
A Message-Driven, Multi-GPU Parallel Sparse Triangular Solver ∗

Nan Ding† Yang Liu ‡ Samuel Williams† Xiaoye S. Li‡

Abstract

Sparse triangular solve is used in conjunction with

Sparse LU for solving sparse linear systems, either as a direct

solver or as a preconditioner. As GPUs have become a first-

class compute citizen, designing an efficient and scalable

SpTRSV on multi-GPU HPC systems is imperative. In

this paper, we leverage the advantage of GPU-initiated

data transfers of NVSHMEM to implement and evaluate a

Multi-GPU SpTRSV. We create a novel producer-consumer

paradigm to manage the computation and communication in

SpTRSV and implement it using two CUDA streams. Our

multi-GPU SpTRSV implementation using CUDA streams

achieves a 3.7× speedup when using twelve GPUs (two

nodes) relative to our implementation on a single GPU, and

up to 6.1× compared to cusparse csrsv2() over the range

of one to eighteen GPUs. To further explain the observed

performance and explore the key features of matrices to

estimate the potential performance benefits when using

multi-GPU, we extend the critical path model of SpTRSV

to GPUs. We demonstrate the ability of our performance

model to understand various aspects of performance and

performance bottlenecks on multi-GPU and motivate code

optimizations.

1 Introduction

Over the last decade, accelerated computing archi-
tectures have become more and more popular in mod-
ern HPC systems. A total of 147 systems on the 2020
TOP500 list are using accelerators [1], of which, 110 sys-
tems use NVIDIA Volta chips [2]. Concurrently, sparse

∗This research is supported in part by the U.S. Department of

Energy, Office of Science, Office of Advanced Scientific Comput-
ing Research, Scientific Discovery through Advanced Computing

(SciDAC) programs under Contract No. DE-AC02-05CH11231

at Lawrence Berkeley National Laboratory. This research used
resources of the the Oak Ridge Leadership Facility which is sup-

ported by the Office of Science of the U.S. Department of En-

ergy under Contract No. DE-AC05-00OR22725. We thank Akhil
Langer from NVIDIA Corporation for his willingness to answer

our myriad of questions on NVSHMEM.
†Computational Research Division, Lawrence Berkeley Na-

tional Laboratory, Berkeley, CA 94720, USA, (nanding|

swwilliams@lbl.gov)
‡Scalable Solvers Group, Lawrence Berkeley National Labora-

tory, Berkeley, CA 94720, USA, (liuyangzhuan|xsli@lbl.gov)

triangular solve (SpTRSV) is considered an indispens-
able task in a wide range of applications from numerical
simulation [3] to machine learning [4]. Designing an ef-
ficient and scalable sparse triangular solver (SpTRSV)
on modern multi-GPU HPC systems is imperative but
challenging. In recent years, substantial efforts have fo-
cused on single GPU SpTRSV [5, 6]. However, with
more scientific insights derived from computation, the
demand for ever finer-resolution problems calls for Sp-
TRSV to exploit ever larger scales of parallelism. Unfor-
tunately, given the slow pace in HBM memory capacity
scaling, one cannot guarantee the problem can always
fit into a single GPU’s memory.

In this paper, we implement and evaluate a multi-
GPU SpTRSV. We leverage NVSHMEM [7] to perform
direct GPU-GPU communication. NVSHMEM is a par-
allel programming interface based on OpenSHMEM [8]
that provides efficient and scalable (one-sided) commu-
nication for NVIDIA GPU clusters. The advantages of
using NVSHMEM is that it uses GPU-initiated data
transfers. This allows users to perform both computa-
tions and communications in one CUDA kernel instead
of transferring data between the CPU and the GPU.
Unfortunately, NVSHMEM also has a major limitation.
It limits the number of thread blocks that can be con-
currently scheduled on one V100 GPU to 80 to avoid
potential deadlocks when using point-to-point synchro-
nization in the CUDA kernel. Nominally, such a limita-
tion would significantly restrict SpTRSV concurrency.

To overcome the concurrency limitation of NVSH-
MEM, we propose a coupled producer-consumer par-
allelism using CUDA streams. CUDA streams are of-
ten used to overlap computation and communication for
the simple producer-consumer style of parallelism such
as stencils where one stream performs all computations
and the other stream handles communication [9]. Al-
though a simple CUDA stream synchronize might suf-
fice for stencils, SpTRSV has a more complex producer-
consumer relationship — the producer (sender) and the
consumer (receiver) can swap roles in turn to dispatch
new work (message). We use two CUDA streams to
handle this complex coupled producer-consumer paral-
lelism. The advantages of using CUDA streams include
not only the mitigation of the NVSHMEM concurrency

Copyright © 2021
Copyright retained by the Regents of the University of California

limitation, but also enabling the of overlap of commu-
nication and computation.

Aligned with the advances in hardware and com-
munication paradigms, performance modeling of Sp-
TRSV is critical to assess potential performance gains
in terms of machine capability. Modeling SpTRSV
depends heavily on the structure of a given matrix
and the underlying architecture. Whereas the Roofline
model [10, 11] can effectively bound performance and
identify bottlenecks for well-structured, load-balanced
codes, it can only provide a very loose bound on perfor-
mance for codes like SpTRSV. To that end, a SpTRSV
performance model is proposed in work [12] for pure
MPI implementations on CPUs. The model is based on
the critical path analysis which follows the task depen-
dency graph of the sparse matrix using the well-known
level-set method [13, 14] with a breadth-first search [15].
Process decomposition is also considered into the crit-
ical path analysis. The computations and communi-
cations in each MPI process are serialized. Therefore,
it lacks concurrency in each process (GPU), including
concurrent messaging and computation from the thread
blocks in one GPU (corresponding to one MPI process
in [12]). Ultimately, the contributions in this paper
include: (1) Develop a method of coupled producer-
consumer parallelism using CUDA streams which over-
comes the concurrency limitation of NVSHMEM, and
overlap the communications and computations, (2) Im-
plement a multi-GPU (both intra- and inter-node) Sp-
TRSV using coupled CUDA streams which achieves a
3.7× speedup when using twelve GPUs (two nodes)
compared to the single GPU implementation on Sum-
mit, and (3) Extend our SpTRSV performance model
for GPUs that enables insights into various aspects of
performance and performance bottlenecks on multiple
GPUs.

2 Distributed-memory Parallel Sparse
Triangular Solve

SpTRSV computes a solution vector x for a n × n
linear system Lx = b 1, where L is a lower triangular
matrix, and b is a n×k right-hand side (RHS) matrix or
vector (k = 1). For a sparse matrix L, the computation
of xi needs some or all of the previous solution rows xj ,
j < i, depending on the sparsity pattern of the ith row
of L. This computation dependency can be precisely
expressed by a DAG. We use a supernodal DAG [16]
formulation. For a lower triangular matrix L, a supern-
ode is a set of consecutive columns of L with the trian-

1We use lower triangular matrix to formulate the problem in

the paper. Note that the proposed methodology can be easily
ported to solve an upper triangular system Ux = b.

gular block just below the diagonal being full, and the
same nonzero structure below the triangular block. Af-
ter a supernode partition is obtained along the columns
of L, we apply the same partition row-wise to obtain a
2D block partitioning. The nonzero block pattern de-
fines the supernodal DAG. We assume b(K) and x(K)
represent the subvector associated with supernode K.
L(I,K) denotes the nonzero submatrix corresponding
to supdernodes I and K. Thus, the solution of subvec-
tor x(K) can be computed as Eq. (2.1).

x(K) = L(K,K)−1
(
b(K)−

K−1∑
I=1

L(K, I) · x(I)
)

(2.1)

The distributed-memory SpTRSV [12] partitions
the matrix L among multiple processes using a 2D block
cyclic layout. Each process is in charge of a subset of
solution subvectors x(K). The solution of these sub-
vectors and partial summation results require commu-
nication. Figure 1 describes the data flow of a sparse
triangular solve using a 2 × 2 process decomposition.
Processes assigned to the diagonal blocks, called diag-
onal processes, compute the corresponding blocks of x.
In the process decomposition of Figure 1, processes {0,
4, 8} are the diagonal processes. Within one block col-
umn, the process owning x(I) sends x(I) to the process
of L(K, I) as No. 1○ in Figure 1. After receiving the re-
quired x(I) subvector, each process computes its local
summation. Within one row, the local sums are sent
to the diagonal process which will perform the inver-
sion (No. 2○ in Figure 1). In this case, process 0 is
the producer, and process 6 is the consumer in the first
block column. However, process 6 reverts to being the
producer in the fifth block row. An asynchronous bi-
nary tree [17] is used to perform the column broadcast
and row reduction, while a one-sided MPI Put is used to
reduce the communication latency. Each message con-
tains the data and a checksum payload. The checksum
payload is used by receivers to check completion. The
binary tree is built in the setup phase that is executed
once for multiple solves. A broadcast tree per supern-
ode column K is built for the processes participating in
the column broadcast. Similarly, one reduction tree is
built per supernode row I within the processes partici-
pating in the row reduction. Note that each process in
a tree need only keep track of its parent and children.

3 Benefits and Challenges of NVSHMEM

NVSHMEM is a parallel programming interface
based on OpenSHMEM that provides efficient and
scalable communication (one-sided) for NVIDIA GPU
clusters. The advantages of using NVSHMEM for multi-
GPU programming is that it uses GPU-initiated data

Copyright © 2021
Copyright retained by the Regents of the University of California

0 1
2 3

2 x 2 process decomposition

1

2

0
1

2

5

3
4

6

LU_C_BN_C_4by2

Figure 1: Data flow and process decomposition of
the distributed-memory SpTRSV. The dashed arrows
represent the data flow. The numbers represent two
communication behaviors: 1○ block column broadcast,
and 2○ block row reduction.

transfers. This feature allows programmers to execute
both computations and communications in one CUDA
kernel in lieu of initiating communication from the CPU.

Some numerical methods have a relatively simple
communication pattern, such as stencils, which adhere
to the Bulk Synchronous Parallel (BSP) model [18].
Inter-processor communications follow the discipline of
strict barrier synchronization. As such, communication
models like MPI and its CUDA-aware variant [19] can
satisfy the requirements of those applications. Con-
versely, DAG-like computations, like SpTRSV, have a
more complex communication pattern. Point-to-point
communications can happen at any time between any
two processes (depending on the sparsity pattern and
the process decomposition) with no strict barrier syn-
chronization. Therefore, the GPU-initiated communi-
cation nature of NVSHMEM provides a big advantage
over other communication paradigms.

One challenge when using one-sided communication
is how to notify receivers that the data has completely
arrived. NVSHMEM provides signaling operations and
point-to-point synchronization operations. These op-
erations relieve users of the burden of implementing
their own data synchronization. However, it also brings
one limitation. When using synchronizations in the
CUDA kernel, the number of thread blocks that can be
launched on one V100 GPU is limited to 80 (the number
of SMs) to avoid potential deadlocks. This is an inherent
limitation of the NVSHMEM+CUDA+NVIDIA GPU
environment, and can significantly restrict the concur-
rency in SpTRSV.

To overcome the limitation of 80 thread blocks, we
propose a coupled producer-consumer parallelism using
CUDA streams. We use two streams to execute two ker-
nels concurrently. One kernel, named WAIT in stream[0],
handles NVSHMEM point-to-point synchronizations. It
is launched using nvshmemx collective launch() with
a number of thread blocks less than 80 (to ensure
the GPU is not fully occupied). The other kernel,
named SOLVE in stream[1], is responsible for computa-

tion and sending data/notification. It is launched af-
ter the WAIT kernel as a normal CUDA kernel thereby
maximizing concurrency. We use a bit scalar (flagw,
Algorithm 1 line 4) to control the launch order of the
two kernels. The WAIT kernel is launched first, and sets
the scalar to True. The SOLVE kernel is not launched
until flagw == True.

4 Multi-GPU SpTRSV using CUDA Streams.

Algorithm 1 details our design for our multi-GPU
SpTRSV, and the variables are listed in Table 1. We
bind one process to one GPU so that each GPU (cor-
responding to a process in Section 2) is in charge of a
subset of solution subvectors x(K).

Let us assume that a lower triangular matrix L(n, n)
has N supernodes in total, Ng supernode columns per
GPU, and Nr supernode rows per GPU. We launch
Ng + 2 thread blocks per GPU for the matrix L, where
two thread blocks are for the WAIT kernel, and Ng thread
blocks are used by the SOLVE kernel. The SOLVE ker-
nel uses those Ng thread blocks to perform the requi-
site TRSV (Triangular Solve Matrix-Vector, diagonal
blocks) and GEMV (General Matrix-Vector Multiplica-
tions, off-diagonal blocks) computations, broadcasts x
subvector, notifies the consumers.

We perform row reductions in both kernels when-
ever the data dependency (fmod(I) == 0, line 21
and 49) is met. A counter fmod(I) is computed per
supernode row I to record the number of local inner-
products and non-local messages for their contribution
to lsum(I). The number of local updates equals the
number of blocks in row I one process owns, while the
number of non-local updates is always no more than two
(two children in the binary reduction tree).

In the pre-processing phase, we compute two masks
Mc and Mr (line 2) for every GPU (process). A mask is
a bit vector encoding a bit for each block column (Mc,
size of Ng) or two bits of each block row (Mr, size of
2·Nr). According to the communication binary tree, one
parent broadcast x subvector to two children at most.
That is, one thread block waits for at most one message
in each block column broadcast. In each row reduction,
two (or one) children send its local summation (lsum)
to their parent. Each thread block waits for at most
two messages in a row reduction. The mask of a block
column i, Mc[i] (or row j, Mr[j ∗ 2] and Mr[j ∗ 2 + 1])
represents whether block column i (or row j) needs
communication or not. Thus, columns (or rows) that
do not expect messages are masked. Each thread in
the WAIT kernel has its own entry of the two masks.

Copyright © 2021
Copyright retained by the Regents of the University of California

Algorithm 1 Multi-GPU SpTRSV using two streams
(variable definitions are listed in Table 1)

1: procedure Pre-processing(on CPU)
2: Compute Mc, Mr for each GPU
3: NVSHMEM launch WAIT, dimGrid(2), dimBlock(maxTH),

stream[0]
4: flagw=0 . the bit scalar to control the launch order
5: while(flagw!=1); . spin wait
6: CUDA launch SOLVE, dimGrid(Ng), dimBlock(16x16),

stream[1]
7: end procedure

8: procedure solve(on GPU, stream[1])
9: K = bid . one thread block handles one block column

10: if I am the diagonal process in charge of K then
11: while(fmod(K)!=0); . spin wait, called by thread 0
12: x(K)+ = lsum(K)

13: x(K) = L(K,K)−1 · x(K)
. parallelize TRSV over threads

14: else
15: while(flag x[K]!=1); . spin wait, called by thread 0
16: NVSHMEM SEND ready x(K) to my children’s ready x

buffer . called by all threads
17: for each L(I,K)! = 0, I > K do

. parallelize I and GEMV over threads
18: lsum(I) = lsum(I) + L(I,K) · ready x(K)
19: fmod(I) = fmod(I) − 1
20: if fmod(I) == 0 then
21: NVSHMEM SEND ready lsum(I) to my parent’s

ready lsum buffer . called by one thread
22: end if
23: end for
24: end if
25: end procedure

26: procedure Wait(on GPU,stream[0])
27: flagw=1 . the bit scalar to control the launch order
28: if bid==0 then . handle block column broadcast
29: while expecting more tasks do
30: idx=nvshmem int wait until any(flag x,Mc)

. Mc is distributed across threads
31: Mc[idx]=1 . message arrived in block column idx
32: end while
33: end if

34: if bid==1 then . handle block row reduction
35: while expecting more tasks do
36: idxr=nvshmem int wait until any(flag lsum,Mr)

. Mr is distributed across threads
37: Mr[idxr]=1 . message arrived in block row idxr/2
38: if (cnt[I]! = flag lsum[I ∗ 2] + flag lsum[I ∗ 2 + 1]

then
. cnt[I]: number of required messages in row I

. cnt[I]: pre-compute when building communication trees
39: if flag lsum[I ∗ 2] == 1 then
40: lsum(I)+ = ready lsum(I)
41: fmod(I) = fmod(I) − 1
42: end if
43: if flag lsum[I ∗ 2 + 1] == 1 then
44: lsum(I)+ = ready lsum(I ∗ 2)
45: fmod(I) = fmod(I) − 1
46: end if
47: end if
48: if fmod(I) == 0 then
49: NVSHMEM SEND ready lsum(I) to my parent’s

ready lsum buffer . called by one thread
50: end if
51: end while
52: end if
53: end procedure

The SOLVE kernel in stream[1] (Algorithm 1 lines 8-
25) performs computations (TRSV/GEMV), sends data
and notification (lines 21 and 16) to receivers. As we
assign one thread block to execute each supernode col-

umn, the number of thread blocks launched equals the
number of local supernodes Ng on that GPU. Through
empirical tuning, we use 256 threads for each thread
block. Each GPU (process) performs TRSV first if it is
a diagonal process (lines 10-14). Otherwise, it will spin
wait until the message arrives (flag x[K] = 1: message
arrived in block column K, line 15). Once it has received
the message, that thread block immediately sends the
x subvector to its children in the binary broadcast tree,
and then performs GEMV computation, and sends lsum
if the counter fmod(I) becomes zero. NVSHMEM
SEND (line 16 and 21) is a set of NVSHMEM operations
as Table 1 shows. The senders participating in column
broadcast use three operations to send one message:
1○ nvshmem double put nbi block() called by thread

blocks is used to send the data (x subvectors) to NVSH-
MEM buffer ready x. 2○ nvshmemx int signal()

called by one thread is used to send the notification
to NVSHMEM buffer flag x. 3○ nvshmem fence() is
used between 1○ and 2○ to ensure that the notification
is sent after the data. Senders in row reduction fol-
low the same manner. The only difference is that they
use nvshmem double put nbi() called by one thread
to send the lsum. Correspondingly, the point-to-point
synchronization nvshmemx wait until any in WAIT ker-
nel guarantees that the message receive order preserves
the message send order.

Table 1: Algorithm 1 References
Descriptions

Ng number of thread blocks per GPU SOLVE kernel

Nr number of block rows per GPU

mz maximum size of an individual message equals to maximum supernode size

bid thread block id 1D grid

maxTH number of threads per block in WAIT kernel 1D, cudaOccupancyMaxPotentialBlockSize

K block column K

I block row I

mybrID block row id

ready x receive buffer for x nvshmem malloc, size is mz ·Ng

ready lsum receive buffer for block rows nvshmem malloc, size is 2 ·mz ·Nr

flag x notification buffer for x nvshmem malloc, size is Ng

flag lsum notification buffer for lsum nvshmem malloc, size is 2 ·Nr

Mc mask vector for block column broadcast cuda malloc, size is Ng

Mr mask vector for block row reduction cuda malloc, size is 2 ·Nr

NVSHMEM Communication APIs Descriptions Callsite Scope

Sender

nvshmem double put nbi block send x subvector thread blocks

nvshmem double put nbi() send lsum threads

nvshmem fence() ensure the orders

nvshmemx int signal() send notification threads

Receiver nvshmem int wait until any() receive notification threads

The WAIT kernel in stream[0] (lines 26-53) uses nvsh-
memx wait until any to receive the data completion no-
tification from the senders. We launch two thread
blocks with maxTH threads in each thread block. Here
maxTH is the maximum block size returned by cu-
daOccupancyMaxPotentialBlockSize. The first thread
block is used for column broadcasts while the second is
used for row reductions. Consider the thread block used
for block column broadcasts (line 28-33), recall that we
have calculated a mask vector Mc in the pre-processing
phase. Here we distribute this mask among the threads
in this thread block, and let each thread wait for a sub-

Copyright © 2021
Copyright retained by the Regents of the University of California

set of all the block columns. Figure 2 describes the mask
distribution among threads. Assuming we have a mask
of length 17 (i.e., Ng = 17), and one thread block is
launched for column broadcast, with five threads in it.
mask[i] = 0 means the GPU expects one message in
block column i, and 1 means that no message is needed.
There are 10 messages in total, and we let each thread
wait for two messages to balance the number of messages
to be waited across the threads. flag x is a bit vector
including a bit for each column, and it is a NVSHMEM
buffer which will be updated by other GPUs. While the
mask Mc is a local buffer to manage the scope of waiting
columns for each thread.

0 0 0 1 1 0 0 1 1 1 0 0 0 1 0 1 0mask

t0 t1 t2 t3 t4

Figure 2: Each thread (ti) in WAIT kernel has its own
entry in mask.mask[i] = 0 means block column i waits
for one message. 1 means no message is needed.

In the row reduction (line 34-52), each block row
has two bits in Mr and flag lsum since one block row
receives two messages at most. We initialize the two
bits to zeros if one block row expects messages, and then
distribute Mr across threads. Once received all required
message, the corresponding thread will accumulate the
local summation, and then send to its parent according
to the binary reduction tree if the counter fmod(I)
becomes zero. Recall that each block row receives two
messages at most, and we initialize two bits to zeros
no matter it expects one message or two messages.
Now the question is how receivers know whether they
have received all required messages. A counter cnt[I]
(line 38) for each row I is computed when building
communication trees on CPUs. Thus, block row I
receives all required messages when the summation of
the two bits in buffer flag lsum equals to cnt[I].

In contrast to traditional bulk synchronous paral-
lel GPU implementations, our multi-GPU SpTRSV de-
sign can be considered as a message-driven algorithm.
If a received message is a subvector of x, the GPU
forwards the message according to the binary broad-
cast tree (line 16) before performing local accumulation.
Otherwise if the message is lsum, the GPU accumulates
it to the local sum. Once the counter fmod becomes
zero, the GPU has received all required messages and
executed all its assigned GEMVs, then that GPU for-
wards the lsum according to the binary reduction tree.

Inter-Stream Communication: The two ker-
nels in two streams need to interact with each other so
that (1) the SOLVE kernel can execute GEMV when the
expected x subvector is received, and (2) both kernels
need to track the counter fmod in order to send the
lsum in time.

Recalled that the WAIT kernel uses flag x (column
broadcast) to receive the notification from the senders.
That buffer is located in GPU global memory. There-
fore, the SOLVE kernel can access flag x simultaneously
in another stream as Figure 3 shows (corresponding to
Algorithm 1 line 15). Thread blocks that need to receive
messages in the SOLVE kernel keep reading the flag x
buffer until the corresponding location in that buffer is
updated by the WAIT kernel.

The counter fmod is used to maintain the data de-
pendency in a row reduction and is also located in GPU
global memory so that the two kernels can access fmod
concurrently. The SOLVE kernel atomically decrements
fmod once it finishes the local inner-products. Mean-
while, the WAIT kernel also atomically decrements fmod
once it receives non-local messages as visualized in Fig-
ure 3 (corresponding to Algorithm 1 lines 20 and 48).
When fmod becomes zero, the corresponding thread,
either the SOLVE kernel or the WAIT kernel, will send its
local summation to its parent according to the binary
reduction tree.

GPU memory

wait for WAIT successfully launched

GPU memory read
NVSHMEM point-to-point synchronization

GPU memory read and atomic add
WAIT: stream[0] thread block 0 thread block 1

SOLVE: stream[1] 0 1 2 Ng…

flag_x
nvshmem_malloc

fmod
cuda_malloc

… ……

Figure 3: Communication between two streams. The
two kernels use flag x and fmod to maintain data
dependencies.

Extensibility: Our work can be migrated to other
GPU-accelerated architectures that support GPU-
initiated one-sided communications, e.g., AMD GPUs
with ROC SHMEM [20, 21] which has a similar syntax
to NVSHMEM.

5 SpTRSV Performance Model for GPUs

We extend the critical path model [12] to GPUs to
explain the observed performance, and explore the key
features of matrices to estimate the potential perfor-
mance benefits when using multiple GPUs.

The model is based on the critical path analysis
which follows the task dependency graph of the sparse
matrix using the well-known level-set method [13, 14]
with a breadth-first search [15]. We further extend this
critical path model to GPUs by (1) refining the DAG
nodes in each level according to messaging patterns, and

Copyright © 2021
Copyright retained by the Regents of the University of California

Algorithm 2 SpTRSV performance model for GPUs

Application Inputs:
Nsuper: number of supernodes
wi: width of block i (bytes)
hi: height of block i (bytes)
Architecture Inputs:
bwp: peak memory bandwidth per GPU
bwg : GPU-GPU data transfer bandwidth (bytes/GEMV/second)
Lg : GPU-GPU data transfer latency
P : number of GPUs (processes)
MAX TB: Number of thread blocks per GPU that can achieve the
peak memory bandwidth
Outputs:
Tcompp : TRSV/GEMV time of GPU p
Tcommp : GPU-GPU data transfer time of GPU p
Ttot: total SpTRSV time

1: procedure modeling
2: Analyze Critical path: find DAG levels and DAG nodes
3: Count outb l p (broadcast) of each DAG level l for GPU p
4: Count outr l p (reduction) of each DAG level l for GPU p

5: bwm =
bwp

Nsuper/P
. memory bandwidth per thread block

(bytes/second)
6: If (bwm < 1.3 GB/s) bwm=1.3 GB/s;
7: If (bwm > 5.2 GB/s) bwm=5.2 GB/s;
8: for each DAG level l do
9: mynodesl p = 0, mybytesl p = 0

. mynodesl p: number of active DAG nodes in level l of GPU p
10: for each DAG nodes i do
11: mynodesl p+ = 1
12: mybytesl p+ = wi · hi

13: if mynodesl p >= MAX TB then
. reach memory capacity

14: Tcompl p
+ =

mybytesl p
bwp

. Tcompl p
: compute time of level l in GPU p

15: mybytesl p+ = 0
16: mynodesl p+ = 0
17: end if
18: if mynodesl p < MAX TB && ends level l then
19: if tune == 1 then
20: bwm =

bwp
mynodesl p

21: If (bwm < 1.3 GB/s) bwm=1.3 GB/s;
22: If (bwm > 5.2 GB/s) bwm=5.2 GB/s;
23: end if

24: Tcompl p
+ =

mybytesl p
bwm∗mynodesl p

25: end if
26: end for
27: end for
28: for each DAG level l do
29: for each supernode column c in DAG level l do
30: if outb l p c! = 0 then . broadcast
31: outnb l p c = outb l p c > 2? log2(outb l p c) :

outb l p c

. outnb l p c: non-overlapped messages in column c on level l in
GPU p

32: Tcomml p
+ = Lg + outnb l p c · wi

bwg

33: end if
34: end for
35: for each supernode row c in DAG level l do
36: if outr l p c! = 0 then . broadcast
37: outnr l p c = outr l p c > 2? log2(outr l p c) :

outr l p c

. outnr l p c: non-overlapped messages of row c on level l in
GPU p

38: Tcomml p
+ = Lg + outnr l p c · hi

bwg

39: end if
40: end for
41: end for
42: Find GPU pmax (

∑L
l=0 Tcomml p

+ Tcompl p
) who has the

longest time
43: Ttot = Tpmax

44: If (
Tsingle GPU

Ttot
> P) re-model with tune = 1

45: end procedure

(2) taking memory scaling bandwidth into consideration
when modeling GEMV and TRSV time.

The computation dependency of SpTRSV can be
precisely expressed by a DAG. Let us consider a L ma-
trix which is factorized via SuperLU DIST with METIS
ordering for fill-in reduction [22]. Thus, DAG nodes re-
fer to dense matrix-vectors, and edges between DAG
nodes represent data dependencies. DAG nodes in the
same level can be solved concurrently, and DAG levels
must be solved sequentially. When it comes to multi-
GPU SpTRSV, we can further remove the edges be-
tween DAG nodes that assigned to the same GPU. This
is because thread blocks can each be executed indepen-
dently and thus may execute in parallel. That is to say,
DAG nodes located in one GPU can be solved concur-
rently by multiple thread blocks. Ultimately, the edges
in the refined DAG represent only GPU-GPU messages.

Algorithm 2 details the extended GPU SpTRSV
model. The SpTRSV time is modeled based on the
refined DAG. The matrix features required to build the
model are number of supernodes (Nsuper), number of
nonzeros of each DAG node (wi and hi). The compu-
tation time of each GPU (process) is the accumulation
time of DAG levels. In each level, memory bandwidth
scales with the number of DAG nodes until the aggre-
gate memory bandwidth reaches the peak (line 10-14).
The empirical HBM bandwidth (bwp) is 828 GB/s [23].
According to the white paper of NVIDIA Tesla V100
accelerator (V100 [2]), the maximum number of thread
blocks per V100 is 80SMs·64warps

8warps = 640, where 8 warps
per thread block is based on our design. Therefore, we
set the lower bound of memory bandwidth per thread
block (bwm) to 1.3 GB/s. However, the number of ac-
tive thread blocks can be much smaller than the max-
imum of 640 due to either data dependencies or hard-
ware limit. That is to say, in some cases, the bwm can
be larger than 1.3 GB/s. Let’s consider the question
of how many thread blocks can leverage a full band-
width of a SM with dependencies. Ideally, the smallest
number is two. One thread block spin waits the depen-
dency and the other one can perform other independent
computation work. Thus, the bandwidth per thread

block bwm = 828GB/s
80SMs·2warps = 5.2 GB/s. Correspond-

ingly, MAX TB=80 · 2 = 160. Ultimately, the upper
and lower bound of bwm is 5.2 GB/s and 1.3 GB/s.

The communication time is modeled according to
the number of messages and message size of each DAG
node on the critical path. We count the outb l p c (the
number of broadcast messages happened in column c
of level l in GPU p) and outr l p c (the number of
reduction messages occurring in row c on level l in
GPU p) according to the process decomposition. In
column broadcast, each message has a size of the width

Copyright © 2021
Copyright retained by the Regents of the University of California

of block column i (wi). The latency of multiple sends
can be overlapped because all the messages are coming
from the same producer. Let us assume there are P
processes participating in the block column broadcast.
When using a binary communication tree, each process
that participates in the block column broadcast sends
at most two messages to its children. This reduces
the send message count of the corresponding process
by log2P . Ultimately, for each GPU the accumulated
communication time of each DAG level is the final
communication time. The communication time on each
level is estimated using the number of non-overlapped
messages in GPU p (line 30-33). The row reduction
follows the same manner. Each message size equals the
height of block rows i (hi). Thus, each GPU has a total
SpTRSV time which equals to the accumulated time of
computation and communication of DAG nodes on its
critical path. We then take the longest SpTRSV time
among the GPUs as the final SpTRSV time, and the
critical path of that GPU is the final critical path.

We introduce a refinement feature in the model
(line 44). Once we model the total SpTRSV time of
using P GPUs, we compare the Ttot with the single
GPU time. If the speedup is larger than the superlinear
speedup P , we believe such discrepancy is due to the
optimized memory bandwidth per thread block. Recall
that by default every 160 DAG nodes (thread blocks)
can achieve the peak memory bandwidth. Thus, at the
end of DAG levels, each thread block may achieve a
higher memory bandwidth than the initialized bwm =

bwp

Nsuper/P if the number of unsolved DAG nodes is less

than the number of supernodes per GPU. (lines 19-
23). In the refinement phase, we turn off that memory
bandwidth adjustment, and use the the initialized bwm

instead of that optimized one.
BWg and Lg are parameterized by benchmarked

message sizes using a round-trip ping pong benchmark.
When estimating the communication time, we round up
(optimistic) the message size to the next power of two
to match the corresponding BWg in the model.

6 Results

In this section, we report experiment results and
analysis of our multi-GPU SpTRSV using CUDA
streams, including strong scaling performance evalu-
ation with different process decompositions, and the
analysis of the observed performance. We then discuss
the key matrix features to determine the potential ben-
efit of a matrix to use multiple GPUs.

6.1 Experimental Setup: Results presented in this
paper were obtained on the GPU-accelerated partition
on Summit at OLCF. Each of the Summit nodes con-

tains two IBM POWER9 processors and six NVIDIA
Tesla V100 accelerators. The GPUs within a node are
connected by NVIDIA’s NVLink interconnect. Summit
nodes are connected using EDR InfiniBand intercon-
nect. In all experiments, the SpTRSV runs on GPUs
using double-precision real matrices. We use CUDA 10
and NVSHMEM 1.1.3 with GDRcopy 2.0.

Table 2 presents the key features of the matrices
used in this paper. These matrices have also been used
in various computational research [24–27]. Matrix S1
comes from M3D-C1, a fusion simulation code used for
magnetohydrodynamics modeling of plasma [25]. All
other matrices are publicly available through the SuiteS-
parse Matrix Collection [28]. The selected matrices
cover a wide range of matrix properties (i.e., matrix
size, sparsity structure, the number of level-sets, and
application domain). The matrices are first factorized
via SuperLU DIST with METIS ordering for fill-in re-
duction [22]. The resultant lower triangular matrices
are used with the proposed multi-GPU implementation.

6.2 Scalability Evaluation: Figure 4 shows our
speedups (using the optimal process decomposition in
each concurrency) compared to the single GPU ver-
sion of cusparse csrsv2(). Our single GPU implemen-
tation outperforms cusparse csrsv2() by up to 1.9×
speedup. Our multi-GPU SpTRSV provides a perfor-
mance improvement of up to 6.1× when using twelve
GPUs. Therefore, our implementation enables GPU-
accelerated, distributed memory computing via NVSH-
MEM.

Figure 4: Multi-GPU Lower triangular solve time
compared to cusparse csrsv2(). Our implementation
achieves up to 6.1× speedup with a scale from single
GPU to eighteen GPUs (three Summit nodes).

Figure 5a shows the lower triangular solve speedup
using a P×1 process decomposition (column broadcast)
compared to our single GPU implementation. Our
multi-GPU implementation using CUDA streams at-
tains a speedup of up to 3.7× when using up to twelve
GPUs (two nodes). Figure 5b presents the lower tri-
angular solve speedup using a 1×P process decompo-
sition (row reduction) on one Summit node. In this

Copyright © 2021
Copyright retained by the Regents of the University of California

Table 2: Test matrices.

Matrix #supernodes nnz in L Levels
Maximum Speedup

2 GPUs 6 GPUs 12 GPUs 18 GPUs

S1 9,827 8.80E+08 388 1.2× 1.3× 0.7× 0.8×
DG GrapheneDisorder (DG) 2,000 9.66E+08 199 1.2× 1.3× 1.4× 1.3×
LU C BN C 2by2 (LU2) 1,216 8.54E+08 264 1.5× 2.2× 1.8× 1.9×
LU C BN C 4by2 (LU4) 2,383 1.87E+09 320 1.5× 2.6× 2.4× 2.2×
Li4244 (Li) 362 5.18E+08 188 1.5× 3.5× 3.7× 2.7×

(a) P×1 process decomposition (column

broadcast)

(b) 1×P process decomposition (row reduc-

tion).

3x2
4x3 6x3
3x6

(c) 2D process decomposition

Figure 5: Multi-GPU lower triangular solve time compared to our single GPU implementation. Our Multi-GPU
implementation achieves up to 3.5× speedup on one Summit node, and achieves up to 3.7× speedup between
two to three nodes using a P×1 process decomposition.

case, the performance of the single GPU outperforms
the multi-GPU implementation. Figure 5c shows the
speedups of using a 2D process decomposition (both
column broadcast and row reduction). Performance re-
sults demonstrate that our implementation favors row
parallelism over column parallelism, because the latter
involves row reductions which are more expensive than
column broadcasts.

Our multi-GPU SpTRSV is often able to exploit
multiple GPUs on one node. On the other hand, per-
formance is challenged when using GPUs that span mul-
tiple nodes but rarely falls off a cliff. Thus, when limited
GPU memory capacity necessitates spreading a matrix
over multiple nodes, our implementation can deliver ac-
ceptable performance whereas a single GPU implemen-
tation would be incapable of holding the matrix.

It is worth mentioning that although SpTRSV is
challenged beyond twelve GPUs, it can scale to 4,096
processes on CPUs [12]. This is an artifact of faster
GPU computational performance being offset by a much
lower inter-node messaging performance. Specifically,
a V100 provides 7 TFLOP/s of performance while
a KNL core only provides about 0.4 TFLOP/s. At
the same time, the one-sided NVSHMEM messaging
performance is about 7× slower than foMPI which is
used in work [12]. According to the microbenchmarks
of our largest typical message size 1024 bytes, work [12]
uses a network with 545 MB/s bandwidth, while the
current NVSHMEM bandwidth is only 75 MB/s.

6.3 Strong Scaling Performance Analysis: We
first discuss two key observations in Section 6.2: (1)

speedups on multiple nodes are diminished, and (2)
the selected matrices demonstrate very different scaling
behaviours. We then demonstrate (3) the predictive
ability of our model, which can help users to determine
the number of GPUs that produces the fastest run time.

Inter-GPU Networking Performance. The
smaller speedups on multiple nodes are due to the
low performance of the inter-node GPU-GPU net-
work. Figure 6 highlights the NSVHMEM SEND
bandwidth between two GPUs (processes) of intra-
socket, intra-node and inter-node using three differ-
ent callsite scopes: Thread block: Use all threads in
thread blocks to put data to the target GPU (process)
by nvshmem double put nbi block, and then perform
a nvshmem fence. Finally, use thread 0 to send no-
tification via nvshmemx int signal. Warp: Use one
warp in each thread block to put data to the target
GPU with nvshmemx double put warp, and the rest re-
main the same with thread block. Thread: Use one
thread in each thread block to put data to the target
GPU with nvshmem double put, and the rest remain
the same with thread block.

The GPU-GPU bandwidth using thread blocks out-
performs the performance using warps and threads by
2× and 9× on average. Using thread blocks or warps
deliver the same performance as using threads for inter-
node communication. This is because only one single
thread in a thread block/warp can issue an RMA write
operation to the destination GPU over InfiniBand.

Ultimately, one should remember that the perfor-
mance of one-sided messaging libraries can vary sub-

Copyright © 2021
Copyright retained by the Regents of the University of California

stantially. For example, on the Cray Aries network,
Cray’s one-sided implementation is 2.7× slower than
Cray’s two-sided [12] yet ETH’s foMPI is 3× faster.
Here, one-sided NVSHMEM is 2.3× slower than IBM
Spectrum MPI over InfiniBand network on Summit [29].

Figure 6: NVSHMEM SEND (thread block) bandwidth
using two GPUs on Summit. The shadowed stripe
highlights the typical message size in SpTRSV of 256
bytes to 1,024 bytes. Intra-socket NVSHMEM SEND
outperforms intra-node NVSHMEM SEND (avg. 1.2×)
and inter-node NVSHMEM SEND (avg. 3.9×).

Process Decomposition and Performance.
Recall that the 1×P implementation leverages only a
single thread to perform NVSHMEM SENDs (Algo-
rithm 1 line 21 and 49), the overall SpTRSV perfor-
mance using a 1×P implementation (Figure 5b) is lim-
ited by the resultant low NVSHMEM SEND through-
put. In a 2D process decomposition, as we increase
the number of GPUs participating in the row reduc-
tion, the number of messages (single thread NVSHMEM
SEND) in the row reduction increases, and thus the per-
formance decreases. Essentially, the smaller speedup for
the 2D process decomposition compared to the P×1 im-
plementation is again due to the low NVSHMEM SEND
throughput (single thread) in row reductions.

Matrix Properties and Performance. Matrix
DG and Li have a similar number of DAG levels: 199
and 188, respectively. Since DG has more nonzeros (966
million nonzeros) than Li (518 million nonzeros), one
might assume that DG scales better than Li. However,
the reality is that Li achieves 2.7× speedup on average
(up to 3.7× on twelve GPUs) while DG has 1.3×
speedup on average (up to 1.4× on six GPUs). Such
a discrepancy is due to ignoring communication and
memory bandwidth.

According to the model in Algorithm 2, matrix
Li has 162 message on the critical path using two
GPUs, 270 messages using six GPUs, and 292 message
using twelve GPUs, while DG has 1,000, 898 and 571
messages, respectively. Hence, one can immediately
understand that the large number of messages of DG
makes its scaling performance worse than matrix Li.

Another aspect is the achieved memory bandwidth
per thread block. Matrix Li has only 362 supernodes
in total. Therefore, it can achieve 4.6 GB/s (828

362/2)

when using two GPUs and 5.2 GB/s (upper bound
of memory bandwidth per thread block, Algorithm 2
line 7) when using more than two GPUs. While
DG achieves only 1.3 GB/s (lower bound of memory
bandwidth per thread block, Algorithm 2 line 6) with
1,000 supernodes per GPU when using two GPUs, and
4.0 GB/s when using twelve GPUs (highest speedup,
1.4×). A smaller number of supernodes (thread blocks)
per GPU produces less memory contention. Thus, each
thread block can achieve a higher memory bandwidth.

Ultimately, matrix Li achieves the best scaling
performance among the selected matrices. This is due
the weak data dependency (only 188 DAG levels and
a small number of messages on the critical path) and
high memory bandwidth per thread block (5.2 GB/s).
Even though matrix DG has a similar number of levels
as matrix Li, it does not scale as well as Li due to
the limited memory bandwidth per thread block and
relatively larger number of messages on the critical path.

Model prediction. Figure 7 visualized the mod-
eled time and measured times of the S1 matrix (achieves
the smallest speedup at scale, up to 1.3×, among the
matrices in Table 2) and the Li matrix (highest speedup,
up to 3.7×). The total modeled SpTRSV time equals
the accumulation of the communication time on the
critical path (yellow bar) and the computation time on
the critical path (blue bar). In addition to understand-
ing and explaining observed performance, the SpTRSV
model can also help identify the number of GPUs that
produces the fastest run time.

The overall sweet spot of S1 is six GPUs within
a node. From the model, we see that the numbers of
messages on the critical paths are very similar: 7,922
messages (six GPUs) and 7,408 message (twelve GPUs),
but the network bandwidth decreases as more nodes
are used. Ultimately, the resultant low inter-node
NVSHMEM SEND throughput makes the run time of
S1 increase when using more than one node.

Unlike the S1 matrix, the communication time of
Li only takes 33% when using up to eighteen GPUs.
It’s the computation time dominants the total run
time. From one to six GPUs, we see a nearly linear
reduction in computation time of matrix Li because the
achieved memory bandwidth increases: 1.3 GB/s per
thread block using one and two GPUs (362 supernodes
using one GPU, and 181 supernodes per GPU using two
GPUs) and 5.2 GB/s per thread block using six GPUs
(55 supernodes per GPU).

Rather than using average parallelism of a matrix
as metrics, our model incorporates the number of levels

Copyright © 2021
Copyright retained by the Regents of the University of California

1 2 6 12 18
0

20

40

60

80

100

120

140

160

180
S1

modeled communication time
Ti

m
e

(m
s)

Ti
m

e
(m

s)

Number of GPUsNumber of GPUs

modeled computation time measured

1 2 6 12 18
0

10

20

30

40

50

60

70
Li

Figure 7: The performance model can help identify
the number of GPUs that produces the fastest run
time. The total modeled SpTRSV time equals the
accumulation of the blue bar and the yellow bar.

(dependency), number of non-zeros on the critical path,
and architecture features (memory bandwidth, and net-
work bandwidth). The model highlights that the im-
provement in memory bandwidth per thread block (not
just aggregate bandwidth) can help reduce computation
time for matrices like S1, while improving NVSHMEM
SEND throughput can help attain better scalability for
matrices like Li.

7 Related Work

Exploring high performance SpTRSV is becoming
ever more crucial on GPU-accelerated architectures.
Most existing parallel GPU triangular solvers focus on
optimizing single GPU performance [6, 30–33]. Due to
the complex data dependencies in SpTRSV, algorithm
optimization has been mainly based on the level-set
methods and color-set methods for various parallel
architectures. Additionally, there is research focused
on optimizing the block structure [34], or analyzing
nonzero layout and selecting the best sparse kernels by
using machine learning and deep learning methods [35–
37]. Our work explore the benefits of using multiple
GPUs, and we believe that our proposed method of
coupled producer-consumer parallelism using CUDA
streams can bring insightful experience for DAG-based
computations on emerging accelerated architectures.

The existing work of distributed-memory SpTRSV
have mainly conducted on CPU platforms. Using
1D or 2D process layouts to improve load balance is
discussed in work [38–40]. An asynchronous binary tree
is proposed to reduce the communication latency [17].
Venkat et al. [41, 42] developed several techniques
that generate wavefront parallelization with faster level-
set scheduling. One-sided communication is used in
work [12] to implement a synchronization-free task
queue to manage messages between producer-consumer
pairs. Xie et al. propose a multi-GPU SpTRSV using

a 1×P process decomposition [43]. The inter-GPU
communications are performed via NVSHMEM warp-
level get, and it outperforms cusparse csrsc2() by up
to 3.2× on average using 16 GPUs on one DGX-2
node with 20% parallel efficiency. In comparison, our
new algorithm achieves up to 2.9× speedup on average
using six GPUs on one Summit node with 58% parallel
efficiency. Hamidouche et al. implement a multi-GPU
SpTRSV on AMD GPUs using ROC SHMEM [21].
They achieved up to a 3.7× speedup compared to a
baseline that used intra-kernel communication (rely on
CPU threads to perform network operations on behalf of
the GPU) rather than the optimal single GPU solution.
It is worth mentioning that our work starts from a
faster baseline. In addition, comparisons of AMD
ROC SHMEM on AMD GPUs using a column-based
approach against NVIDIA NVSHMEM on NVIDIA
GPUs using a supernodal approach imperil meaningful
insights as too many variables were changed.

8 Conclusion

We use CUDA streams to perform coupled
producer-consumer parallelism in multi-GPU SpTRSV.
Over the range of two to eighteen GPUs, our multi-GPU
SpTRSV implementation improve solve time by up to
3.7× compared to our single GPU implementation, and
up to 6.1× compared to cusparse csrsv2(). In order to
assess our observed performance relative to machine ca-
pabilities and matrix features, we constructed a critical
path performance model. Our SpTRSV model endows
users with far greater insights as to how different as-
pects of multi-GPU architectures and matrix features
constrain performance, e.g., the limited achieved mem-
ory bandwidth per thread block constrains the scaling
performance of matrix S1, while low NVSHMEM SEND
throughput constrains the performance when using 1×P
and 2D decompositions.

Fusion simulations like M3DC1 [25] and NIM-
ROD [44], solve highly ill-conditioned linear systems.
One successful method is to use GMRES with a block-
Jacobi preconditioner, where each diagonal block is
solved by SuperLU DIST. There is no inter-block com-
munication within the preconditioner. Our results high-
light the computational importance of keeping block size
small enough so that it fits on a single node.

In the future, we will continue to refine the model
to highlight the performance nuances, use the model
to identify potentially superior process mappings, and
port our supernodal-based triangular solver to other
emerging accelerators. More broadly, we will explore
the value of our multi-CUDA stream approach in other
domains.

Copyright © 2021
Copyright retained by the Regents of the University of California

References

[1] Top500 Highlights - November 2020. URL
https://www.top500.org/lists/top500/2020/

11/highs/.

[2] Nvidia Tesla. V100 gpu architecture. On-
line verfügbar unter http://images. nvidia.
com/content/volta-architecture/pdf/volta-
architecture-whitepaper. pdf, zuletzt geprüft
am, 21, 2018.

[3] István Z Reguly, Gihan R Mudalige, Carlo Bertolli,
Michael B Giles, Adam Betts, Paul HJ Kelly, and
David Radford. Acceleration of a full-scale indus-
trial CFD application with OP2. IEEE Transac-
tions on Parallel and Distributed Systems, 27(5):
1265–1278, 2016.

[4] Yucheng Low, Joseph Gonzalez, Aapo Kyrola,
Danny Bickson, Carlos Guestrin, and Joseph M
Hellerstein. Graphlab: A new parallel framework
for machine learning. In Conference on uncer-
tainty in artificial intelligence (UAI), pages 340–
349, 2010.

[5] Maxim Naumov. Parallel solution of sparse trian-
gular linear systems in the preconditioned iterative
methods on the gpu. NVIDIA Corp., Westford,
MA, USA, Tech. Rep. NVR-2011, 1, 2011.

[6] Weifeng Liu, Ang Li, Jonathan Hogg, Iain S Duff,
and Brian Vinter. A synchronization-free algorithm
for parallel sparse triangular solves. In European
Conference on Parallel Processing, pages 617–630.
Springer, 2016.

[7] NVIDIA NVSHMEM Documentation. URL
https://docs.nvidia.com/hpc-sdk/nvshmem/

index.html.

[8] Jeff R Hammond, Sayan Ghosh, and Barbara M
Chapman. Implementing OpenSHMEM using
MPI-3 one-sided communication. In Workshop on
OpenSHMEM and Related Technologies, pages 44–
58. Springer, 2014.

[9] M. Sourouri, T. Gillberg, S. B. Baden, and X. Cai.
Effective multi-gpu communication using multiple
cuda streams and threads. In 2014 20th IEEE In-
ternational Conference on Parallel and Distributed
Systems (ICPADS), pages 981–986, 2014. doi:
10.1109/PADSW.2014.7097919.

[10] Samuel Williams, Andrew Waterman, and David
Patterson. Roofline: An insightful visual perfor-
mance model for floating-point programs and mul-
ticore architectures. Technical report, Lawrence

Berkeley National Lab.(LBNL), Berkeley, CA
(United States), 2009.

[11] Nan Ding and Samuel Williams. An instruction
roofline model for gpus. In 2019 IEEE/ACM Per-
formance Modeling, Benchmarking and Simulation
of High Performance Computer Systems (PMBS),
pages 7–18. IEEE, 2019.

[12] Nan Ding, Samuel Williams, Yang Liu, and Xi-
aoye S Li. Leveraging one-sided communication
for sparse triangular solvers. In Proceedings of the
2020 SIAM Conference on Parallel Processing for
Scientific Computing, pages 93–105. SIAM, 2020.

[13] Edward Anderson and Youcef Saad. Solving sparse
triangular linear systems on parallel computers.
International Journal of High Speed Computing, 1
(01):73–95, 1989.

[14] Joel H Saltz. Aggregation methods for solv-
ing sparse triangular systems on multiprocessors.
SIAM journal on scientific and statistical comput-
ing, 11(1):123–144, 1990.

[15] Scott Beamer, Krste Asanović, and David Patter-
son. Direction-optimizing breadth-first search. Sci-
entific Programming, 21(3-4):137–148, 2013.

[16] James W Demmel, Stanley C Eisenstat, John R
Gilbert, Xiaoye S Li, and Joseph WH Liu. A
supernodal approach to sparse partial pivoting.
SIAM Journal on Matrix Analysis and Applica-
tions, 20(3):720–755, 1999.

[17] Yang Liu, Mathias Jacquelin, Pieter Ghysels, and
Xiaoye S Li. Highly scalable distributed-memory
sparse triangular solution algorithms. In Proceed-
ings of the Seventh SIAM Workshop on Combina-
torial Scientific Computing, pages 87–96. SIAM,
2018.

[18] Alexandros V Gerbessiotis and Leslie G Valiant.
Direct bulk-synchronous parallel algorithms. Jour-
nal of parallel and distributed computing, 22(2):
251–267, 1994.

[19] An Introduction to CUDA-Aware MPI.
URL https://developer.nvidia.com/blog/

introduction-cuda-aware-mpi/.

[20] ROC SHMEM. https://github.com/

ROCm-Developer-Tools/ROC_SHMEM, 2020.

[21] Khaled Hamidouche and Michael LeBeane. Gpu
initiated openshmem: correct and efficient intra-
kernel networking for dgpus. In Proceedings of

Copyright © 2021
Copyright retained by the Regents of the University of California

https://www.top500.org/lists/top500/2020/11/highs/
https://www.top500.org/lists/top500/2020/11/highs/
https://docs.nvidia.com/hpc-sdk/nvshmem/index.html
https://docs.nvidia.com/hpc-sdk/nvshmem/index.html
https://developer.nvidia.com/blog/introduction-cuda-aware-mpi/
https://developer.nvidia.com/blog/introduction-cuda-aware-mpi/
https://github.com/ROCm-Developer-Tools/ROC_SHMEM
https://github.com/ROCm-Developer-Tools/ROC_SHMEM

the 25th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pages 336–
347, 2020.

[22] George Karypis and Vipin Kumar. A fast and high
quality multilevel scheme for partitioning irregular
graphs. SIAM J. Sci. Comput., 20(1):359–392,
1998. doi: 10.1137/S1064827595287997. URL
https://doi.org/10.1137/S1064827595287997.

[23] Charlene Yang, Thorsten Kurth, and Samuel
Williams. Hierarchical roofline analysis for gpus:
Accelerating performance optimization for the
nersc-9 perlmutter system. Concurrency and Com-
putation: Practice and Experience, 32(20):e5547,
2020.

[24] Ulrike Baur, Peter Benner, Andreas Greiner, Jan G
Korvink, Jan Lienemann, and Christian Moos-
mann. Parameter preserving model order reduction
for MEMS applications. Mathematical and Com-
puter Modelling of Dynamical Systems, 17(4):297–
317, 2011.

[25] S C Jardin, N Ferraro, X Luo, J Chen, J Breslau,
K E Jansen, and M S Shephard. The M3D-C1 ap-
proach to simulating 3D 2-fluid magnetohydrody-
namics in magnetic fusion experiments. J. Phys.
Conf. Ser., 125(1):012044, 2008. URL http://

stacks.iop.org/1742-6596/125/i=1/a=012044.

[26] Alexander Ludwig. The Gauss–Seidel–quasi-
Newton method: A hybrid algorithm for solving
dynamic economic models. Journal of Economic
Dynamics and Control, 31(5):1610–1632, 2007.

[27] Gary Kumfert and Alex Pothen. Two improved
algorithms for envelope and wavefront reduction.
BIT Numerical Mathematics, 37(3):559–590, 1997.

[28] Timothy A. Davis and Yifan Hu. The Univer-
sity of Florida sparse matrix collection. ACM
Trans. Math. Softw., 38(1):1:1–1:25, December
2011. ISSN 0098-3500. doi: 10.1145/2049662.
2049663. URL http://doi.acm.org/10.1145/

2049662.2049663.

[29] Summit User Guide. URL https://docs.olcf.

ornl.gov/systems/summit_user_guide.html.

[30] Jiya Su, Feng Zhang, Weifeng Liu, Bingsheng
He, Ruofan Wu, Xiaoyong Du, and Rujia Wang.
Capellinisptrsv: A thread-level synchronization-
free sparse triangular solve on gpus. In 49th
International Conference on Parallel Processing-
ICPP, pages 1–11, 2020.

[31] Ruipeng Li and Chaoyu Zhang. Efficient parallel
implementations of sparse triangular solves for gpu
architectures. In Proceedings of the 2020 SIAM
Conference on Parallel Processing for Scientific
Computing, pages 106–117. SIAM, 2020.

[32] Zhengyang Lu, Yuyao Niu, and Weifeng Liu. Effi-
cient block algorithms for parallel sparse triangular
solve. In 49th International Conference on Parallel
Processing-ICPP, pages 1–11, 2020.

[33] Ernesto Dufrechou and Pablo Ezzatti. A new gpu
algorithm to compute a level set-based analysis
for the parallel solution of sparse triangular sys-
tems. In 2018 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pages
920–929. IEEE, 2018.

[34] Ehsan Totoni, Michael T Heath, and Laxmikant V
Kale. Structure-adaptive parallel solution of sparse
triangular linear systems. Parallel Computing, 40
(9):454–470, 2014.

[35] Guangming Tan, Junhong Liu, and Jiajia Li. De-
sign and implementation of adaptive spmv library
for multicore and many-core architecture. ACM
Transactions on Mathematical Software (TOMS),
44(4):46, 2018.

[36] Yue Zhao, Jiajia Li, Chunhua Liao, and Xipeng
Shen. Bridging the gap between deep learning and
sparse matrix format selection. In ACM SIGPLAN
Notices, volume 53, pages 94–108. ACM, 2018.

[37] Jiajia Li, Guangming Tan, Mingyu Chen, and
Ninghui Sun. SMAT: an input adaptive auto-
tuner for sparse matrix-vector multiplication. In
ACM SIGPLAN Notices, volume 48, pages 117–
126. ACM, 2013.

[38] Ehsan Totoni, Michael T. Heath, and Laxmikant V.
Kale. Structure-adaptive parallel solution of
sparse triangular linear systems. Parallel Com-
puting, 40(9):454 – 470, 2014. ISSN 0167-8191.
doi: https://doi.org/10.1016/j.parco.2014.06.006.
URL http://www.sciencedirect.com/science/

article/pii/S0167819114000799.

[39] Xiaoye S. Li and James W. Demmel. Making sparse
Gaussian elimination scalable by static pivoting.
In Proceedings of the 1998 ACM/IEEE Confer-
ence on Supercomputing, SC ’98, pages 1–17, Wash-
ington, DC, USA, 1998. IEEE Computer Society.
ISBN 0-89791-984-X. URL http://dl.acm.org/

citation.cfm?id=509058.509092.

Copyright © 2021
Copyright retained by the Regents of the University of California

https://doi.org/10.1137/S1064827595287997
http://stacks.iop.org/1742-6596/125/i=1/a=012044
http://stacks.iop.org/1742-6596/125/i=1/a=012044
http://doi.acm.org/10.1145/2049662.2049663
http://doi.acm.org/10.1145/2049662.2049663
https://docs.olcf.ornl.gov/systems/summit_user_guide.html
https://docs.olcf.ornl.gov/systems/summit_user_guide.html
http://www.sciencedirect.com/science/article/pii/S0167819114000799
http://www.sciencedirect.com/science/article/pii/S0167819114000799
http://dl.acm.org/citation.cfm?id=509058.509092
http://dl.acm.org/citation.cfm?id=509058.509092

[40] Xiaoye S. Li and James W. Demmel. Su-
perLU DIST: a scalable distributed-memory sparse
direct solver for unsymmetric linear systems. ACM
Trans. Math. Softw., 29(2):110–140, June 2003.
ISSN 0098-3500. doi: 10.1145/779359.779361. URL
http://doi.acm.org/10.1145/779359.779361.

[41] Anand Venkat, Mahdi Soltan Mohammadi, Jong-
soo Park, Hongbo Rong, Rajkishore Barik,
Michelle Mills Strout, and Mary Hall. Automating
wavefront parallelization for sparse matrix compu-
tations. In Proceedings of the International Confer-
ence for High Performance Computing, Network-
ing, Storage and Analysis, page 41. IEEE Press,
2016.

[42] Anand Venkat, Mary Hall, and Michelle Strout.
Loop and data transformations for sparse matrix
code. In ACM SIGPLAN Notices, volume 50, pages
521–532. ACM, 2015.

[43] Chenhao Xie, Jieyang Chen, Jesun S Firoz, Jiajia
Li, Shuaiwen Leon Song, Kevin Barker, Mark Rau-
gas, and Ang Li. Fast and scalable sparse triangular
solver for multi-gpu based hpc architectures. arXiv
preprint arXiv:2012.06959, 2020.

[44] C.R. Sovinec, A.H. Glasser, T.A. Gianakon, D.C.
Barnes, R.A. Nebel, S.E. Kruger, S.J. Plimpton,
A. Tarditi, M.S. Chu, and the NIMROD Team.
Nonlinear magnetohydrodynamics with high-order
finite elements. J. Comp. Phys., 195:355, 2004.

Copyright © 2021
Copyright retained by the Regents of the University of California

http://doi.acm.org/10.1145/779359.779361

	Introduction
	Distributed-memory Parallel Sparse Triangular Solve
	Benefits and Challenges of NVSHMEM
	Multi-GPU SpTRSV using CUDA Streams.
	SpTRSV Performance Model for GPUs
	Results
	Experimental Setup:
	Scalability Evaluation:
	Strong Scaling Performance Analysis:

	Related Work
	Conclusion

