Structural Vector Autoregressive Analysis

Lutz Kilian and Helmut Lütkepohl

November 30, 2016
Preface

Objectives of the Book

Since the seminal work of Sims (1980a), structural vector autoregressions have evolved into one of the most widely used models in empirical research using time series data. They are used in macroeconomics and in empirical finance, but also in many other fields including agricultural economics and energy economics. The evolution of the structural vector autoregressive (VAR) methodology since 1980 has not always been smooth. Over time many new ideas have been explored, sometimes uncritically applied or misunderstood by practitioners, then questioned, and later refined or replaced by alternative methods. The development of new methods of identification, estimation, and inference for structural VAR models continues at a rapid pace even today. One of the objectives of this book is to summarize these new developments and to put them in perspective. The other is to take stock of what we have learned about more traditional structural VAR models and to interpret these models from today’s perspective. The profession’s understanding of these models has evolved substantially, becoming more nuanced in recent years and allowing us to understand better some of the methodological debates of the past.

In this book, we not only review the ever-increasing range of structural VAR tools and methods discussed in the literature, but we also highlight their pros and cons in practice and provide guidance to empirical researchers as to the most appropriate modeling choices. In addition, we trace the evolution of the structural VAR methodology and contrast it with other common methodologies including the narrative approach to identification and the use of calibrated or estimated dynamic stochastic general equilibrium (DSGE) models. We stress that structural VAR models should be viewed as one of several econometric tools used in empirical work, each of which has its own strengths and weaknesses.

The book is intended as a bridge between the often quite technical econometric literature on structural VAR modeling and the needs of empirical researchers. The focus of the book is not on providing the most rigorous theoretical arguments, but on enhancing the reader’s understanding of the methods in question and their assumptions, allowing him or her to decide on the most suitable methods for applied work. In many cases, empirical examples are provided for illustration. References to articles in academic journals are provided for readers
with an interest in the more technical aspects of the discussion.

Audience and Uses of the Book

The target audience includes graduate students in economics departments and in business schools as well as practitioners interested in a comprehensive, yet accessible review of the literature. It also includes consumers of empirical studies using the structural VAR methodology.

The book is intended for a semester-long course on structural VAR analysis, but the material may be adapted to the time available to the instructor and the focus of the course. Parts of the book may also be used in teaching a course in macroeconometrics or in applied time series analysis, if preceded by a general introduction to univariate time series analysis in the first part of the course. Alternatively, selected chapters may be used in teaching a graduate-level quantitative methods course that focuses on the use of DSGE models and structural VAR models in macroeconomics.

For example, an instructor only interested in structural VAR models subject to short-run identifying restrictions would focus on Chapters 2, 4, 8, 9, and possibly 12 with the material in Chapters 6 and 7 providing additional motivation as needed. If one wanted to cover structural VAR models subject to long-run restrictions, one would add Chapters 3, 10, and 11. An extension to sign-identified structural VAR models instead would involve adding Chapters 5 and 13. Chapters 14 and 15 cover more advanced identification methods. Chapters 16, 17, and 18 deal with special topics such as large-dimensional VAR processes, nonfundamental shocks, and nonlinear structural VAR models that are more technically challenging and would only be covered in a full-semester graduate level course. Chapter 19 covers topics such as trend adjustment, seasonality, and structural change. It relates to material that could be skipped at a first reading or used only selectively, but provides useful background material at a later stage, once the remainder of the book has been absorbed.

The book may not only form the basis of a graduate-level course, but it may also be used for self-study. Although structural VAR models are routinely relied upon in teaching empirical macroeconomics and in published work, not every department provides instruction in the use of these methods. There is typically no room for teaching structural VAR analysis either in the econometric theory courses or in the macroeconomics courses of a Ph.D. program, as these fields have greatly expanded in recent years. Our book provides a self-contained resource for students wishing to complement the material on solving DSGE models typically provided as part of the first-year macroeconomics sequence by a review of the structural VAR methodology.

The need for such a book is self-evident. It has become increasingly difficult for students, practitioners and even academic researchers to keep up with the proliferation of new methods and econometric results discussed in the literature. Not only are these results widely scattered across academic journals, but there is no up-to-date treatise even of the traditional structural VAR literature. For
example, the introductory discussion in Amisano and Giannini (1997) is not only terse, but incomplete and outdated at this point. The more recent macroeconometrics textbook of Favero (2001) contains only one chapter on structural VAR models, which focuses primarily on VAR models of monetary policy. Even the textbook of Lütkepohl (2005) focuses mainly on reduced-form VAR analysis and devotes only one chapter to structural VAR analysis. Finally, the focus of Canova (2007), DeJong and Dave (2011), and Herbst and Schorfheide (2016) is more on the empirical evaluation of DSGE models than on structural VAR analysis, and the standard time series textbook by Hamilton (1994) only devotes 13 of 800 pages to structural vector autoregressions. Nor do handbook chapters such as Watson (1994) or Kilian (2013) provide a review of the structural VAR literature as comprehensive as this book.

Prerequisites

The book takes for granted that the reader is familiar with regression analysis and with asymptotic reasoning. It is also assumed that the reader has been exposed to univariate time series methods at the undergraduate level and is familiar with the concepts of stationarity and invertibility and with the Wold representation, white noise, unit roots, the estimation of univariate AR, MA, and ARMA models, GARCH models, and univariate forecasts. As a rule, the discussion is not more mathematical than it has to be to appreciate the material. An overview of the notation is provided at the end of the book. The reader is assumed to be familiar with vectors and matrices. A useful resource summarizing key mathematical and statistical results is Appendix A-C in Lütkepohl (2005).

Acknowledgements

We especially thank Christiane Baumeister, Silvia Gonçalves, Nikolai Gospodinov, Atsushi Inoue, Markku Lanne, Aleksei Netšunajev, and José Montiel Olea, who provided in-depth reviews of several draft chapters and spent more time than one could have reasonably expected to answer our questions. We have also benefited from detailed advice and feedback on specific technical issues provided by Jonas Arias, Jörg Breitung, Fabio Canova, Eric Leeper, Adrian Pagan, Elena Pesavento, Barbara Rossi, PenttiSaikkonen, Frank Schorfheide, and Dan Waggoner.

In addition, a large number of colleagues and students has commented on parts of the book, correcting errors, providing suggestions, and helping us improve the exposition. We cannot mention all of them, but we would like to single out Niels Aka, Benjamin Beckers, Martin Bruns, Wenjuan Chen, Frank Diebold, Michael Hachula, Ana Maria Herrera, Simon Jurkatis, Tatsiana Klatskova, Hans-Martin Krolzig, Sorin Pascu, Peter Phillips, Michele Piffer, Max Podstawski, Thore Schlaak, Annika Schnücker, Gregor von Schweinitz, Lars
Winkelmann, and Tomasz Wozniak.

Finally, we would like to thank Peter Phillips for his encouragement and persistent efforts to have the book included in the *Themes in Modern Econometrics* series. Much of this book was completed, while the second author was a Bundesbank Professor at the Freie Universität Berlin. Financial support was provided by the Deutsche Forschungsgemeinschaft through the SFB 649 “Economic Risk”.

Ann Arbor and Berlin,

Lutz Kilian and Helmut Lütkepohl
Contents

1 Introduction 1
 1.1 Overview 1
 1.2 Outline of the Book 4

2 Vector Autoregressive Models 19
 2.1 Stationary and Trending Processes 19
 2.2 Linear VAR Processes 23
 2.2.1 The Basic Model 23
 2.2.2 The Moving Average Representation 25
 2.2.3 VAR Models as an Approximation to VARMA Processes 27
 2.2.4 Marginal Processes, Measurement Errors, Aggregation, Variable Transformations 28
 2.3 Estimation of VAR Models 30
 2.3.1 Least Squares Estimation 30
 2.3.2 Restricted Generalized Least Squares 34
 2.3.3 Bias-corrected LS 35
 2.3.4 Maximum Likelihood Estimation 38
 2.3.5 VAR Processes in Levels with Integrated Variables 40
 2.3.6 Sieve Autoregressions 43
 2.4 Prediction 45
 2.4.1 Predicting from Known VAR Processes 45
 2.4.2 Predicting from Estimated VAR Processes 46
 2.5 Granger Causality Analysis 47
 2.6 Lag Order Selection Procedures 50
 2.6.1 Top-down Sequential Testing 50
 2.6.2 Bottom-up Sequential Testing 51
 2.6.3 Information Criteria 53
 2.6.4 Recursive Mean-Squared Prediction Error Rankings 55
 2.6.5 The Relative Merits of Alternative Lag Order Selection Tools 57
 2.7 Model Diagnostics 65
 2.7.1 Tests for Autocorrelation in the Innovations 65
 2.7.2 Tests for Nonnormality 65
 2.7.3 Residual ARCH Tests 66
6 The Relationship between VAR Models and other Macroeconomic Models
6.1 The Relationship between VAR Models and Traditional Dynamic Simultaneous Equations Models 169
6.1.1 The VAR Representation of Traditional DSEMs 170
6.1.2 Incredible Restrictions in Traditional DSEMs 172
6.1.3 Structural VAR Models as an Alternative to Traditional DSEMs 174
6.2 The Relationship between VAR Models and DSGE Models 174
6.2.1 Basics 175
6.2.2 The Role of Data Transformations 177
6.2.3 Why Not Use VARMA Models? 178
6.2.4 Autoregressive Sieve Approximations of VAR(\infty) Processes 178
6.2.5 Summary of Potential Problems in Approximating DSGE Models with VAR Models 179
6.3 DSGE Models as an Alternative to VAR Models? 181
6.3.1 Calibrated DSGE Models 181
6.3.2 Estimated DSGE Models 182
6.3.3 Calibration versus Bayesian Estimation 183
6.3.4 Are Structural VAR Models Less Credible than DSGE Models? 184
6.3.5 Are DSGE Models More Accurate than VAR Models? 186
6.3.6 Policy Analysis in DSGE Models and SVAR Models 188
6.4 An Overview of Alternative Structural Macroeconometric Models 189
6.4.1 Combining DSEMs and SVAR Models 190
6.4.2 Combining DSGE and SVAR Models 191

7 A Historical Perspective on Causal Inference in Macroeconometrics 193
7.1 A Motivating Example 193
7.2 Granger Causality Tests 194
7.3 Predeterminedness and Exogeneity 196
7.3.1 Basic Concepts 196
7.3.2 Granger Causality and Forward-Looking Behavior 198
7.3.3 Strict Exogeneity in Modern Macroeconomic Models 200
7.4 The Demise of Granger-Causality Tests in Macroeconomics 201
7.5 Responses to Unanticipated Changes in Money Growth 201
7.5.1 The Narrative Approach 202
7.5.2 Exogenous Shocks Derived from Data-Based Counterfactuals 205
7.5.3 News Shocks 205
7.5.4 Shocks to Financial Market Expectations 207
7.5.5 Summary 208
10.3.4 A Model of Expectations about Future Productivity 280
10.4 Examples of Models Combining Long-Run and Short-Run Zero Restrictions
10.4.1 The IS-LM Model Revisited 283
10.4.2 A Model of the Neoclassical Synthesis 284
10.4.3 A U.S. Macroeconomic Model 285
10.5 Limitations of Long-Run Restrictions 287
10.5.1 Long-Run Restrictions Require Exact Unit Roots 287
10.5.2 Sensitivity to Omitted Variables 288
10.5.3 Lack of Robustness at Lower Data Frequencies 289
10.5.4 Nonuniqueness Problems without Additional Sign Restrictions 289
10.5.5 Sensitivity to Data Transformations 291

11 Estimation Subject to Long-Run Restrictions 293
11.1 Model Setup 293
11.2 Models Subject to Long-Run Restrictions Only 295
11.2.1 Method-of-Moments Estimation 297
11.2.2 Full Information Maximum Likelihood Estimation 303
11.2.3 Instrumental Variable Estimation 304
11.3 Models Subject to Long-Run and Short-Run Restrictions 306
11.3.1 Estimating the Model in VAR Representation 306
11.3.2 Estimating the Model in VECM Representation 311
11.4 Practical Limitations of Long-Run Restrictions 315
11.4.1 Estimators of the Long-Run Multiplier Matrix May Be Unreliable 316
11.4.2 Lack of Power 317
11.4.3 Near-Observational Equivalence of Shocks with Permanent Effects and Shocks with Persistent Effects 318
11.4.4 Weak Instrument Problems 318
11.5 Can Structural VAR Models Recover Responses in DSGE Models? 319
11.5.1 The Origin of this Controversy 319
11.5.2 The Position of Chari et al. (2008) 320
11.5.3 The Position of Christiano et al. (2006) 322
11.5.4 Understanding the Simulation Evidence 323
11.5.5 Summary 326

12 Inference in Models Identified by Short-Run or Long-Run Restrictions 329
12.1 Delta Method Intervals for Structural Impulse Responses 330
12.1.1 Finite-Order VAR Models 331
12.1.2 Infinite-Order VAR Models 332
12.1.3 Discussion 333
12.1.4 Extensions to Other Statistics 334
12.1.5 On the Choice of the Significance Level 334
12.2 Bootstrap Intervals for Structural Impulse Responses 335
14.3.2 Structural VAR Models with Markov Switching in the Variances .. 493
14.3.3 Structural VAR Models with Smooth Transitions in the Variances ... 498
14.3.4 Structural VAR Models with GARCH Errors 505
14.4 Alternative Approaches Using Heteroskedasticity 512
14.4.1 Time-Varying Instantaneous Effects 512
14.4.2 Correlated Shocks ... 513
14.5 Identification by Non-Gaussianity 513
14.5.1 Independent Shocks ... 513
14.5.2 Uncorrelated Shocks ... 515
14.6 Discussion ... 517

15 Identification Based on Extraneous Data 519
15.1 Identification Based on High-Frequency Futures Prices 519
15.1.1 A Set-Identified Approach 521
15.1.2 A Point-Identified Approach 525
15.1.3 Discussion ... 528
15.2 Identification Based on External Instruments 529
15.2.1 Estimation and Inference .. 531
15.2.2 Discussion ... 534

16 Structural VAR Analysis in a Data-Rich Environment 535
16.1 Factor Models .. 537
16.1.1 Static Factor Models ... 537
16.1.2 Dynamic Factor Models 541
16.1.3 Selecting the Number of Factors 548
16.1.4 Structural Change .. 550
16.2 FAVAR Models .. 550
16.2.1 Structural FAVAR Models 551
16.2.2 Structural Analysis with DFMs 556
16.2.3 Empirical Examples of FAVAR Models and DFMs 562
16.3 Large Bayesian VAR Models 564
16.3.1 Priors for Large Bayesian VARs 565
16.3.2 Structural Identification in Large BVARs 568
16.4 Alternative Large-Dimensional VAR Models 569
16.4.1 Panel VARs ... 569
16.4.2 Global VARs .. 570
16.4.3 Spatial Models .. 571
16.5 Discussion ... 572

17 Nonfundamental Shocks .. 575
17.1 Introduction ... 575
17.2 Fundamental and Nonfundamental Moving Average Representations ... 577
17.3 Fundamental versus Nonfundamental Representations 579
19 Practical Issues Related to Trends, Seasonality, and Structural Change

19.1 Alternative Trend Models
19.1.1 Hodrick-Prescott (HP) Filter
19.1.2 Band-Pass Filters
19.1.3 Potential Shortcomings of Trend Filters
19.1.4 Trend-Filtered Variables in VAR Models
19.1.5 Choosing Between Different Trend Models
19.1.6 Combining Different Trend Specifications

19.2 Seasonality
19.2.1 Deterministic Seasonal Variation in VAR Models
19.2.2 Stochastic Seasonal Variation in VAR Models
19.2.3 Synthesis
19.2.4 Periodic Seasonal VAR Models
19.2.5 Seasonal TVC-VAR Models
19.2.6 Seasonally Filtered Data in VAR Models
19.2.7 Combining Seasonally Adjusted and Unadjusted Data in the same VAR Model
19.2.8 Summary

19.3 Structural Change in the Stochastic Component of the VAR Model
19.3.1 Breaks in the Stochastic Component
19.3.2 Smooth Structural Change in the Stochastic Component

References

Notation and Abbreviations