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This paper presents a fast and approximate multifrontal solver for large sparse linear systems. In a recent paper by Liu et al. we showed
the efficiency of a multifrontal solver leveraging the butterfly algorithm and its hierarchical matrix extension, Hierarchically Off-
Diagonal Butterfly compression (HODBF), to compress large frontal matrices. The resulting multifrontal solver can attain quasi-linear
computation and memory complexity when applied to sparse linear systems arising from spatial discretization of high-frequency
wave equations. To further reduce the overall number of operations and especially the factorization memory usage in order to scale to
larger problem sizes, in this paper, we develop a composite multifrontal solver that employs the HODBF format for large sized fronts,
a reduced-memory version of the non-hierarchical Block Low-Rank format for medium sized fronts and a lossy compression format
for small sized fronts. This allows us to solve sparse linear systems of dimension up to 2.7× larger than before and leads to a memory
consumption that is reduced by 70 percent while ensuring the same execution time. The code is made publicly available in github.
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1 INTRODUCTION

Efficiently computing the solution of large sparse linear systems arising from finite element, finite difference, or finite
volume discretizations of partial differential equations (PDEs) is an important requirement for many scientific and
engineering applications. The multifrontal method is a fast solution method that can be implemented very efficiently
on modern hardware, since it arranges the computations in such a way that most of the computational work is done
on smaller dense submatrices, so-called frontal matrices. Unfortunately, the overall amount of dense linear algebra
operations needed to complete the multifrontal method sums up to O(𝑁 2) for typical three dimensional PDEs, where
𝑁 is the matrix dimension corresponding to the sparse linear system.

For many applications arising from wide classes of PDEs, this complexity can be reduced up to O(𝑁 log𝛼 𝑁 ) for some
𝛼 by leveraging algebraic compression formats to exploit rank structures in off-diagonal blocks of the matrix. Examples
of low-rank-based compression methods includeH matrices [12, 15], hierarchically off-diagonal low-rank (HODLR)
formats [1], hierarchically semiseparable (HSS) formats [43], and block low-rank (BLR) formats [2, 4, 42]. Available
software packages that couple these rank-structured formats with multifrontal methods include STRUMPACK [10]
and MUMPS [4]. PaStiX [17, 35] is an additional software package that couples low-rank compression methods with
supernodal methods instead of multifrontal methods.

In addition to the above mentioned algorithms, we consider another low-rank-based compression tool called
butterfly [21, 22, 29, 32, 38], a multilevel matrix decomposition algorithm well-suited for representing highly oscillatory
operators such as Fourier transforms and integral operators and special function transforms. When combined with
hierarchical matrix techniques, butterfly can also serve as the building block for accelerating iterative methods, direct
solvers and preconditioners for boundary element methods for high-frequency wave equations. These techniques
essentially replace low-rank products in theH and HODLR formats with butterflies and leverage fast and randomized
butterfly algebra to compute the matrix inverse (for direct solvers and preconditioners). An open-source software
package that provides an implementation of the butterfly algorithm is available at https://github.com/liuyangzhuan/
ButterflyPACK.

In a related work [27], we presented a fast multifrontal sparse solver for high-frequency wave equations. The
solver leverages the butterfly algorithm and its hierarchical matrix extension, Hierarchically Off-Diagonal Butterfly
compression (HODBF), to compress large frontal matrices. The resulting solver can attain quasi-linear computation
and memory complexity when applied to high-frequency Helmholtz and Maxwell equations. Similar complexities
have been analyzed and observed for Poisson equations as well. Nevertheless, to further reduce the overall number
of operations and to enable solving larger problem sizes, in this paper, we presents a composite multifrontal solver
which employs the HODBF format for compressing the large frontal matrices in the multifrontal method and leverage
additional compression methods for the remaining fronts. To be more specific, HODBF serves as a good compression
method as shown in [27]. However, due to its more complex data structures it only pays off to use HODBF for larger
fronts to yield a high compression ratio. For medium sized fronts we employ block low-rank (BLR) compression.
We combine a left-looking and a right-looking versions of BLR to a hybrid method which decreases the memory
consumption significantly. For the remaining small sized fronts, we make use of lossy compression enabled through the
zfp software [24] to further decrease the memory consumption while maintaining accuracy of the preconditioner.

Our contributions in this paper are the development of a composite multifrontal solver that employs three compression
methods: HODBF, BLR and floating point compression, and an implementation of BLR with a reduced memory footprint
which makes use of a column-wise construction of matrix tiles. The sparse approximate multifrontal solver is used as a
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Sparse approximate multifrontal factorization with composite compression methods 3

preconditioner for restarted GMRES(30) with modified Gram-Schmidt and a zero-vector initial guess. These updates
lead to a significant decrease of memory consumption and it allows us to solve sparse linear systems of dimension
up to 2.7× larger compared to a multifrontal solver with HODBF compression only [27]. The code is made publicly
available in the sparse solver package STRUMPACK [9].

The rest of the paper is organized as follows. The multifrontal factorization method is presented in Section 2. The zfp,
hierarchically off-diagonal butterfly compression and block low-rank algorithms are described in Section 3, including
the classical left- and right-looking BLR versions as well as our proposed hybrid and memory optimized BLR algorithm.
The proposed composite rank-structured multifrontal method is detailed in Section 4. Numerical results demonstrating
the efficiency and applicability of the proposed solver for the 3D Helmholtz, reaction-diffusion, and Navier-Stokes
equations are presented in Section 5, followed by conclusions in Section 6.

2 MULTIFRONTAL FACTORIZATION

This section briefly recalls the main ingredients of the multifrontal method for general invertible sparse matrices. For a
more detailed discussion of multifrontal methods, see [20, 25]. The method separates the factorization of a sparse matrix
(𝐴 = 𝐿𝑈 ) into a series of partial factorizations of many smaller dense matrices, which correspond to the separators from
a nested dissection ordering. After each factorization step a Schur complement is formed and carried along temporarily,
and its scattering to the global Schur complement is delayed until that part of panel factorization is about to start.

As a preprocessing step, the system matrix 𝐴 is first scaled and permuted for numerical stability: 𝐴← 𝐷𝑟𝐴𝐷𝑐𝑄𝑐 ,

where 𝐷𝑟 and 𝐷𝑐 are diagonal matrices that scale the rows and columns of 𝐴 and 𝑄𝑐 is a column permutation that
places large entries on the diagonal. We use the MC64 code by Duff and Koster [19] or the parallel method–without the
diagonal scaling–described in [6] to perform the scaling and column permutation. After that, a fill-reducing permutation
𝐴← 𝑃𝐴𝑃𝑇 is applied, i.e. the number of nonzero entries in the sparse factors 𝐿 and𝑈 is minimized. The permutation
matrix 𝑃 is typically computed using nested dissection applied to the adjacency graph of 𝐴 +𝐴𝑇 , as implemented in
Scotch [39] or METIS [11].

The multifrontal method relies on a structure called the assembly tree. Each node 𝜏 of the assembly tree is represented

by a dense frontal matrix 𝐹𝜏 , with the following 2 × 2 block structure: 𝐹𝜏 =

[
𝐹11 𝐹12
𝐹21 𝐹22

]
. The rows and columns

corresponding to the 𝐹11 block are called the fully summed variables, these variables have received all their Schur
complement updates, when the front is constructed. We denote the dimension of 𝐹11 by #𝐼𝑠𝜏 and the dimension of 𝐹22 by
#𝐼𝑢𝜏 . The 𝐼𝑢𝜏 index sets define the temporary Schur complement update blocks. Let 𝑛𝜏 = #𝐼𝑠𝜏 + #𝐼𝑢𝜏 denote the dimension
of 𝐹𝜏 . Note that the frontal matrices tend to get bigger toward the root of the assembly tree. Furthermore, if a is a child
of 𝜏 in the assembly tree, then 𝐼𝑢a ⊂ {𝐼𝑠𝜏 ∪ 𝐼𝑢𝜏 }. For the root node 𝑡, 𝐼𝑢𝑡 = ∅. When considering a single front, we will omit
the 𝜏 subscript.

The multifrontal method consists of a bottom-up traversal of the assembly tree following a topological ordering.
Processing a node consists of four steps making up the numerical factorization of that node:

(1) Assembling the frontal matrix 𝐹𝜏 , i.e., combining elements from the sparse matrix 𝐴 with the children’s (a1 and
a2) contribution blocks. This involves a scatter operation and is called extend-add, denoted by ↕↔:

𝐹𝜏 =

[
𝐴(𝐼𝑠𝜏 , 𝐼𝑠𝜏 ) 𝐴(𝐼𝑠𝜏 , 𝐼𝑢𝜏 )
𝐴(𝐼𝑢𝜏 , 𝐼𝑠𝜏 )

]
↕↔ 𝐹22;a1 ↕↔ 𝐹22;a2 = ↕↔ ↕↔
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(2) Elimination of the fully summed variables in the 𝐹11 block, i.e., dense LU factorization with partial pivoting of
𝐹11.

(3) Updating the off-diagonal blocks 𝐹12 and 𝐹21.
(4) Computing the contribution block from the Schur complement update of 𝐹22 ← 𝐹22 − 𝐹21𝐹−111 𝐹12. 𝐹22 is

temporary storage and can be released as soon as it has been used in the front assembly (step 1) of the parent
node.

After the numerical factorization, the lower triangular sparse factor is available in the 𝐹21 and 𝐹11 blocks and the upper
triangular factor in the 𝐹11 and 𝐹12 blocks. These can then be used to efficiently solve linear systems, using forward and
backward substitution. A high-level overview is given in Algorithm 1.

Algorithm 1 Sparse multifrontal factorization and solve.

Input: 𝐴 ∈ R𝑁×𝑁 , 𝑏 ∈ R𝑁
Output: 𝑥 ≈ 𝐴−1𝑏
1: 𝐴← 𝐷𝑟𝐴𝐷𝑐𝑄𝑐 ⊲ (optional) col perm & scaling
2: 𝐴← 𝑃𝐴𝑃⊤ ⊲ symm fill-reducing reordering
3: Build assembly tree: define 𝐼 s𝜏 and 𝐼u𝜏 for every frontal matrix 𝐹𝜏
4: for nodes 𝜏 in assembly tree in topological order do
5: ⊲ sparse with the children updates extended and added
6: 𝐹𝜏 ←

[
𝐴(𝐼 s𝜏 , 𝐼 s𝜏 ) 𝐴(𝐼 s𝜏 , 𝐼u𝜏 )
𝐴(𝐼u𝜏 , 𝐼 s𝜏 ) 0

]
↕↔ 𝐹22;a1 ↕↔ 𝐹22;a2

7: 𝑃𝜏𝐿𝜏𝑈𝜏 ← 𝐹11 ⊲ LU with partial pivoting
8: 𝐹12 ← 𝐿−1𝜏 𝑃⊤𝜏 𝐹12
9: 𝐹21 ← 𝐹21𝑈 −1𝜏

10: 𝐹22 ← 𝐹22 − 𝐹21𝐹12 ⊲ Schur update
11: end for
12: 𝑥 ← 𝐷𝑐𝑄𝑐𝑃

⊤ bwd-solve (fwd-solve (𝑃𝐷𝑟𝑏))

𝑆0

𝑆10 𝑆11

(a)

𝑆0

𝑆10 𝑆11 𝐼𝑠𝜏

𝐼𝑢𝜏

. . .

(b)

Fig. 1. (a) The top three levels of nested dissection for an 112 mesh. The root separator 𝑆0 is a vertical 11 point line. The next level
separators are 𝑆10 and 𝑆11 . The root separator corresponds to the top level front in (b), and similarly for the next level down in the
assembly/frontal tree. Note that the fronts in (b) typically get smaller lower in the tree.

Figure 1 illustrates the multifrontal algorithm for a sparse matrix resulting from the discretization of a partial
differential equation using a 5-point finite difference stencil on a regular two-dimensional 11 × 11 mesh. Figure 1a
Manuscript submitted to ACM
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Sparse approximate multifrontal factorization with composite compression methods 5

shows the mesh and the top 3 levels of the nested dissection ordering. Nested dissection is a heuristic algorithm for the
ordering of a sparse matrix to reduce the fill-in in the sparse factors. It is based on recursively finding vertex separators.
The vertical line marked 𝑆0 is the root separator and this separator corresponds to the root of the assembly tree, see
Fig. 1b. The next level separators, 𝑆10 and 𝑆

1
1 correspond to the 𝐹11 blocks of the next lower level in the assembly tree.

Typically the larger frontal matrices are found near the root of the assembly tree since the separators tend to get smaller
further in the nested dissection recursion.

2.1 Parallel Traversal of the Assembly Tree

Following the assembly tree, the distributed algorithm creates nested MPI subcommunicators to facilitate the com-
putation at each node and its subtree. At the root of the tree, we create a two-dimensional process grid using the
available processes in the root MPI communicator, and distribute the frontal matrix over this grid using the ScaLAPACK
2D block-cyclic data layout. Next, the root MPI communicator is split in two communicators proportionally to the
memory required by the subtrees rooted at the children of the root node. Each child constructs a 2D process grid and
distributes the child’s frontal matrix over this subgrid. This is repeated recursively until the MPI communicator has
only one process in it, at which point the local subtree is traversed within a single OpenMP region using OpenMP task
parallelism. While moving up the distributed part of the assembly tree, communication between fronts is required for
the extend-add operation. This is implemented using an MPI_Alltoallv on the MPI subcommunicator of the parent node.
Note that this paragraph discusses the parallel traversal of the assembly tree with a focus on dense frontal matrices.
In Section 4 we will discuss details of the procedure for compressed frontal matrices, where a 2D block-cyclic layout
is used only for dense, Block Low-Rank and lossy compressed fronts while the Hierarchically Off-Diagonal Butterfly
compression is based on a 1D block layout, see Section 3.3.1.

We implemented the multifrontal method in the STRUMPACK library [9], using C++, message passing interface
(MPI), and OpenMP. STRUMPACK supports real/complex arithmetic, single/double precision and 32/64-bit integers.
STRUMPACK has recently ported the sparse direct multifrontal solver to GPU, targeting both NVIDIA and AMD
hardware. In this paper, we focus on the CPU implementation only.

In what follows, we leverage multiple compression methods, namely lossy compression enabled through the zfp
software [24], see Section 3.1, Block Low-Rank (BLR) compression (Section 3.2), and the hierarchical matrix extension
of the butterfly algorithm (HODBF), see Section 3.3. These methods are used to represent frontal matrices and to
construct fast sparse direct solvers, particularly for large matrix systems resulting from for example high-frequency
wave equations.

3 COMPRESSION METHODS

In this paper, we make use of compression methods within the multifrontal solver which maintains the solver’s
robustness and reliability and reduces the computational complexity. The three compression methods of interest are
the HODBF format, the BLR format and lossy compression. The HODBF format can be described as a hierarchical
compression format with a multilevel matrix decomposition algorithm. HODBF is available as an effort to integrate the
dense solver package ButterflyPACK [26] into the sparse solver package STRUMPACK and can be used to compress
frontal matrices within the multifrontal solver. BLR is based on a flat low-rank based compression format which exploits
rank structures in off-diagonal blocks of the frontal matrix. BLR is implemented in STRUMPACK and can also be used
to compress fronts. The lossy floating point compression method is available through the zfp package [24] and is
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integrated into STRUMPACK. Since the multifrontal method relies on dense factorizations, all three approximations can
be easily incorporated into the multifrontal factorization by representing the frontal matrices as zfp, BLR, and HODBF
matrices respectively, as will be described in Section 4. All three compression formats are described in detail in the
following subsections.

3.1 Lossy Compression with zfp

zfp is an open-source library for compressed floating-point data. zfp was designed to achieve high compression ratios
and therefore uses lossy compression. zfp is often more accurate and faster than other lossy compressors. For more
details on the zfp software library, see [24].

In contrast to low-rank formats, lossy compression is a near-lossless compression scheme that maps small blocks of
4𝑑 values with dimension 𝑑 to a fixed number of bits per block, called bitplanes in Section 5. This compressor is based
on an orthogonal block transform. For more details on the zfp algorithm please refer to [23].

In Section 4, we make use of the zfp software library integrated into STRUMPACK to compress small frontal matrices
within a multifrontal solver.

3.2 Block Low-Rank Compression

Among the possible low-rank formats, Block Low-Rank (BLR) is the simplest. The format partitions the matrix with a
flat, non-hierarchical blocking of the matrix which is defined by conveniently clustering the associated unknowns and
approximates its off-diagonal blocks by low-rank submatrices. A BLR representation �̃� of a dense matrix 𝐵 is shown in
(1), with 𝑝 × 𝑝 blocks.

�̃� =


�̃�11 �̃�12 . . . �̃�1𝑝
.
.
.

. . .
. . .

.

.

.

�̃�𝑝1 . . . . . . �̃�𝑝𝑝

 (1)

Assuming 𝐼 = {1, ..., 𝑛} is the set of row and column indices of 𝐵, we can define the blocking of the matrix as
follows: We call a set of indices 𝜎 ⊆ 𝐼 a cluster. Then, a clustering of 𝐼 is a disjoint union of clusters which equals 𝐼 .
𝑏 = 𝜎 × 𝜏 ∈ 𝐼 × 𝐼 is called a block cluster based on clusters 𝜎 and 𝜏 . A block clustering of 𝐼 × 𝐼 is then defined as a
disjoint union of block clusters which equals 𝐼 × 𝐼 . A block 𝐵𝜎𝜏 corresponds to an interaction between two subdomains
𝜎 and 𝜏 , where 𝜎 contains the row indices of 𝐵𝜎𝜏 while 𝜏 contains its column indices. The rank of a given block 𝐵𝜎𝜏
depends on the interaction it represents. Indeed, if 𝐵𝜎𝜏 is a diagonal block, i.e. 𝜎 = 𝜏 , it represents a self- interaction
and is thus full-rank. However, if 𝐵𝜎𝜏 is an off-diagonal block, it may be either full-rank or low-rank depending on the
interaction it represents: the weaker the interaction, the lower the rank. The admissibility condition determines whether
a block 𝜎 × 𝜏 is admissible for low-rank compression. We support both weak admissibility, where every off-diagonal
block is compressed, and strong admissibility, where only matrix blocks corresponding to well separated clusters are
compressed. The block clustering, and the admissibility condition, are typically formulated in terms of the geometry
of the physical system being modeled. However, in this paper we discuss BLR matrices and the corresponding block
clustering in the context of an algebraic multifrontal solver, where no geometry information is available. The block
clustering and the strong admissibility condition in the context of the multifrontal solver are discussed in Section 4.
Based on the choice of the admissibility condition, the off-diagonal blocks 𝐵𝜎𝜏 (𝜎 ≠ 𝜏) of size𝑚𝜎 ×𝑚𝜏 and numerical
rank 𝑟𝜎𝜏 are approximated by a low-rank matrix �̃�𝜎𝜏 = 𝑋𝜎𝜏𝑌

𝑇
𝜎𝜏 at accuracy Y. 𝑋𝜎𝜏 is a𝑚𝜎 × 𝑟𝜎𝜏 matrix and 𝑌𝜎𝜏 is a

𝑚𝜏 × 𝑟𝜎𝜏 matrix.
Manuscript submitted to ACM



313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Sparse approximate multifrontal factorization with composite compression methods 7

As part of the numerical factorization within the multifrontal solver, as discussed in Section 2, we make use of a
LU factorization of each 𝐹11 part of a frontal matrix. In order to compute the blocked factorization of the front, four
fundamental tasks must be performed:

Factor (F): LU decomposition “𝐵𝜎𝜎 = 𝐿𝜎𝜎𝑈𝜎𝜎 ” for diagonal blocks 𝜎 = 1, . . . , 𝑝 with partial pivoting
Solve (S): Solve triangular linear system “𝐵𝜎𝜏 = 𝐿−1𝜎𝜎𝐵𝜎𝜏 ”, “𝐵𝜏𝜎 = 𝐵𝜏𝜎𝑈

−1
𝜎𝜎 ”, with 𝜎 = 1, . . . , 𝑝, 𝜏 = 𝜎 + 1, . . . , 𝑝

Update (U): Matrix-matrix multiplication “𝐵^𝜏 = 𝐵^𝜏 − 𝐵^𝜎𝐵𝜎𝜏 ”, with 𝜎 = 1, . . . , 𝑝, 𝜏 = 𝜎 + 1, . . . , 𝑝, ^ = 𝜎 + 1, . . . , 𝑝
Compression (C): Compress off-diagonal blocks 𝐵𝜎𝜏 ≈ �̃�𝜎𝜏 = 𝑋𝜎𝜏𝑌𝜎𝜏

We refer to the computation of the low-rank approximation �̃�𝜎𝜏 of each block as the compression step, which can
be performed in different ways. We chose a QR factorization with column pivoting (i.e., LAPACK’s (Anderson et al.,
1995) geqp3 routine), which is modified to stop the factorization when the diagonal coefficient of R, 𝑟𝑖,𝑖 , falls below a
prescribed threshold Y. We use a relative tolerance (i.e. we stop the factorization after |𝑟𝑖,𝑖 |/|𝑟0,0 | < Y).

Depending on when the compression step is performed within the numerical factorization, several algorithm variants
can be defined and implemented based on the execution order of the four tasks defined above: FSUC, FSCU, FCSU,
CFSU. These acronyms indicate the order in which the tasks are performed [31].

Algorithm 2 Right-looking BLR algorithm: FCSU
Input: a 𝑝 × 𝑝 block matrix 𝐵 of size 𝑛,
𝐵 = [𝐵𝑖, 𝑗 ]𝑖=1:𝑝,𝑗=1:𝑝
1: Construct tiles 𝐵𝑖, 𝑗 ,∀𝑖, 𝑗
2: for 𝑖 = 1 to 𝑝 do
3: Factor: 𝐵𝑖,𝑖 = 𝐿𝑖,𝑖𝑈𝑖,𝑖
4: for 𝑗 = 𝑖 + 1 to 𝑝 do
5: Compress: 𝐵𝑖, 𝑗 ≈ 𝑋𝑖, 𝑗𝑌𝑇𝑖,𝑗
6: Solve: 𝐵𝑖, 𝑗 ← 𝐿−1

𝑖,𝑖
𝐵𝑖, 𝑗

7: Compress: 𝐵 𝑗,𝑖 ≈ 𝑋 𝑗,𝑖𝑌
𝑇
𝑗,𝑖

8: Solve: 𝐵 𝑗,𝑖←𝐵 𝑗,𝑖𝑈 −1𝑖,𝑖

9: end for
10: for 𝑗 = 𝑖 + 1 to 𝑝 do
11: for 𝑘 = 𝑖 + 1 to 𝑝 do
12: Update: 𝐵𝑘,𝑗←𝐵𝑘,𝑗 − 𝑋𝑘,𝑖 (𝑌𝑇𝑘,𝑖𝑋𝑖, 𝑗 )𝑌

𝑇
𝑖,𝑗

13: end for
14: end for
15: end for

Algorithm 3 Left-looking BLR algorithm: UFCS
Input: a 𝑝 × 𝑝 block matrix 𝐵 of size 𝑛,
𝐵 = [𝐵𝑖, 𝑗 ]𝑖=1:𝑝,𝑗=1:𝑝
1: Construct tiles 𝐵𝑖, 𝑗 ,∀𝑖, 𝑗
2: for 𝑖 = 1 to 𝑝 do
3: for 𝑗 = 𝑖 to 𝑝 do
4: for 𝑘 = 1 to 𝑖 − 1 do
5: Update: 𝐵𝑖, 𝑗←𝐵𝑖, 𝑗 − 𝑋𝑖,𝑘 (𝑌𝑇𝑖,𝑘𝑋𝑘,𝑗 )𝑌

𝑇
𝑘,𝑗

6: if 𝑗 ≠ 𝑖 then
7: 𝐵 𝑗,𝑖←𝐵 𝑗,𝑖 − 𝑋 𝑗,𝑘 (𝑌𝑇𝑗,𝑘𝑋𝑘,𝑖 )𝑌

𝑇
𝑘,𝑖

8: end if
9: end for
10: end for
11: Factor: 𝐵𝑖,𝑖 = 𝐿𝑖,𝑖𝑈𝑖,𝑖
12: for 𝑗 = 𝑖 + 1 to 𝑝 do
13: Compress: 𝐵𝑖, 𝑗 ≈ 𝑋𝑖, 𝑗𝑌𝑇𝑖,𝑗
14: Solve: 𝐵𝑖, 𝑗 ← 𝐿−1

𝑖,𝑖
𝐵𝑖, 𝑗

15: Compress: 𝐵 𝑗,𝑖 ≈ 𝑋 𝑗,𝑖𝑌
𝑇
𝑗,𝑖

16: Solve: 𝐵 𝑗,𝑖←𝐵 𝑗,𝑖𝑈 −1𝑖,𝑖

17: end for
18: end for

These variants are so-called right-looking versions, in the sense that at each step 𝑘 , as soon as the factor and solve
tasks for all blocks in row 𝑘 and column 𝑘 have been performed, the entire trailing submatrix (column blocks to its
“right”) is updated, see Fig. 2a. We make use of the FCSU (standing for Factor, Compress, Solve and Update) variant
of the BLR factorization algorithm. All low-rank updates of a given block �̃�𝜎𝜏 are compressed before the triangular
solve of the 𝐿𝑈 factorization of a dense BLR matrix. Based on the comparative study in [31] the FCSU variant seems the
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8 Claus, et al.

most promising out of the right-looking versions, since it provides a good balance between efficiency and accuracy.
Compressing earlier influences the accuracy negatively, an effect which is quantified in [18].

The right-looking algorithms can be rewritten in a left-looking1 form, where at each step 𝑘 , blocks in row 𝑘 as well
as column 𝑘 are updated using all the blocks already computed (those at its “left”): UFS, UFSC, UFCS, UCFS, CUFS.

In this paper, we focus on the UFCS version, since this version is most promising in terms of timing due to a different
memory access pattern [8] as described in [4, 31]. See Algorithm 2 for the right-looking (RL) and Algorithm 3 for the
left-looking (LL) implementation and Fig. 2a and Fig. 2b for a comparison between RL and LL.

Factor
Compress + Solve

UpdateRight-looking used for Update
not used

(a)
Factor
Compress + Solve

UpdateLeft-looking used for Update
not used

(b)
Factor
Compress + Solve

UpdateHybrid used for Update
not used

(c)

Fig. 2. First steps of a BLR compression with FCSU/UFCS version. (2a) Right-looking. (2b) Left-looking. (2c) Hybrid with 𝑐𝑜𝑙max = 3.

The RL and LL variants perform the same number of operations but in a different order, which results in a different
memory access pattern. The impact of using a RL or LL factorization is mainly observed on the Update step. In particular,
for the RL variant, at each step k, the full rank blocks of the trailing sub-matrix are written and therefore they are
loaded many times (at each step of the factorization), while the low rank blocks of the current panel are read once and

1This algorithmic variant is also called “left-up-looking” in the literature, for brevity we use “left-looking” throughout the paper.
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Sparse approximate multifrontal factorization with composite compression methods 9

never loaded again. In the LL variant, at each step k, the full rank blocks of the current panel are written for the first
and last time of the factorization, while the low rank blocks of all the previous panels are read, and therefore they are
loaded many times during the entire factorization.

Algorithm 4 Hybrid BLR algorithm (Column-wise constructed)
Input: a 𝑝 × 𝑝 block matrix 𝐵 of size 𝑛, 𝐵 = [𝐵𝑖, 𝑗 ]𝑖=1:𝑝,𝑗=1:𝑝
1: for 𝑏 = 0 to ⌈𝑝/𝑐𝑜𝑙max⌉ − 1 do ⊲ Advance 𝑐𝑜𝑙max block columns each time
2: for 𝑖 = 𝑐𝑜𝑙max𝑏 + 1 to 𝑐𝑜𝑙max (𝑏 + 1) do ⊲ Construct 𝑐𝑜𝑙max block columns among 𝑃𝑐 process columns
3: for 𝑗 = 1 to 𝑝 do
4: Construct tiles 𝐵 𝑗,𝑖
5: end for
6: end for
7: if 𝑏 > 0 then ⊲ See Fig. 3, Subfigures 4-6
8: for 𝑗 = 1 to 𝑐𝑜𝑙max𝑏 do
9: for 𝑖 = 𝑐𝑜𝑙max𝑏 + 1 to 𝑐𝑜𝑙max (𝑏 + 1) do
10: Compress: 𝐵 𝑗,𝑖 ≈ 𝑋 𝑗,𝑖𝑌

𝑇
𝑗,𝑖

11: Solve: 𝐵 𝑗,𝑖 ≈ 𝐵 𝑗,𝑖𝑈 −1𝑖,𝑖

12: for 𝑘 = 𝑗 + 1 to 𝑝 do
13: Update: 𝐵𝑘,𝑖 ≈ 𝐵𝑘,𝑖 − 𝑋𝑘,𝑗 (𝑌𝑇𝑘,𝑗𝑋 𝑗,𝑖 )𝑌𝑇𝑗,𝑖
14: end for
15: end for
16: end for
17: end if
18: for 𝑖 = 𝑐𝑜𝑙max𝑏 + 1 to 𝑐𝑜𝑙max (𝑏 + 1) do ⊲ See Fig. 3, Subfigures 1-3, 7-9
19: Factor: 𝑃𝑖𝐵𝑖,𝑖 = 𝐿𝑖,𝑖𝑈𝑖,𝑖 ⊲ LU with partial pivoting for the diagonal block
20: for 𝑗 = 𝑖+1 to 𝑐𝑜𝑙max (𝑏 + 1) do
21: Compress: 𝐵𝑖, 𝑗 ≈ 𝑋𝑖, 𝑗𝑌𝑇𝑖,𝑗
22: Solve: 𝐵𝑖, 𝑗 ← 𝐿−1

𝑖,𝑖
𝐵𝑖, 𝑗

23: end for
24: for 𝑗 = 𝑖+1 to 𝑝 do
25: Compress: 𝐵 𝑗,𝑖 ≈ 𝑋 𝑗,𝑖𝑌

𝑇
𝑗,𝑖

26: Solve: 𝐵 𝑗,𝑖 ≈ 𝐵 𝑗,𝑖𝑈 −1𝑖,𝑖

27: end for
28: for 𝑗 = 𝑖+1 to 𝑐𝑜𝑙max (𝑏 + 1) do
29: for 𝑘 = 𝑖+1 to 𝑝 do
30: Update: 𝐵𝑘,𝑗 ≈ 𝐵𝑘,𝑗 − 𝑋𝑘,𝑖 (𝑌𝑇𝑘,𝑖𝑋𝑖, 𝑗 )𝑌

𝑇
𝑖,𝑗

31: end for
32: end for
33: end for
34: end for
35: ⊲ We assume that 𝑝 is a multiple of 𝑐𝑜𝑙max for simplicity, but our code can easily handle any value of 𝑝 .

As visualized in Fig. 2, all BLR tiles of the entire frontal matrix for the LL as well as the RL versions are constructed
at once, as dense tiles, which results in a high peak memory consumption. This is followed by the factorization of the
𝑖-th diagonal tile, then the tiles of the 𝑖-th row and 𝑖-th column are compressed and solved. For the RL version, the
update task is executed on all remaining tiles of the trailing sub-matrix. For the LL version, the update task is executed
on the immediate neighboring row and column block columns of the trailing sub-matrix.
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Based on the observation that both the LL and the RL versions result in a memory bottleneck due to an initial
construction of the entire frontal matrix as dense tiles, the problem sizes that can be executed within a multifrontal
solver are limited, see Section 5. Therefore, we decided to implement a memory efficient version where we combine
aspects of the LL and the RL version which results in a column-wise construction of the frontal matrices, see Algorithm 4
and Fig. 2c. We call this variant the hybrid BLR version. For the hybrid version only the neighboring #𝑐𝑜𝑙max block
columns are created and subsequently the compression and solve steps are executed only on the neighboring #𝑐𝑜𝑙max
row tiles, see Algorithm 4 for more details. Algorithm 4 is based on the assumption that 𝑝 is integer multiple of 𝑏 for
simplicity, but our code can easily handle any value of 𝑝 in general. The experiments in Section 5 are based on #𝑐𝑜𝑙max =

number of columns in the 2D MPI process grid such that each MPI process is involved in updating one local column.
The benefit of using the hybrid version over the RL or the LL version is the reduced memory consumption which

eventually enables to solve larger problem sizes, see Section 5.

3.2.1 Parallel layout of the hybrid BLR matrix. In our implementation, the hybrid BLR matrix is parallelized with a
two-dimensional process grid using the available processes in the MPI communicator, and the matrix is distributed over
this grid using a 2D block-cyclic data layout, similar to the ScaLAPACK layout but with non-uniform block sizes. The
process grid is 𝑃𝑟 × 𝑃𝑐 with 𝑃𝑟 =

⌊√
𝑃

⌋
and 𝑃𝑐 = 𝑃/𝑃𝑟 , with at most

⌊√
𝑃

⌋
− 1 idle processes, where 𝑃 represents the

number of available MPI processes. In a parallel setting, the block columns for the hybrid BLR algorithm are distributed
among all available MPI processes in the grid, based on the 2D block-cyclic data layout with 𝑐𝑜𝑙max = 𝑃𝑐 . After the
block columns are created locally, the factor, compression and solve steps are executed on the neighboring #𝑐𝑜𝑙max row
tiles. In between each of these four tasks, the MPI processes communicate their updates to the processes in the same
row communicator and in the same column communicator.

Fig. 3 presents the algorithmic steps for a parallel hybrid BLR method with twelve MPI processes arranged as four
processes for each column times three processes for each row. In particular, each process constructs its local tiles within
the first 𝑐𝑜𝑙max = 3 columns. The process that owns the tile in the first row- and column executes the factorization step;
this is followed by two broadcast operations to share the updated tile with all processes of row one and all processes of
column one. Afterwards the compression and solve steps are executed for all tiles in the first column as well as the
two tiles in row one. The update operation as described in Algorithm 4 is executed for all tiles in columns two and
three. These four tasks are repeated over and over such that all tiles that have been constructed already, are updated.
Afterwards these steps are executed again for the next 𝑐𝑜𝑙max = 3 columns.
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Fig. 3. Hybrid BLR algorithm with 12 processes arranged as 4x3 process grid and 𝑐𝑜𝑙max = 3.
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3.2.2 Communication Cost Comparison for BLR Factorization. As described in Section 3.2.1 the parallel layout of the
BLR matrix follows a 2D block-cyclic data layout, similar to the ScaLAPACK layout but with varying block sizes. As
visualized in Fig. 2 and Fig. 3 the BLR(RL), BLR(LL) and BLR(Hybrid) algorithms consist of various different execution
steps which lead to a different communication pattern in a parallel setting.

The BLR(RL) algorithm consists of a repetition of the following steps:

(1) LU factorization followed by a broadcast of the LU factored tile along the row processes and the column
processes. In addition, the pivot elements are shared along the row processes with an additional broadcast.

(2) After the compression and solve step, the row of updated tiles as well as the column of updated tiles are
broadcast along all row and column processes using two broadcast operations times the number of column/row
processes each.

Step 1 consists of three broadcast operations, while step 2 consists of two broadcast operations times the number of
column/row processes each. These steps are repeated for each row of tiles, i.e.:

(⌈𝑛/𝑏⌉ − 1) × 3 bcast_ops,

(⌈𝑛/𝑏⌉ − 1) × (2 × (𝑃𝑟 + 𝑃𝑐 )) bcast_ops,

with 𝑛 = size of 𝐹11, 𝑏 = size of tile, 𝑃𝑟 = number of row processes and 𝑃𝑐 = number of column processes.
The BLR(LL) algorithm consists of a repetition of the following steps:

(1) LU factorization followed by a broadcast of the LU factored tile along the row processes and the column
processes. In addition, the pivot elements are shared along the row processes with an additional broadcast.

(2) After the compression and solve step, the row and column of updated tiles as well as all previous updated rows
and columns are communicated to the necessary MPI processes using four broadcast and two send operations
times the number of column/row processes each. While the broadcast operations are used for the communication
of one tile along columns and one tile along rows, the send operations are used for the remaining tiles of the
rows and columns, which results in two send operations times the number of column/row processes each.

Step 1 consists of three broadcast operations, while step 2 consists of four broadcast operations times the number of
previous updated columns/rows and two send operations times the number of column/row processes each times the
number of previous updated columns/rows, leading to a total of 3 + (𝑖 × 4) broadcast and 𝑖 × (𝑃𝑟 × 2 + 𝑃𝑐 × 2) send
operations, with 𝑖 current phase of the factorization. These steps are repeated for each row of tiles 𝑖 = 1 : ⌈𝑛/𝑏⌉ − 1, i.e.:

(⌈𝑛/𝑏⌉ − 1) × 3 bcast_ops,
⌈𝑛/𝑏 ⌉−1∑︁

𝑖=1
(𝑖 × 4) bcast_ops,

⌈𝑛/𝑏 ⌉−1∑︁
𝑖=1

(𝑖 × (2 × (𝑃𝑟 + 𝑃𝑐 ))) send_ops.

The formula indicate that BLR(RL) uses less broadcast operations than BLR(RL). However, BLR(RL) consists of broadcast
operations only, while BLR(LL) needs additional send operationswhich leads to higher communication cost overall for
BLR(LL) compared to the BLR(RL) variant.

The BLR(Hybrid) algorithm consists of a repetition of the following two stages:

(1) Construct columns and if columns to the left already exist, execute the following step
Manuscript submitted to ACM
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(a) After compression and solve step of the new partial row, the updated tiles are communicated to the necessary
MPI processes using two broadcast operations times the number of column processes. In addition, the
previously updated block columns are communicated to the necessary MPI processes using two broadcast
operations times the number of row processes.

This first stage is executed for all previously constructed columns, i.e. four broadcast operations (times the number of
row/column processes) times the number of previously constructed columns. The second stage consists of the following
operations:

(2) (a) LU factorization followed by a broadcast of the LU factored tile along the row processes and the column
processes. In addition, the pivot elements are shared along the row processes with an additional broadcast.
Even though only a part of a row is constructed in each step, all processes are involved in the update and
communication steps.

(b) After the compression and solve step of one partial row and one column, the updated tiles are communicated
to the necessary MPI processes using two broadcast operations times the number of row/column processes
each.

Step (a) of stage 2 consists of three broadcast operations, while step (b) consists of two broadcast operations. For both
stages the number of communication operations sum up to:

⌈𝐼/𝑐𝑜𝑙max⌉ × 𝑐𝑜𝑙max × 3 bcast_ops,
𝐼∑︁

𝑖=1
(𝑐𝑜𝑙max × 𝑖 × (2 × 𝑃𝑟 + 2 × 𝑃𝑐 )) bcast_ops,

with 𝐼 = ⌈⌈𝑛/𝑏⌉/𝑐𝑜𝑙max⌉.

In summary, we notice additional communication cost for the two BLR variants (LL) and (Hybrid) compared to the
BLR(RL) variant. BLR(RL) and BLR(Hybrid) consist of broadcast operations only, while BLR(LL) needs additional send
operations. The formula indicate that BLR(RL) uses the least amount of broadcast operations and BLR(Hybrid) uses
significantly more than the other two variants, which is due to additional broadcast operations needed for each newly
constructed set of columns.

Incorporating BLR fronts in the sparse multifrontal solver adds some additional challenges that we discuss in
Section 4.

3.3 Hierarchically Off-Diagonal Butterfly Compression

The HODBF matrix representation [28] is the butterfly extension of the HODLR matrix, i.e., H -matrix with weak
admissibility condition [16], that means every off-diagonal block is compressed. The clustering into blocks as well as
the weak admissibility condition in the context of the multifrontal solver are discussed in detail in Section 4. In what
follows, we briefly describe the HODBF format, which is used in Section 4 to construct the quasi-linear complexity
multifrontal solver.

HODBF starts with a hierarchical clustering of the row and column indices of an 𝑛 × 𝑛 matrix 𝐴 into 𝐿 = O(log𝑛)
levels. At the leaf level 𝐿, we have a partitioning 𝑇𝐿

1 ,𝑇
𝐿
2 , . . . ,𝑇

𝐿
2𝐿 , the same as the BLR matrix; at the next level, we have

a new partitioning 𝑇𝐿−1
1 , . . . ,𝑇𝐿−1

2𝐿−1 by combining every two adjacent clusters/nodes at level 𝐿 into one. For a given
cluster at level 𝑙 < 𝐿, 𝑇 𝑙

𝑘
, we use T 𝑙

𝑘
to denote the subtree rooted at 𝑇 𝑙

𝑘
and T𝐻 = T 0

0 (see Fig. 4).
Manuscript submitted to ACM
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𝑇𝐿
1

𝑇𝐿
2

𝑇𝐿
3

𝑇𝐿
4

𝑇𝐿
5

𝑇𝐿
6

𝑇𝐿
7

𝑇𝐿
8

T𝑂 = T 1
1

T𝑆 = T 1
2

𝑈 2 𝑅1 𝐵1 𝑊 1 𝑉 0

𝑈 1𝐵1 𝑉 0

𝑈 1 𝑉 0

T𝐻

T 1
1

T 2
1

𝑇 3
1 𝑇 3

2

T 2
2

𝑇 3
3 𝑇 3

4

T 1
2

T 2
3

𝑇 3
5 𝑇 3

6

T 2
4

𝑇 3
7 𝑇 3

8

Fig. 4. Illustration of a 4-level hierarchically off-diagonal butterfly matrix. The root node is at level 𝑙 = 0, all the leaf nodes are at level
𝐿 = 3. The two largest off-diagonal blocks are approximated using 2-level butterfly matrices. The 4 off-diagonal blocks one level down
in the hierarchy are approximated using a 1-level butterfly (𝑈 1𝐵1𝑉 0). Finally, the smallest off-diagonal blocks are approximated as
0-level butterfly matrices.

It follows that off-diagonal blocks of the HODBF matrix, representing interactions between two distinct level-𝑙
clusters with subtrees T𝑆 and T𝑂 , are compressed as butterfly representations, while the diagonal blocks at the leaf level
𝐷𝜏 = 𝐴(𝑇𝐿

𝜏 ,𝑇
𝐿
𝜏 ) for cluster 𝜏 are stored as regular dense matrices (see Fig. 4). The butterfly representation of 𝐿𝑏 = 𝐿 − 𝑙

levels for the block 𝐾 = 𝐴(𝑇𝑂 ,𝑇𝑆 ) reads:

𝐾 ≈ 𝑈 𝐿𝑏𝑅𝐿𝑏−1 · · ·𝑅ℎ𝐵ℎ (𝑊 ℎ)∗ · · · (𝑊 1)∗ (𝑉 0)∗, (2)

where ℎ = 𝐿𝑏/2,𝑈 𝐿𝑏 and 𝑉 0 are block diagonal matrices, 𝑅𝐿𝑏−1, · · ·𝑅ℎ, 𝐵ℎ,𝑊 1, · · · ,𝑊 ℎ are all block diagonal matrices
after certain predefined permutations. Typically, butterfly representation of an 𝑚 × 𝑛 matrix 𝐾 contains at most
O(𝑛 log𝑛) nonzeros. In practice, one can rapidly constructs such a representation by evaluating O(𝑛 log𝑛) matrix
entries from 𝐾 . Once constructed, the HODBF matrix can be inverted efficiently with randomized algorithms [28]. For
more details on butterfly decomposition and its components, please refer to [27, 29].

3.3.1 Parallel HODBF Layout . In our implementation, the HODBF matrix is distributed using a given MPI commu-
nicator. The overall 1D block layout can be summarized as follows: starting with 𝐷𝜏 = 𝐴 at the root 𝜏 of T𝐻 , the
given communicator sharing 𝐷𝜏 is split into two sub communicators of similar number of processes. The two sub
communicators store and compute 𝐷𝜏1 , 𝐵𝜏1 and 𝐷𝜏2 , 𝐵𝜏2 , respectively. Layouts of 𝐵𝜏1 and 𝐵𝜏2 follow those described
in [27]. Each of the two sub communicators is further recursively split unless the communicator has only one process
that stores and computes 𝐷𝜏 . Once constructed following this layout, the HODBF representation can also be inverted
following this layout. See more detail on parallelization in [41].

4 RANK STRUCTURED MULTIFRONTAL FACTORIZATION

Algorithm 5 outlines the rank-structured multifrontal factorization using BLR compression for medium sized fronts and
HODBF compression for large sized fronts. Since the more complicated HODBF matrix format has larger overhead for
smaller matrices compared to the BLR compression, HODBF compression is only used for fronts corresponding to a
separator size larger than a certain threshold 𝑛Hmin. In addition, BLR compression is only used for fronts corresponding
to a separator size smaller than 𝑛Hmin and larger than a threshold 𝑛Bmin. We have the option to add zfp compression [24]
for small fronts, below threshold 𝑛Bmin and larger than or equal to a separator size of 8. All fronts corresponding to
a separator size smaller than 8 will not be compressed. The advantage of adding zfp compression is an additional
Manuscript submitted to ACM
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Sparse approximate multifrontal factorization with composite compression methods 15

reduction in memory consumption, however the solve time increases due to the decompression of zfp fronts during the
solve step, see for example Fig. 8c and Fig. 8e.

Typically, the larger fronts are found closer to the root of the multifrontal assembly tree. This is illustrated in Fig. 5
for a small regular 5 × 5 × 4 mesh (Fig. 5a), and Fig. 5c shows the corresponding multifrontal assembly tree, where
only the top three fronts are compressed using HODBF, the next two levels down in the assembly tree consist of BLR
compressed fronts and the remaining fronts are compressed with zfp.

S
0

S
1

0

S
1

1

(a)

T
1

0
T
1

1

T
2

0
T
2

2

T
2

3T
2

1

S
0

(b)

HODBF

BLR

HODBF HODBF

BLR BLR BLR BLR

BLR

ZFP ZFP

(c)

Fig. 5. (a) The top two levels of nested dissection for a 5× 5× 4mesh. The top three separators are 𝑆0, 𝑆10 and 𝑆
1
1 . (b) The root separator

𝑆0 is a vertical plane of 20 points, which is recursively bisected to define level 1 (𝑇 1
0 to𝑇 1

1 ) and level 2 (𝑇 2
0 to𝑇 2

3 ) of the hierarchical
matrix partitioning. (c) The root separator corresponds to the top level front, and its HODBF partitioning is defined by the recursive
bisection of the root separator, as shown in (b), similar for the next level down; the following two levels in the assembly/frontal tree
consists of BLR fronts and the remaining fronts are compressed with zfp.

We now discuss the construction as well as the partial factorization of frontal matrices within a multifrontal solver
with a focus on BLR and HODBF compressed fronts. Recall from Section 2 that a front 𝐹𝜏 is built up from elements of the
reordered sparse input matrix 𝐴 and the contribution blocks of the children of the front in the assembly tree: 𝐹22;a1 and
𝐹22;a2 , where a1 and a2 are the two children of 𝜏 . Since the multifrontal factorization traverses the assembly tree from
the leaves to the root, these children contribution blocks might already be compressed using the BLR or the HODBF
format. Hence, extracting frontal matrix elements requires getting them from fronts previously compressed. There are
four different options that we describe in detail in the following subsections, Section 4.1 - Section 4.4: extracting from
HODBF to construct HODBF, extracting from BLR to construct HODBF, extracting from LL/RL BLR to construct LL/RL
BLR, extracting from hybrid BLR to construct hybrid BLR. In addition to the above mentioned extracting operations,
also called extend-add operations, there are extracting operations that we don’t discuss here either because they are
straightforward operations, like extracting from dense matrix to construct a matrix in BLR form, or because they are
similar to the other operations that we explain in detail in the following sections, like extracting from dense or zfp
matrix to construct HODBF.

The block clustering for the BLR representation of 𝐹11, and the HODBF cluster tree for the 𝐹11 part of a front, are
defined by performing a recursive bisection (not to be confused with nested dissection), using METIS, of the graph
corresponding to 𝐴(𝐼𝑠𝜏 , 𝐼𝑠𝜏 ), where 𝐼𝑠𝜏 denotes the index sets of 𝐹11. Recursive bisection leads to a tree structure that can
be used to define the HODBF cluster tree and a corresponding permutation of the rows/columns of 𝐹11. For BLR, only
the leaves of this tree are considered for the definition of the blocks.

4.0.1 BLR admissibility condition. The admissibility condition determines which blocks in the BLR matrix should
be considered as compressible. We implement two different admissibility conditions. As the default strategy, each
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off-diagonal block is compressed, but if the rank of an off-diagonal block is too large, such that the compression does
not decrease memory consumption, then that block is stored in its dense format. The diagonal blocks 𝐵𝑖𝑖 are always
stored as full-rank matrices (�̃�𝑖𝑖 = 𝐵𝑖𝑖 ). We also provide an alternative strategy, called strong admissibility, where we
use the graph of 𝐴(𝐼𝑠𝜏 , 𝐼𝑠𝜏 ) to determine whether a block is admissible. For BLR with strong admissibility, we say that
an interaction 𝜎 × 𝜏 is inadmissible if 𝜎 ≡ 𝜏 , or if the matrix block 𝐵𝜎𝜏 contains a nonzero entry coming from sparse
matrix 𝐴. We found that trying to compress each block performed slightly better in terms of both compression ratio
and runtime.

4.1 HODBF with HODBF Children Nodes

Extracting an HODBF frontal matrix to construct an HODBF matrix looks like:

𝐹𝜏 =

𝐹12

𝐹21
=

sparse

↕↔

𝐹22;a1

↕↔

𝐹22;a2

, (3)

with 𝐹11 and 𝐹22 compressed as HODBF, and 𝐹12 and 𝐹21 compressed as butterfly. For the construction of an HODBF
front with HODBF children, the following tasks need to be executed:

(1) Since fronts are constructed as a combination (extend-add) of other smaller fronts, a list of submatrices needs to be
extracted from other fronts which are already compressed using HODBF. Therefore it is critical for performance to
use an efficient algorithm to extract a list of submatrices from a butterfly matrix. This is presented as extract_BF
in [27]. The 𝐹11 block of 𝐹 ≡ 𝐹𝜏 is compressed as an HODBF matrix, see [27] for details, which uses the extract_BF
routine to extract elements from 𝐹11 = 𝐴(𝐼 s𝜏 , 𝐼 s𝜏 ) ↕↔ 𝐹22;a1 ↕↔ 𝐹22;a2 , see line 32 in Algorithm 5. Note that in this
case, the extend-add operation just requires checking whether the required matrix entries appear in the sparse
matrix, or in the child contribution blocks, and then adding those different contributions together.

(2) Line 33 approximates 𝐹−111 from the butterfly representation of 𝐹11, see [27] for details.
(3) Lines 34 and 35, the off-diagonal blocks/fronts 𝐹12 and 𝐹21 are each approximated as a single butterfly matrix, using

routines to extract elements from 𝐴(𝐼 s𝜏 , 𝐼u𝜏 ) ↕↔ 𝐹22;a1 ↕↔ 𝐹22;a2 and 𝐴(𝐼u𝜏 , 𝐼 s𝜏 ) ↕↔ 𝐹22;a1 ↕↔ 𝐹22;a2 respectively. For
𝐹12, the tree T𝐻 corresponding to 𝐹11 is used as T𝑂 , and the tree corresponding to 𝐹22 is used for T𝑆 , and vice versa
for 𝐹21.

(4) The final step for this front is to construct the contribution block of 𝜏 . 𝐹22 as an HODBF matrix, again using element
extraction, now from 𝐹22;a1 ↕↔ 𝐹22;a2 − 𝑆 , where 𝐹22;a1 and 𝐹22;a2 are in HODBF form and 𝑆 = 𝐹21𝐹−111 𝐹12 is a single
butterfly matrix compressed via the randomized algorithm in [27]. 𝑆 can be released as soon as the contribution
block has been assembled, and the contribution block is kept in memory until it has been used to assemble the
parent front.
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Sparse approximate multifrontal factorization with composite compression methods 17

Algorithm 5 Sparse rank-structured multifrontal factorization using zfp, BLR and HODBF compressions, followed by a
GMRES iterative solve using the multifrontal factorization as an efficient preconditioner.

Input: 𝐴 ∈ R𝑁×𝑁 , 𝑏 ∈ R𝑁
Output: 𝑥 ≈ 𝐴−1𝑏
1: 𝐴← 𝑃 (𝐷𝑟𝐴𝐷𝑐𝑄𝑐 )𝑃⊤ ⊲ scaling, and permutation for stability and fill reduction
2: 𝐴← 𝑃𝐴𝑃⊤ ⊲ rank-reducing separator reordering
3: Build assembly tree: define 𝐼 s𝜏 and 𝐼u𝜏 for every frontal matrix 𝐹𝜏
4: for nodes 𝜏 in assembly tree in topological order do
5: if dimension(𝐼 s𝜏 ) < 8 then
6: construct 𝐹𝜏 as a dense matrix ⊲ Algorithm 1
7: else if dimension(𝐼 s𝜏 ) < 𝑛Bmin then
8: construct 𝐹𝜏 as a dense matrix ⊲ Algorithm 1
9: if zfp enabled then
10: compress as zfp matrix
11: end if
12: else if dimension(𝐼 s𝜏 ) < 𝑛Hmin && RL- or LL-BLR then
13: 𝐹𝜏 ←

[
𝐴(𝐼 s𝜏 , 𝐼 s𝜏 ) 𝐴(𝐼 s𝜏 , 𝐼u𝜏 )
𝐴(𝐼u𝜏 , 𝐼 s𝜏 ) 0

]
↕↔ 𝐹22;a1 ↕↔ 𝐹22;a2

14: 𝑃𝜏𝐿𝜏𝑈𝜏 ← 𝐹11 ⊲ LU with partial pivoting
15: 𝐹11, 𝐹12, 𝐹21 ← BLR compress(𝐹11, 𝐹12, 𝐹21)
16: 𝐹12 ← 𝐿−1𝜏 𝑃⊤𝜏 𝐹12
17: 𝐹21 ← 𝐹21𝑈 −1𝜏

18: 𝐹22 ← 𝐹22 − 𝐹21𝐹12 ⊲ Schur update
19: else if dimension(𝐼 s𝜏 ) < 𝑛Hmin && Hybrid-BLR then
20: for columns 𝐶 in frontal matrix 𝐹𝜏 corresponding to 𝐼 s𝜏 do
21: 𝐹11;𝐶 ← BLR compress

(
𝐴(𝐼 spartial𝜏 , 𝐼

spartial
𝜏 ) ↕↔ 𝐹22;a1;partial ↕↔ 𝐹22;a2;partial

)
22: 𝑃𝜏𝐿𝜏𝑈𝜏 ← 𝐹11;𝐶 ⊲ LU with partial pivoting
23: 𝐹11;𝐶 , 𝐹21;𝐶 ← BLR compress(𝐹11;𝐶 , 𝐹21;𝐶 )
24: 𝐹21;𝐶 ← 𝐹21;𝐶𝑈 −1𝜏

25: end for
26: for columns 𝐶 in frontal matrix 𝐹𝜏 corresponding to 𝐼u𝜏 do
27: 𝐹12;𝐶 ← BLR compress(𝐹12;𝐶 )
28: 𝐹12;𝐶 ← 𝐿−1𝜏 𝑃⊤𝜏 𝐹12;𝐶
29: 𝐹22;𝐶 ← 𝐹22;𝐶 − 𝐹21𝐹12 ⊲ Schur update
30: end for
31: else
32: 𝐹11 ← HODBF compress

(
𝐴(𝐼 s𝜏 , 𝐼 s𝜏 ) ↕↔ 𝐹22;a1 ↕↔ 𝐹22;a2

)
33: 𝐹−111 ← HODBF invert (𝐹11)
34: 𝐹12 ← butterfly compress

(
𝐴(𝐼 s𝜏 , 𝐼u𝜏 ) ↕↔ 𝐹22;a1 ↕↔ 𝐹22;a2

)
35: 𝐹21 ← butterfly compress

(
𝐴(𝐼u𝜏 , 𝐼 s𝜏 ) ↕↔ 𝐹22;a1 ↕↔ 𝐹22;a2

)
36: 𝑆 ← butterfly compress

(
𝐹21𝐹−111 𝐹12

)
37: 𝐹22 ← HODBF compress

(
𝐹22;a1 ↕↔ 𝐹22;a2 − 𝑆

)
⊲ Schur update

38: end if
39: end for
40: 𝑥 ← GMRES(𝐴,𝑏,𝑀 : 𝑢 ← 𝐷𝑐𝑄𝑐𝑃

⊤𝑃⊤ bwd-solve(fwd-solve(𝑃𝑃𝐷𝑟 𝑣)))
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4.2 HODBF with BLR Children Nodes

Extracting a BLR(Hybrid) frontal matrix to construct an HODBF matrix is similar to an extraction from HODBF and
looks like:

𝐹𝜏 =

𝐹12

𝐹21
=

sparse

↕↔

𝐹22;a1

↕↔

𝐹22;a2

, (4)

For the construction of an HODBF front with BLR children, the following tasks need to be changed compared
to Section 4.1:

• For line 32 in Algorithm 5 a different routine to extract elements from 𝐹11 = 𝐴(𝐼 s𝜏 , 𝐼 s𝜏 ) ↕↔ 𝐹22;a1 ↕↔ 𝐹22;a2 needs to
be executed. For RL- and LL-BLR the extract is straightforward since 𝐹22;a1 and 𝐹22;a2 remain dense at the time of
extraction. Hence, we simply extract the elements from a dense submatrix using a scatter operation. In case of the
Hybrid-BLR children 𝐹22;a1 and 𝐹22;a2 are compressed. Hence, more computational effort is needed to extract from
compressed BLR tiles.

• Lines 34 and 35, the 𝐹12 and 𝐹21 front off-diagonal blocks are each approximated as a single butterfly matrix, using
routines to extract elements from 𝐴(𝐼 s𝜏 , 𝐼u𝜏 ) ↕↔ 𝐹22;a1 ↕↔ 𝐹22;a2 and 𝐴(𝐼u𝜏 , 𝐼 s𝜏 ) ↕↔ 𝐹22;a1 ↕↔ 𝐹22;a2 respectively, where
𝐹22;a1 and 𝐹22;a2 are in compressed form as in Hybrid-BLR or dense as in LL/RL-BLR.

• The final step to construct the contribution block of 𝜏 , 𝐹22, as an HODBF matrix, uses element extraction, now from
𝐹22;a1 ↕↔ 𝐹22;a2 − 𝑆 , where 𝐹22;a1 and 𝐹22;a2 are in BLR form and 𝑆 is a single butterfly matrix.

Note that for BLR fronts, the extend-add operation just requires checking whether the required matrix entries appear in
the sparse matrix, or in the child contribution blocks, and then adding those different contributions together.

4.3 BLR with BLR Children Nodes with Immediate Construction of All Tiles (LL/RL-BLR)

Extracting a BLR frontal matrix to construct a BLR matrix looks like:

𝐹𝜏 = =

sparse

↕↔

𝐹22;a1

↕↔

𝐹22;a2

, (5)

and the following tasks need to be executed for the RL and LL BLR versions:

(1) The 𝐹 ≡ 𝐹𝜏 frontal matrix is constructed as a BLR matrix, which implies that it is separated into smaller dense

tiles. First, we apply extend-add operations to update 𝐹𝜏 ←
[
𝐴(𝐼 s𝜏 , 𝐼 s𝜏 ) 𝐴(𝐼 s𝜏 , 𝐼u𝜏 )
𝐴(𝐼u𝜏 , 𝐼 s𝜏 ) 0

]
↕↔ 𝐹22;a1 ↕↔ 𝐹22;a2 , see line 13

in Algorithm 5. Since 𝐹22;a1 and 𝐹22;a2 are not compressed the extract is straightforward, we simply extract the
elements from a dense submatrix using a scatter operation.

(2) Line 14 computes the 𝐿𝑈 decomposition of 𝐹11 tile by tile.
(3) Line 15 compresses the off-diagonal tiles of 𝐹11 and the tiles of 𝐹12, 𝐹21 via QR factorization with column pivoting.
(4) Lines 16 and 17, the off-diagonal blocks 𝐹12 and 𝐹21 are updated.
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(5) The final step for this front is to construct the contribution block 𝐹22 as a BLR matrix with dense tiles, see line 18.
The contribution block is kept in memory until it has been used to assemble the parent front.

4.3.1 Construction of a parallel BLR parent front with immediate construction of all tiles. In our implementation, the
BLR matrix is distributed among MPI communicators, i.e., a certain amount of BLR tiles is assigned to each MPI
communicator. The parallel construction is executed for each MPI communicator. First, each MPI communicator collects
their contribution from children fronts 𝐹22;a1 and 𝐹22;a2 . This is followed by an all-to-all exchange of BLR tiles, such that
each MPI process has access to the necessary update tiles. Afterward, each MPI communicator updates their tiles within
the parent front. A more detailed description and a visualization can be found for the similar hybrid BLR algorithm
with fragmentary construction of the BLR matrix, see Section 4.4.

4.4 BLR with BLR Children Nodes with Fragmentary Construction of the BLR Parent Matrix (hybrid-BLR)

Extracting a BLR frontal matrix to construct a parent BLR matrix in fragments (few columns at a time) is similar to
a BLR construction where we construct all tiles immediately, see Section 4.3. However it requires some algorithmic
updates as represented in the following:

𝐹𝜏 = =

sparse

↕↔

𝐹22;a1

↕↔

𝐹22;a2

. (6)

The tasks to be executed need to be updated as described below:

(1) The extend-add operations to update 𝐹𝜏 ←
[
𝐴(𝐼 s𝜏 , 𝐼 s𝜏 ) 𝐴(𝐼 s𝜏 , 𝐼u𝜏 )
𝐴(𝐼u𝜏 , 𝐼 s𝜏 ) 0

]
↕↔ 𝐹22;a1 ↕↔ 𝐹22;a2 requires a different routine to

only update the columns that have been constructed. Additional extend-add steps need to be executed every time
block columns are added to the front. Eq. (6) visualizes the extend-add operation involving three newly constructed
columns of the parent front 𝐹𝜏 and columns of the child fronts 𝐹22;a1 and 𝐹22;a2 , highlighted in yellow. 𝐹22;a1 and
𝐹22;a2 are in BLR matrix form, fully constructed and compressed. Note, only the columns of the contribution blocks
corresponding to the data points represented in the columns of the parent front need to be extracted for the extend
add operation. The extract operation for the required block columns can be executed as follows:
• If the tiles of 𝐹22;a needed for the extend-add operation are compressed, we first decompress the block columns

and then apply a scatter operation to construct 𝐹𝜏 .
• If the tiles of 𝐹22;a needed for the extend-add operation have been decompressed already, we simply apply a

scatter operation to construct 𝐹𝜏 .
These steps need to be repeated for each column that is constructed.

(2) The remaining steps are adjusted such that only the constructed block columns are considered. A loop is added for
partial construction and update of block columns, see lines 20 and 26 in Algorithm 5.

4.4.1 𝐹22 compression. For the final step, the so-called update step of the contribution block 𝐹22 of a frontal matrix,
see line 29 in Algorithm 5, we include an additional compression step for the hybrid BLR algorithm. In contrast to the
BLR matrices with immediate construction of all tiles, compare Section 4.3, we do a simple compression step after the
General Matrix Multiply (GeMM) operation is executed.
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4.4.2 Construction of a parallel hybrid BLR parent front. In our implementation, the BLR matrix is distributed among
MPI communicators, i.e., a certain amount of BLR tiles is assigned to each MPI process. The parallel construction is
executed for each MPI communicator. First, each MPI process collects their contribution from children fronts 𝐹22;a1 and
𝐹22;a2 needed for the update of the block columns in the parent front. This is followed by an all-to-all exchange of BLR
tiles, such that each MPI process has access to the necessary update tiles. Afterward, each MPI communicator updates
their tiles within the columns of the parent front.

As discussed in Section 3.2.2 the communication cost of the BLR matrix incorporated in the sparse multifrontal
solver vary based on the BLR variant. We concluded higher communication cost for a BLR(Hybrid) matrix compared to
BLR(RL) and BLR(LL) in Section 3.2.2. In addition, when BLR is used within a multifrontal solver, BLR(Hybrid) requires
additional communication steps for the extend-add operation sending updates from children fronts to parent frontal
matrices. These observations lead to an increased factorization time as can be seen in Section 5.

5 EXPERIMENTAL RESULTS

Experiments reported here are all performed on the Haswell nodes of the Cori machine, a Cray XC40, at the National
Energy Research Scientific Computing Center in Berkeley. Each of the 2, 388 Haswell nodes has two 16-core Intel
Xeon E5-2698v3 processors and 128GB of 2133MHz DDR4 memory. The approximate multifrontal solver is used
as a preconditioner for restarted GMRES(30) with modified Gram-Schmidt and a zero initial guess. Unless noted
otherwise, all experiments are performed in double precision with absolute or relative stopping criteria ∥𝑢𝑖 ∥ ≤ 10−10 or
∥𝑢𝑖 ∥/∥𝑢0∥ ≤ 10−6, where 𝑢𝑖 = 𝑀−1 (𝐴𝑥𝑖 − 𝑏) is the residual at Krylov iteration 𝑖 , with𝑀 the approximate multifrontal
factorization of 𝐴. We use iterative refinement instead of GMRES for the exact multifrontal solver, which is also called
multifrontal solver with no compression. For simplicity all experiments are in double precision. For a discussion on
mixed precision iterative refinement for approximate sparse solvers see [3].

5.1 Visco-Acoustic Wave Propagation

We first consider the 3D visco-acoustic wave propagation governed by the Helmholtz equation(∑︁
𝑖

𝜌 (x) 𝜕
𝜕𝑥𝑖

1
𝜌 (x)

𝜕

𝜕𝑥𝑖

)
𝑝 (x) + 𝜔2

^2 (x)
𝑝 (x) = −𝑓 (x) . (7)

Here x = (𝑥1, 𝑥2, 𝑥3), 𝜌 (x) is the mass density, 𝑓 (x) is the acoustic excitation, 𝑝 (x) is the pressure wave field, 𝜔 is
the angular frequency, ^ (x) = 𝑣 (x) (1 − 𝑖/(2𝑞(x))) is the complex bulk modulus with the velocity 𝑣 (x) and quality
factor 𝑞(x). We solve Eq. (7) by a finite-difference discretization on staggered grids using a 27-point stencil and 8 PML
absorbing boundary layers [36]. This requires direct solution of a sparse linear system where each matrix row contains
27 nonzeros, whose values depend on the coefficients and frequency in Eq. (7).

We consider a cubed domain with 𝑣 (x) = 4000m/s, 𝜌 (x) = 1kg/m3, 𝑞(x) = 104. The frequency is set to 𝜔 = 8𝜋Hz
and the grid spacing is set such that there are 15 grid points per wavelength.

First, we vary 𝑁 from 2003 to 4203 and compare four types of multifrontal solvers: “no compression”- exact solver,
“BLR(RL)”- BLR compression with RL variant, “BLR(LL)”- BLR compression with LL variant and “BLR(Hybrid)”- BLR
compression with hybrid variant, see Fig. 6. All fronts corresponding to separators with size 𝑛Bmin ≥ 200 are compressed
with tolerance Y = 10−3. For all experiments, the relative error was ∥𝑥 −𝑥 ∥2/∥𝑥 ∥2 < 10−5. We observed that all variants
of the BLR multifrontal solver outperform the exact solver in terms of factor flops, factor time, factor nonzeros and
peak memory, see Fig. 6. The iteration counts are shown in Fig. 6e for BLR(Hybrid), see Table 1 for iteration counts
Manuscript submitted to ACM
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Fig. 6. Results for high frequency 3D Helmholtz using the BLR(10−3) multifrontal solver with GMRES. (a) Flop counts for factorization.
(b) CPU time for factorization. (c) Memory usage for factorization, i.e. factor nonzeros/factor memory. (d) Flop counts for solve per
iteration in GMRES. (e) CPU time for solve. The number of GMRES iterations are shown at every data point (additional data in
Table 1). (f) Peak working memory. We use 64 compute nodes, with 4 MPI ranks per node and 8 OpenMP threads per MPI process.

of other variants. The BLR(RL) version outperforms the other two BLR variants in terms of factor time. This can be
explained with additional communication cost for the other two BLR variants. As explained in Section 3.2.2, BLR(RL)
and BLR(Hybrid) consist of broadcast operations only, while BLR(LL) needs additional send operations. The formula in
Section 3.2.2 indicate that BLR(RL) uses the least amount of broadcast operations and BLR(Hybrid) uses significantly
more than the other two variants, see Fig. 7a, which is due to additional broadcast operations needed for each newly
constructed set of columns. Fig. 7b shows that the BLR(LL) variant dominates the amount of send operations since they
are not used within fronts in the other two variants. The BLR(Hybrid) algorithm has lower peak memory consumption
which allows to solve larger problem sizes. BLR(RL) and BLR(LL) run out of memory when solving Eq. (7) with sizes
larger than 3203. Among all three variants, BLR(RL) requires the least amount of communication and is the fastest, but
it requires the largest amount of memory.

problem size 2003 2203 2503 2803 3003 3203 3503 3803 4003 4203
BLR(Hybrid) 5 4 5 5 4 6 4 5 5 8
BLR(RL) 4 4 5 5 4 6
BLR(LL) 4 4 5 5 4 6

Table 1. Iteration counts corresponding to results in Fig. 6

Next, we consider a problem with size 𝑁 = 𝑘3, with 𝑘 ranging from 200 to 420 and compare the performance of four
multifrontal solver, with BLR, HODBF, HODBF_BLR and HODBF_BLR_ZFP, see Fig. 8. For the BLR multifrontal solver,
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Fig. 7. Amount of communication for the BLR(LL), BLR(RL) and BLR(Hybrid). (a) Number of broadcast operations. (b) Number of
send operations. BLR(RL) and BLR(Hybrid) require zero send operations, see Section 3.2.2.

we use the BLR(Hybrid) variant which allows to solve problems of size up to 4203. We set the tolerance Y = 10−2 for
HODBF and Y = 10−3 for BLR, respectively. The zfp compressed fronts use 16 bitplanes in HODBF_BLR_ZFP.

For HODBF compression, all fronts corresponding to separators with sizes 𝑛Hmin ≥ 7K are compressed. For
HODBF_BLR_ZFP and HODBF_BLR compression, all fronts corresponding to separators with sizes 𝑛Hmin ≥ 15K
are compressed with HODBF, all fronts corresponding to separators 200 ≤ 𝑛𝐵𝑚𝑖𝑛 ≤ 15K are compressed with BLR, and
all fronts corresponding to separators smaller than 200 are either not compressed or compressed with zfp compression.
For all experiments, the relative error was ∥𝑥 − 𝑥 ∥2/∥𝑥 ∥2 < 10−5. Compared to the O(𝑁 2) computation and O(𝑁 4/3)
memory complexities using the exact multifrontal solver and the BLR multifrontal solver, we observe the predicted
O(𝑁 log2 𝑁 ) computation and O(𝑁 ) memory complexities (see Fig. 8a-Fig. 8e) for the HODBF multifrontal solver
variants. The iteration counts are shown in Fig. 8e for BLR(Hybrid) and HODBF_BLR_ZFP, see Table 2 for iteration
counts of the other multifrontal solvers.

Note that HODBF_BLR_ZFP and HODBF_BLR outperform the other solvers in terms of factor time, factor flops
and solve flops. HODBF_BLR_ZFP outperforms all solvers in terms of factor nonzeros. Due to its lower peak memory
consumption the BLR(Hybrid) multifrontal solver allows to solve larger problem sizes up to 4203 with a low solve time.

problem size 2003 2203 2503 2803 3003 3203 3503 3803 4003 4203
BLR(Hybrid) 5 4 5 5 4 6 4 5 5 8
BLR(RL) 4 4 5 5 4 6
HODBF 6 6 9 8 15

HODBF_BLR(Hybrid) 8 8 29 41 20 43 73 196 317
HODBF_BLR(Hybrid)_ZFP 8 8 29 41 20 43 72 179 354

Table 2. Iteration counts corresponding to results in Fig. 8

5.2 Singularly Perturbed PDE

Next, we consider the following three-dimensional singularly perturbed reaction-diffusion differential equation (SPDE)
that arises in fluid dynamics, computational chemistry, and biological applications (see, for instance, [40]):

−𝛿2Δ𝑢 + 𝑢 = 𝑓 , on Ω = (0, 1)3, and 𝑢 (𝜕Ω) = 𝑔, (8)

where the perturbation parameter 𝛿 is small and positive, 𝑔 and 𝑓 are some given functions. Solving large sparse systems
arising from finite difference discretizations, even for the two-dimensional analogue of (8), is a challenging task. For
example, [30] showed that standard Cholesky-based solvers exhibit poor performance when 𝛿 is small. The underlying
Manuscript submitted to ACM
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Fig. 8. Results for high frequency 3D Helmholtz using the four different multifrontal solver with GMRES. (a) Flop counts for
factorization. (b) CPU time for factorization. (c) Memory usage for the factorization, i.e. factor nonzeros/factor memory. (d) Flop
counts for solve per iteration in GMRES. (e) CPU time for solve. The number of GMRES iterations are shown at every datapoint
(additional data in Table 2). (f) Peak working memory. We use 64 compute nodes, with 4 MPI ranks per node and 8 OpenMP threads
per MPI process.

reason for this is that the fill-in entries in the Cholesky factors are so small as to fall into the range of subnormal

numbers, which are expensive to compute [37]. A thorough investigation of how the subnormal numbers propagate in
the Cholesky factors for the 2D problems can be found in [34].

Here, we set 𝛿 = 10−4 and solve Eq. (8) by a 7-point finite difference discretization. We vary 𝑁 from 643 to 5123 and
compare the performance of four multifrontal solvers, with BLR, BLR_ZFP, HODBF_BLR and HODBF_BLR_ZFP, see
Fig. 9. We set the tolerance Y = 10−2 for both the BLR and the HODBF compression tolerance and use 16 bitplanes
for zfp compression. For the multifrontal solver with BLR or BLR_ZFP compression, all fronts with separator sizes
𝑛Bmin ≥ 200 are compressed with BLR. For the multifrontal solver with HODBF_BLR_ZFP or HODBF_BLR compression,
all fronts with separator sizes 𝑛Hmin ≥ 5K are compressed with HODBF, all fronts corresponding to separator sizes
200 ≤ 𝑛Bmin ≤5K are compressed with BLR, and all fronts corresponding to separator sizes below 200 are either not
compressed or compressed with zfp compression. For all experiments, the relative error was ∥𝑥 − 𝑥 ∥2/∥𝑥 ∥2 < 10−5. We
observed that when adding the HODBF compression one can attain the O(𝑁 log2 𝑁 ) computation and O(𝑁 ) memory
complexities. Adding zfp on top of BLR and HODBF can slightly improve the total factor memory, but can increase the
solve time per iteration.
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Fig. 9. Results for 3D singularly perturbed differential equations (SPDE) using the BLR, BLR-ZFP, BLR-HODBF and BLR-HODBF-ZFP
(10−2) multifrontal solver with GMRES. (a) Flop counts for factorization. (b) CPU time for factorization. (c) Memory usage for
factorization, i.e. factor nonzeros/factor memory. (d) Flop counts for solve per iteration in GMRES. (e) CPU time for solve. (f) Peak
working memory per MPI. We use 64 compute nodes, with 2 MPI ranks per node and 16 OpenMP threads per MPI process.

5.3 Incompressible Navier-Stokes Flow

We solve linear systems with the Stokes operator, modeling incompressible flow described by the Navier-Stokes
equations. The system is discretized on a regular 3D mesh using a staggered grid with the velocity components
approximated at the cell faces and the pressure at the cell centers. Velocity boundary conditions are used on all (six)
faces of the cube. For a 3D cube with 𝑘 mesh points in each direction, there are 3(𝑘 + 1)𝑘2 velocity degrees of freedom
and 𝑘3 pressure degrees of freedom. The discretization is performed using IBAMR [13, 14, 33] (Immersed Boundary
Method Adaptive Mesh Refinement Software Infrastructure), which is built on top of SAMRAI [5] (Structured Adaptive
Mesh Refinement Application Infrastructure). Matrix assembly is done through PETSc [7].

Discretization of the governing equations leads to a linear system𝑀𝑥 = 𝑏, or[
𝐴 𝐺

−𝐷 0

] [
𝑥𝑢

𝑥𝑝

]
=

[
𝑏𝑢

𝑏𝑝

]
(9)

where 𝐴 corresponds to the temporal and viscous terms, 𝐺 to the (pressure) gradient and 𝐷 to the diverge (of the
velocity). 𝑥𝑢 and 𝑥𝑝 are the velocity (3 spatial components) and pressure respectively.

Since the pressure is only defined up to a constant, thematrix𝑀 is singular. The nullspace is𝑍 = 𝑘−3/2 [0 . . . 0 1 . . . 1],
with the last 𝑘3 elements of 𝑍 corresponding to the pressure degrees of freedom. We construct an exact solution
Manuscript submitted to ACM
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Fig. 10. Results for linear systems modeling incompressible Navier-Stokes flow using the BLR and BLR-ZFP multifrontal solver
with BiCGStab. (a) Flop counts for factorization. (b) CPU time for factorization. (c) Memory usage for factorization, i.e. factor
nonzeros/factor memory. (d) Total solve flop counts in BiCGStab and the multifrontal preconditioner. (e) CPU time for solve. (f) Peak
working memory per MPI rank. We use 64 compute nodes, with 4 MPI ranks per node and 8 OpenMP threads per MPI process.

𝑥 = 𝑥r − 𝑍𝑍𝑇 𝑥r with 𝑥r a vector with elements in N(0, 1). From the solution vector 𝑥 obtained using BiCGStab with
the approximate multifrontal preconditioner, we compute the final solution 𝑥 ← 𝑥 − 𝑍𝑍𝑇 𝑥 and compare that to 𝑥 . The
BiCGStab stopping criterion is a 10−10 relative residual decrease. Results of the BLR_ZFP multifrontal solver and the
BLR multifrontal solver are shown in Fig. 10 with 𝑘 varying from 100 to 250. For BLR, fronts corresponding to separator
sizes 𝑛Bmin above 1000 are compressed with a relative compression tolerance 10−6 and all fronts corresponding to
separators sizes below 1000 are either not compressed or compressed with zfp compression using 32 bitplanes. 𝑀
has a large zero block on the diagonal. Our solver can apply a static permutation, before the start of the numerical
factorization, to make the main diagonal of the matrix nonzero. This permutation is implemented using the MC64
matching code. However, doing so completely destroys the symmetry of the pattern of𝑀 . Note that our solver computes
a (non-symmetric) LU factorization, but using a symmetric nonzero pattern. Furthermore, we observed numerical
difficulties when trying to solve the linear system with the matrix𝑀 permuted with the MC64 matching. Our solver
also implements a small pivot replacement option, in which, during numerical factorization, small pivots, which
would cause overflow during triangular solution, are replaced with a slightly larger value of √Ymach∥𝑀 ∥1. However,
since the operator𝑀 is highly ill-conditioned, instead of relying on this small pivot replacement, we replace the zero
diagonal elements of𝑀 with 𝜏√Ymach∥𝑀 ∥1 before starting the numerical factorization. Since we also apply a matrix
equilibration similar to LAPACK’s dgeequ/dlaqge, ∥𝑀 ∥1 = 1. The factor 𝜏 needs to be chosen carefully. A larger 𝜏
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reduces the condition number of the preconditioner and allows for better compression. However, a larger 𝜏 leads to a
worse preconditioner, resulting in more BiCGStab iterations. We pick 𝜏 = 104. The diagonal shift is also applied for the
multifrontal solver without compression, which is then also used with BiCGStab (instead of iterative refinement). For
all experiments, the relative error was ∥𝑥 − 𝑥 ∥2/∥𝑥 ∥2 < 10−5. Fig. 10 shows a lower peak memory consumption when
using BLR(Hybrid)_ZFP which allows to solve larger problem sizes. However, BLR(RL) and BLR(RL)_ZFP outperform
BLR(Hybrid)_ZFP in terms of factor and solve time.

5.4 SuiteSparse Matrix Collection

no compr. BLR(RL,10−2) compression BLR(RL,10−2)_ZFP(32) compression
N nnz fact sol #fronts fact sol comp peak rel. #fronts fact sol comp peak rel.

matrix ×103 ×103 (s) (s) its dense BLR (s) (s) its (%) (%) err. dense ZFP BLR (s) (s) its (%) (%) err.
boneS01 127 6,715 0.45 0.02 1 15K 4 0.38 0.20 14 87.3 101.0 8e-06 11K 4K 4 0.43 4.92 14 46.7 74.0 8e-06
xenon2 157 3,866 0.49 0.02 1 19K 8 0.47 0.23 12 87.4 102.0 9e-07 13K 5K 8 0.56 4.49 12 50.2 76.0 9e-07
scircuit 170 959 0.12 0.01 1 21K 0 0.12 0.01 1 100.0 102.0 1e-10 12K 8K 0 0.12 0.11 4 53.7 47.0 2e-08
pwtk 217 11,634 0.27 0.02 1 27K 1 0.27 0.06 3 99.7 99.0 6e-08 20K 6K 1 0.33 1.06 3 50.8 70.0 1e-06
torso3 259 4,632 0.81 0.03 1 32K 14 0.59 0.10 2 72.1 100.0 2e-07 25K 7K 14 0.70 1.66 2 37.0 70.0 2e-07
cage13 445 7,479 75.11 0.25 1 55K 56 28.74 0.53 2 24.1 54.0 6e-07 46K 8K 56 31.69 8.50 2 17.8 50.0 6e-07
audikw_1 943 77,651 12.54 0.42 1 117K 124 6.60 4.90 48 47.7 47.0 5e-04 94K 22K 124 7.04 141.04 58 29.2 37.0 1e-03
atmosmodd 1,270 8,814 9.82 0.12 1 158K 63 5.60 1.03 8 44.5 64.0 5e-07 106K 52K 63 5.94 15.32 8 29.3 51.0 5e-07
Serena 1,391 64,531 42.39 0.36 1 173K 134 18.66 1.87 10 34.8 52.0 2e-05 137K 36K 134 19.01 55.42 10 22.3 39.0 2e-02
Geo_1438 1,437 63,156 26.76 0.23 1 179K 177 12.76 2.01 13 45.4 47.0 8e-05 142K 36K 177 13.39 41.93 12 30.1 36.0 1e-03
atmosmodl 1,489 10,319 9.18 0.13 1 186K 64 5.40 0.60 4 45.8 64.0 9e-07 126K 59K 64 5.85 10.36 4 27.4 52.0 9e-07
Hook_1498 1,498 60,917 15.00 0.22 1 187K 135 7.81 4.81 34 46.9 48.0 4e-05 137K 49K 135 8.37 139.68 34 27.3 31.0 4e-05
ML_Geer 1,504 110,879 4.79 0.14 1 187K 115 2.97 2.32 24 65.4 40.0 2e-05 144K 43K 115 3.79 84.81 23 33.5 24.0 2e-05
Transport 1,602 23,500 8.76 0.18 1 200K 128 4.69 3.01 26 51.7 60.0 1e-05 152K 47K 128 5.41 81.27 26 30.5 42.0 7e-06
memchip 2,707 15,950 0.35 0.13 1 338K 0 0.35 0.17 1 100.0 100.0 7e-15 204K 134K 0 0.42 0.68 1 48.3 51.0 2e-06
Table 3. Results for the numerical factorization and solve for a number of matrices from the SuiteSparse matrix collection. Compression
ratio (comp %) refers to the size of the final LU factors relative to the exact solver without compression, while peak (%) refers to
peak memory usage during factorization, also relative to the exact solver. The factorization is always fastest for the solver with BLR
compression. The hybrid BLR_ZFP solver uses the least memory.

The problems shown so far where all defined on a regular three-dimensional domain. Table 3 shows results for a
number of matrices from the SuiteSparse matrix collection. These are some of the larger problems in this collection, and
they correspond to a range of different applications, with varying numerical and structural properties. Table 3 shows
a comparison between the exact solver (no compression), and the approximate multifrontal solver with either BLR
compression (RL variant with relative compression tolerance 10−2), or the BLR_ZFP compression (lossy compression
with 32 bitplanes). For all other parameters, and for each problem, the default values are used, e.g., 𝑛Bmin = 512,
𝑛Lmin = 8.

In Table 3, we notice the speedup obtained for the factorization when using the BLR compression. When using
BLR_ZFP compression, there is a small overhead in factorization time, compared to BLR compression only. Likewise,
when enabling zfp compression, the solve becomes significantly slower. However, enabling zfp leads to better compres-
sion ratios. For instance for the scircuit and memchip systems, using BLR only does not give any compression, whereas
zfp compresses the factors by at least 2×. Unlike most of the other problems, the scircuit and memchip matrices are not
derived from PDE discretizations, which explains why their graphs do not have separators larger than 𝑛Bmin = 512. The
fact that there are no large separators means that the amount of fill-in will be relatively small, and hence the exact
sparse direct solver should be an efficient solver.
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6 CONCLUSION

This paper presents a fast and approximate multifrontal solver for large sparse linear systems. The solver leverages
the Hierarchically Off-Diagonal Butterfly compression, HODBF, a reduced-memory version of the non-hierarchical
Block Low-Rank format, BLR, and lossy compression. Depending on the application as well as problem sizes, we make
use of different combinations of the three compression methods. In general, HODBF is used to compress large frontal
matrices, BLR for medium sized frontal matrices and lossy compression for small frontal matrices. The reduced-memory
version of the BLR format, BLR(Hybrid), leads to a reduction in peak memory consumption which allows to solve
larger problem sizes. The resulting solver can attain the O(𝑁 log2 𝑁 ) computation and O(𝑁 ) memory complexities
when adding the HODBF compression. Some of the presented results for smaller problem sizes do not make use of the
HODBF compression since HODBF is beneficial for really large fronts only. Adding zfp on top of BLR and/or HODBF
can improve the compression ratios and the total factor memory, but can increase the solve time per iteration.

The code is made publicly available through the sparse solver package STRUMPACK 2. The HODBF implementation
is integrated using the dense solver package ButterflyPACK 3, lossy compression is provided with the software package
zfp 4.
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