 3
Least Squares Estimates of The Effect of Gasoline Taxes on Gasoline Prices and Gasoline Consumption

<table>
<thead>
<tr>
<th>National Aggregate</th>
<th>State Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta tax_t)</td>
<td>0.07</td>
</tr>
<tr>
<td>(standard error)</td>
<td>(0.20)</td>
</tr>
<tr>
<td>F-statistic (\Delta tax_t)</td>
<td>0.11</td>
</tr>
<tr>
<td>(p-value)</td>
<td>(0.74)</td>
</tr>
<tr>
<td>(R^2)</td>
<td>.19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>National Aggregate</th>
<th>State Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta tax_t)</td>
<td>-0.16</td>
</tr>
<tr>
<td>(standard error)</td>
<td>(0.11)</td>
</tr>
<tr>
<td>F-statistic (\Delta tax_t)</td>
<td>2.13</td>
</tr>
<tr>
<td>(p-value)</td>
<td>(0.15)</td>
</tr>
<tr>
<td>(R^2)</td>
<td>.70</td>
</tr>
</tbody>
</table>

Note: This table reports least squares estimates of the effect of changes in gasoline taxes on changes in gasoline prices and changes in gasoline consumption. Both national aggregate and state panel results are presented. Our measure of gasoline taxes excludes \textit{ad valorem} taxes. Because the IV estimator is exactly identified, the IV estimates reported in Table 2 are a simple ratio of the estimates presented here. The sample includes monthly observations from January 1989 to March 2008. The state panel includes observations from all states and District of Columbia. The national specification includes month of the year indicators and the state panel includes separate indicators for all 230 months in the sample. In the state panel standard errors and F-statistics are clustered by state.
Table 4
The Effect of Gasoline Prices on Gasoline Consumption
State Panel Instrumental Variables Estimates: Nominal Tax Changes Only

<table>
<thead>
<tr>
<th></th>
<th>Nominal Increases and Decreases</th>
<th>Nominal Increases Only</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>Greater Than 1 Cent</td>
</tr>
<tr>
<td>(\Delta p_t)</td>
<td>-0.74</td>
<td>-0.70</td>
</tr>
<tr>
<td>(standard error)</td>
<td>(0.38)</td>
<td>(0.45)</td>
</tr>
<tr>
<td>Instrument F-statistic</td>
<td>73.5</td>
<td>68.3</td>
</tr>
<tr>
<td>(p-value)</td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>Observations</td>
<td>268</td>
<td>162</td>
</tr>
</tbody>
</table>

Note: This table reports the price elasticity of gasoline consumption from six alternative state panel instrumental variables specifications. In all specifications the dependent variable is the change in log monthly gasoline consumption. The measure of gasoline taxes that we use as an instrument excludes ad valorem taxes. Since there are few overlapping tax increases it is not practical to use time fixed effects in these specifications. Column (1) includes state by month observations during the period January 1989 to March 2008 in which there was a strict change in nominal state gasoline taxes. The specification in column (4) restricts the sample to include only strict increases. The specifications in columns (2) and (3) restrict the sample to include only nominal changes of at least 1 and 2 cents, respectively. The specifications in columns (5) and (6) restrict the sample to include only nominal increases of at least 1 and 2 cents, respectively. Standard errors and instrument F-statistics are clustered by state.
Table 5
The Effect of Gasoline Prices on Gasoline Consumption, Alternative Specifications
State Panel Instrumental Variables Estimates: Nominal Increases Only

<table>
<thead>
<tr>
<th></th>
<th>Baseline Estimate</th>
<th>Median IV Regression</th>
<th>Including Unemployment Rate</th>
<th>Including Population Density</th>
<th>All State-Level Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta p_t)</td>
<td>-0.46</td>
<td>-0.47</td>
<td>-0.49</td>
<td>-0.43</td>
<td>-0.45</td>
</tr>
<tr>
<td>(standard error)</td>
<td>(0.23)</td>
<td>(0.41)</td>
<td>(0.24)</td>
<td>(0.24)</td>
<td>(0.24)</td>
</tr>
</tbody>
</table>

Note: This table reports the price elasticity of gasoline consumption from the state panel instrumental variables specification with nominal increases only and four alternative specifications. In all specifications the dependent variable is the change in log monthly gasoline consumption. The measure of gasoline taxes that we use as an instrument excludes \textit{ad valorem} taxes. The sample includes monthly observations from January 1989 to March 2008. The baseline specification in column (1) is identical to the specification in column (4) of Table 4. The specification in column (2) reports results from median IV regression. The specification in column (3) includes changes in state-level unemployment rates. The specification in column (4) includes the percent change in state population density. Finally, the specification in column (5) allows for both changes in the unemployment rate and the population density. Standard errors in columns (1) and (3)-(5) are clustered by state. Standard errors in column (2) are block bootstrap by state with 100 replications.
Table 6
The Effect of a 10 Cent Gasoline Tax Increase on Gasoline Consumption
Traditional Regression Estimates

<table>
<thead>
<tr>
<th>Method</th>
<th>Estimate (in percent)</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLS Estimate, National Aggregate</td>
<td>-0.31</td>
<td>0.11</td>
</tr>
<tr>
<td>OLS Estimate, State Panel</td>
<td>-0.59</td>
<td>0.12</td>
</tr>
<tr>
<td>IV Estimate, State Panel</td>
<td>-1.43</td>
<td>0.72</td>
</tr>
</tbody>
</table>

Note: The effect of a 10 cent gasoline tax is evaluated at the volume-weighted mean after-tax price of $3.21 in March 2008. The implied effects for OLS are based on the -0.10 and -0.19 elasticities in Table 1. The implied effect for state panel IV is based on the -0.46 estimate in column (4) of Table 4.
Table 7
Price and Tax Elasticities Estimated from Structural VAR Models

<table>
<thead>
<tr>
<th></th>
<th>Horizon in Months</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Price Elasticity (12 lags)</td>
<td>-0.02</td>
</tr>
<tr>
<td>Tax Elasticity (12 lags)</td>
<td>-0.14</td>
</tr>
<tr>
<td>Price Elasticity (AIC)</td>
<td>-0.02</td>
</tr>
<tr>
<td>Tax Elasticity (AIC)</td>
<td>-0.14</td>
</tr>
</tbody>
</table>

Note: The sample period is 1989.1-2007.3 and the data frequency is monthly. Boldface indicates statistical significance based on one-standard error bands. All models include seasonal dummies. The AIC lag orders were selected based on an upper bound of 12 lags. The AIC selects 9 lags for the model of the price elasticity and 11 lags for the model of the tax elasticity.
Table 8
Price Elasticities Estimated from Structural VAR(12) Models under Alternative Assumptions about the Strength of Feedback from Gasoline Consumption to the Price of Gasoline as Measured by θ

<table>
<thead>
<tr>
<th>θ</th>
<th>0</th>
<th>1</th>
<th>3</th>
<th>6</th>
<th>9</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0.02</td>
<td>-0.10</td>
<td>-0.12</td>
<td>-0.12</td>
<td>-0.09</td>
<td>-0.12</td>
</tr>
<tr>
<td>0.1</td>
<td>-0.03</td>
<td>-0.11</td>
<td>-0.12</td>
<td>-0.12</td>
<td>-0.09</td>
<td>-0.12</td>
</tr>
<tr>
<td>0.2</td>
<td>-0.05</td>
<td>-0.11</td>
<td>-0.13</td>
<td>-0.12</td>
<td>-0.10</td>
<td>-0.13</td>
</tr>
<tr>
<td>0.3</td>
<td>-0.06</td>
<td>-0.11</td>
<td>-0.13</td>
<td>-0.13</td>
<td>-0.10</td>
<td>-0.13</td>
</tr>
<tr>
<td>0.4</td>
<td>-0.08</td>
<td>-0.11</td>
<td>-0.14</td>
<td>-0.13</td>
<td>-0.11</td>
<td>-0.14</td>
</tr>
<tr>
<td>0.5</td>
<td>-0.09</td>
<td>-0.12</td>
<td>-0.15</td>
<td>-0.13</td>
<td>-0.11</td>
<td>-0.14</td>
</tr>
</tbody>
</table>

Note: The sample period is 1989.1-2007.3 and the data frequency is monthly. Boldface indicates statistical significance based on one-standard error bands. All models include seasonal dummies.
Table 9
The Effect of a 10 Cent Gasoline Tax Increase on Gasoline Consumption At 12 Month Horizon According to the Structural VAR Estimates in Table 7

<table>
<thead>
<tr>
<th></th>
<th>(in percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Based on Price Elasticity, VAR(12 lags)</td>
<td>-0.37</td>
</tr>
<tr>
<td>(standard error)</td>
<td>(0.07)</td>
</tr>
<tr>
<td>Based on Tax Elasticity, VAR(12 lags)</td>
<td>-3.39</td>
</tr>
<tr>
<td>(standard error)</td>
<td>(3.17)</td>
</tr>
<tr>
<td>Based on Price Elasticity, VAR(AIC)</td>
<td>-0.22</td>
</tr>
<tr>
<td>(standard error)</td>
<td>(0.13)</td>
</tr>
<tr>
<td>Based on Tax Elasticity, VAR(AIC)</td>
<td>-3.91</td>
</tr>
<tr>
<td>(standard error)</td>
<td>(2.91)</td>
</tr>
</tbody>
</table>

Note: The effect of a 10 cent gasoline tax is evaluated at the volume-weighted mean after-tax price of $3.21 and mean tax of 38.4 cents in March 2008.
<table>
<thead>
<tr>
<th>Description</th>
<th>Change (in percent)</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasoline Consumption in the U.S.</td>
<td>-1.43</td>
<td>0.72</td>
</tr>
<tr>
<td>Total Carbon Dioxide Emissions in the U.S.</td>
<td>-0.48</td>
<td>0.24</td>
</tr>
<tr>
<td>Total Carbon Dioxide Emissions in the OECD</td>
<td>-0.22</td>
<td>0.11</td>
</tr>
<tr>
<td>Total Carbon Dioxide Emissions Worldwide</td>
<td>-0.10</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Note: These results are based on the -0.46 price elasticity from column (4) of Table 4 and the volume-weighted mean after-tax price of $3.21 in March 2008. We assume that 33.8% of carbon dioxide emissions in the United States are derived from the transportation sector following U.S. Department of Energy, *Energy Outlook 2008*, DOE/EIA-0383, Table A18, “Carbon Dioxide Emissions by Sector and Source, 2006 and 2030”. Moreover, we assume that the United States represents 44.7% of total OECD carbon dioxide emissions and 21.0% of total world carbon dioxide emissions following predictions for 2010 from U.S. Department of Energy, *International Energy Outlook 2008*, DOE/EIA-0484, Table A10. “World Carbon Dioxide Emissions by Region, Reference Case, 1990-2030”.

Figure 1: National Gasoline Prices, Consumption and Taxes

Gasoline Price

Gasoline Consumption

Gasoline Tax

Figure 2: Comparison of BLS Data and Tax-Adjusted EIA Data on Gasoline Prices
Figure 3: Variation in Gasoline Tax 1989-2008, By State

The standard deviation of gasoline taxes by state from 1989 to 2008 is shown in the bar chart. Wisconsin has the highest variation, followed by New York, Massachusetts, Rhode Island, and California. At the other end of the spectrum, states like Delaware, Maryland, Nevada, and Texas have lower variation in gasoline taxes.
Figure 4: Variation in State Tax Rates Across States, By Year

Figure 5: Timing of Tax Changes, 1989-2008
Figure 6a: Response of U.S. Aggregate Gasoline Consumption to a Positive Gasoline Price Shock with One-Standard Error Bands, VAR(12) Model

Figure 6b: Response of U.S. Aggregate Gasoline Consumption to a Positive Tax Shock with One-Standard Error Bands, VAR(12) Model
Figure 7a: Response of U.S. Aggregate Gasoline Consumption to a Positive Gasoline Price Shock with One-Standard Error Bands, VAR Model Based on AIC Lag Order Estimate

Figure 7b: Response of U.S. Aggregate Gasoline Consumption to a Positive Tax Shock with One-Standard Error Bands, VAR Model Based on AIC Lag Order Estimate