
GPTune: Multitask Learning for Autotuning
Exascale Applications

Yang Liu
Berkeley Laboratory

USA
liuyangzhuan@lbl.gov

Wissam M. Sid-Lakhdar
Berkeley Laboratory

USA
wissam.sidlakhdar@gmail.com

Osni Marques
Berkeley Laboratory

USA
oamarques@lbl.gov

Xinran Zhu
Cornell University

USA
xz584@cornell.edu

Chang Meng
Emory University

USA
chang.meng@emory.edu

James W. Demmel
University of California, Berkeley

USA
demmel@cs.berkeley.edu

Xiaoye S. Li
Berkeley Laboratory

USA
xsli@lbl.gov

Abstract
Multitask learning has proven to be useful in the field of
machine learning when additional knowledge is avail-
able to help a prediction task. We adapt this paradigm
to develop autotuning frameworks, where the objec-
tive is to find the optimal performance parameters of
an application code that is treated as a black-box func-
tion. Furthermore, we combine multitask learning with
multi-objective tuning and incorporation of coarse per-
formance models to enhance the tuning capability. The
proposed framework is parallelized and applicable to
any application, particularly exascale applications with
a small number of function evaluations. Compared with
other state-of-the-art single-task learning frameworks,
the proposed framework attains up to 2.8X better code
performance for at least 80% of all tasks using up to 2048
cores.

CCSConcepts •Mathematics of computing→Prob-
ability and statistics; • Computing methodologies
→ Machine learning; Distributed computing method-
ologies.

Keywords autotuning,multitask learning,machine learn-
ing, Bayesian optimization, Exascale Computing Project

ACM acknowledges that this contribution was authored or co-
authored by an employee, contractor, or affiliate of the United States
government. As such, the United States government retains a nonex-
clusive, royalty-free right to publish or reproduce this article, or to
allow others to do so, for government purposes only.
PPoPP ’21, February 27–March 3, 2021, Virtual Event, Republic of Korea
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8294-6/21/02. . . $15.00
https://doi.org/10.1145/3437801.3441621

1 Introduction
In preparation for the upcoming era of exascale comput-
ing, significant effort is being invested to develop highly
scalable numerical libraries and high-fidelity modeling
and simulation codes across the spectrum of science and
engineering domains and disciplines. Achieving optimal
performance and performance portability of all these
codes has become an increasingly intractable problem.
At least two challenges must be addressed. The first chal-
lenge is due to diverse exascale computer architectures
with heterogeneous nodes, deep and complex memory
hierarchies and varying interconnect speeds. The tradi-
tional latency-bandwidth model of parallel computing
is far from adequate for parallel runtime prediction. The
second challenge lies in the application codes them-
selves. Most of the exascale application codes have a
number of tunable parameters that affect performance,
and oftentimes the simulations involve expensive “func-
tion evaluations”, requiring either long runtime or many
hardware resources (e.g., core count), so that the brute-
force “grid search” approach to find optimal parame-
ters is infeasible. There is an increasing demand for
performance autotuning tools, or autotuners, that can
automate the tuning process. Autotuning strategies are
concerned with automatically picking the right set of
parameters to optimally solve a particular problem on
a given architecture. For exascale applications with a
small number of allowed runs, the critical metrics for the
autotuners are final performance, i.e., the best possible
performance after the tuner finishes, and anytime per-
formance, i.e., the best performance so-far when tuning
is terminated early.

234

https://doi.org/10.1145/3437801.3441621
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

We have been developing a publicly available auto-
tuning framework called GPTune using statistical and
machine learning techniques. Our goals are: 1) Support
a variety of measurable performance metrics, including
runtime, memory usage, accuracy, energy, or their hy-
brids like minimizing time given a memory constraint;
2) Support distributed-memory MPI codes running on
large-scale machines; 3) Support archiving and reusing
tuning data from multiple executions to allow tuning
to improve over time; 4) Allow incorporation of new
optimization techniques to improve the tuning process.

Our main contributions in GPTune and this paper are
summarized below.

• The core idea is to introducemultitask learning [24,
32] in the Gaussian processes (GP) in Bayesian
optimization. Thus, we can simultaneously tune
multiple problem instances of a given application
instead of one at a time. This is particularly attrac-
tive for exascale applications, because it greatly
reduces the number of function evaluations com-
pared to single-task learning.
• GPTune allows the application code to be run
on any type of parallel machine. Moreover, we
parallelized GPTune itself for distributed memory
platforms using MPI, so that the tuning process is
fast and scalable.
• In addition to standard tuning needs, GPTune
includes more advanced features, such as multi-
objective tuning, and can take advantage of coarse
performance models provided by the users.
• We have evaluated GPTune’s functionalities for
a variety of MPI based applications ranging from
mathematical libraries to production-level scien-
tific simulation codes. Experimental results show
that GPTune significantly outperforms single-task
learning and two other state-of-the-art methods
in terms of both final and anytime performance,
particularly when the budget (number of allowed
runs of the application) is low.

The remainder of this paper is organized as follows.
Section 2 defines the terms used in the paper. Section 3
describes the multitask learning algorithms used in GP-
Tune. Section 4 describes the programming model used
in the parallel implementation of GPTune. Section 5 de-
scribes the related work in autotuning and black-box
optimization for autotuning. Section 6 shows the au-
totuning results with several HPC math libraries and
application codes.

2 GPTune: Definitions and Notations
GPTune uses Bayesian optimization to iteratively build a
GP surrogate model, by running the application at a few
carefully chosen tuning parameter values. Instead of the

standard GP method, GPTune relies on Multitask Learn-
ing Autotuning (MLA). MLA means using performance
data from multiple tasks (e.g. a fixed linear algebra oper-
ation on 𝑘 matrices of several dimensions 𝑡1, 𝑡2, . . . , 𝑡𝑘) to
build a joint surrogate model 𝑓 (𝑡, 𝑥) of the true runtime
𝑦 (𝑡, 𝑥) to use for tuning. When the performance varies
reasonably smoothly as a function of 𝑡 , using all the
available data to build 𝑓 (𝑡, 𝑥) can make it more accurate
than the surrogate model for each individual task.

In our notation, the phrase “task parameter” will refer
to an input, like 𝑡 above, that defines the task to be
solved; there are generally multiple task parameters
needed to define a task. The phrase “tuning parameter”
will refer to a parameter to be tuned, like 𝑥 above; again
there are generally multiple parameters for one task.
The phrase “parameter configuration” will refer to a
tuple of a particular setting of the tuning parameters.
The word “output” will refer to the performance metric
being optimized, such as runtime.

Table 1 summarizes the notations for GPTune which
will be further explained in Section 3. As an illustrative
example, the QR factorization routine in ScaLAPACK [3],
denoted as PDGEQRF, is used as an application code to
be tuned assuming a fixed core count 𝑝𝑚𝑎𝑥 . Note that
only independent task and tuning parameters are listed
in Table 1. Other parameters, such as the number of
threads 𝑛𝑡ℎ𝑟𝑒𝑎𝑑𝑠 (used in BLAS) and number of column
processes 𝑝𝑐 , can be calculated as 𝑛𝑡ℎ𝑟𝑒𝑎𝑑𝑠 = ⌊𝑝𝑚𝑎𝑥/𝑝⌋
and 𝑝𝑐 = ⌊𝑝/𝑝𝑟 ⌋, where 𝑝 is the total number of MPI
processes and 𝑝𝑟 is the number of row processes. In addi-
tion, there may be constraints on these parameters, e.g.,
the user can specify 𝑝𝑟𝑝𝑐 ≤ 𝑝 (or equivalently 𝑝𝑟 ≤ 𝑝

using only independent parameters) to guarantee ac-
ceptable process grid dimensions. In general, each task
and tuning parameter could be of type real, integer, or
“categorical”, i.e., a list of discrete possibilities, such as
choices of algorithms.

3 GPTune Algorithms: Multitask
Learning in Bayesian Optimization
Framework

Bayesian optimization [1], also known as response sur-
face methodology, relies on a GP surrogate model of
the real objective function to optimize. The GP model
is much cheaper to evaluate than the objective func-
tion, and can be iteratively updated until convergence
to an optimum. The Efficient Global Optimization (EGO)
algorithm [12] is a classical Bayesian optimization al-
gorithm. In order to balance between exploration and
exploitation (global and local search behaviors), EGO
looks for a location in the search space that optimizes
a certain acquisition function (e.g., Expected Improve-
ment (EI)) which considers both the mean value and

235

Symbol Interpretation
General notations

IS Task Parameter Input Space
PS Tuning Parameter Space
OS Output Space
MS performanceModel Space
𝛼 dimension of IS
𝛽 dimension of PS
𝛾 dimension of OS
𝛾 dimension ofMS
𝛿 number of tasks
𝜖 number of samples per task
T ∈ IS𝛿 array of tasks under consideration
X ∈ PS𝛿×𝜖 array of samples
Y ∈ OS𝛿×𝜖 array of output results (e.g. runtime)

Example: ScaLAPACK PDGEQRF notations

Ta
sk m number of matrix rows

n number of matrix columns

Tu
ni
ng

𝑏𝑟 row block size
𝑏𝑐 column block size
𝑝 number of MPI processes
𝑝𝑟 number of row processes

Table 1. Notation.

standard deviation predicted by the model. This loca-
tion is then evaluated, without any gradient, through
the expensive black-box objective function (i.e., run and
measure the application on a parallel machine) and the
corresponding value is used to update the GP model.
To describe the MLA approach in the Bayesian opti-

mization framework, let 𝑡 ∈ IS denote an input task and
𝑥 ∈ PS denote a tuning parameter configuration. IS is
the Task Parameter Input Space containing all the input
problems that the application may encounter. (The word
“input" will be dropped in the remaining document.) PS
is the Tuning Parameter Space containing all the param-
eter configurations to be optimized, with 𝛼 being the
number of task parameters and 𝛽 being the number of
tuning parameters. We also define OS to be the Output
Space of dimension 𝛾 , i.e., the number of scalar objec-
tive functions. In the following, we first describe the
algorithm for single-objective autotuning (𝛾 = 1), then
describe the algorithm for multi-objective autotuning
(𝛾 > 1).

3.1 Single-objective autotuning
The MLA learning process consists of the following
phases:
1. Sampling phase. There are two sampling steps. The

first is to select a set T of 𝛿 tasks T = [𝑡1; 𝑡2; . . . ; 𝑡𝛿] ∈
IS𝛿 . The goal is to get a representative sample of

the variety of problems that the application may en-
counter, rather than focusing on a specific type of
problem. Alternatively, 𝑇 can represent a list of tar-
get tasks specified by the user, instead of sampling
done by GPTune.
The second sampling step is to select an initial set
of tuning parameter configurations for every task.
Let 𝜖𝑡𝑜𝑡 denote a prescribed total number of function
evaluations per task. The number of initial samples
is set to 𝜖 = 𝜖tot/2. For task 𝑡𝑖 , its initial sampling 𝑋𝑖

consists of 𝜖 tuning parameter configurations 𝑋𝑖 =

[𝑥𝑖, 𝑗] 𝑗 ∈[1,𝜖] ∈ PS𝜖 . Define X = [𝑋1;𝑋2; . . . ;𝑋𝛿] ∈
PS𝛿×𝜖 to represent all the samples.
The samples 𝑥𝑖, 𝑗 are evaluated through runs of the
application, whose results, 𝑦𝑖, 𝑗 = 𝑦 (𝑡𝑖 , 𝑥𝑖, 𝑗) ∈ OS,
can be formed as 𝑌𝑖 = [𝑦𝑖, 𝑗] 𝑗 ∈[1,𝜖] ∈ OS𝜖 . The set
Y = [𝑌1;𝑌2; . . . ;𝑌𝛿] ∈ OS𝛿×𝜖 represents the results of
all these evaluations.

2. Modeling phase. This phase builds a Bayesian pos-
terior probability distribution of the objective func-
tion via training a model of the black-box objective
function relative to the tasks in T . We derive a sin-
gle model that incorporates all the tasks, sharing the
knowledge between them to better predict them all.
To this end, we use the Linear Coregionalization Model
(LCM) [13] to generalize Gaussian Process (GP) in
the multitask setting. We first consider a single task
𝑦 (𝑡, 𝑥) = 𝑦 (𝑥). A GP represents a probability model
𝑓 (𝑥) for the objective function 𝑦 (𝑥). It assumes that
(𝑓 (𝑥1), ..., 𝑓 (𝑥𝜖)) is jointly Gaussian, with mean func-
tion 𝜇 (𝑥) and covariance Σ(𝑥, 𝑥 ′), which is typically
a positive definite kernel function. The idea is that
if 𝑥 and 𝑥 ′ are deemed similar by the kernel (i.e.,
with similar mean and small variance), we expect the
outputs of the function at those points to be simi-
lar too. A model 𝑓 (𝑥) following a GP is written as:
𝑓 (𝑥) ∼ 𝐺𝑃 (𝜇 (𝑥), Σ). In general, 𝜇 (𝑥) can be initial-
ized to be the zero function. The modeling is done
through Σ(𝑋,𝑋), by maximizing the log-likelihood of
the samples Xwith values𝑌 on the GP. For single-task
learning, the size of the covariance matrix Σ(𝑋,𝑋) is
𝜖 × 𝜖 .
The key to LCM is the construction of an approxi-
mation of the covariance between the different out-
puts of the model of every 𝑡𝑖 ∈ 𝑇 . In this method,
the relations between outputs are expressed as linear
combinations of 𝑄 ≤ 𝛿 independent latent random
functions

𝑓 (𝑡𝑖 , 𝑥) =
𝑄∑
𝑞=1

𝑎𝑖,𝑞𝑢𝑞 (𝑥) (1)

236

where 𝑎𝑖,𝑞 (𝑖 ∈ [1, 𝛿]) are hyperparameters to be
learned, and𝑢𝑞 are the latent functions, each of which
is an independent GP whose hyperparameters need
to be learned as well.
Due to the independence of 𝑢𝑞’s, the covariance be-
tween two outputs is simply the sum of auto-covariances
of 𝑢𝑞 at those two points:

𝑐𝑜𝑣 (𝑓 (𝑡𝑖 , 𝑥), 𝑓 (𝑡𝑖′, 𝑥 ′)) =
𝑄∑
𝑞=1
(𝑎𝑖,𝑞𝑎𝑖′,𝑞)𝑐𝑜𝑣 (𝑢𝑞 (𝑥), 𝑢𝑞 (𝑥 ′))

(2)
In LCM, we assume the covariance of the latent func-
tion is based on a Gaussian kernel 𝑘𝑞 (𝑥, 𝑥 ′):

𝑐𝑜𝑣 (𝑢𝑞 (𝑥), 𝑢𝑞 (𝑥 ′)) = 𝑘𝑞 (𝑥, 𝑥 ′) = 𝜎2
𝑞 exp

(
−

𝛽∑
𝑖=1

(𝑥𝑖 − 𝑥 ′𝑖)2

2(𝑙𝑞
𝑖
)2

)
(3)

When considering all the tasks and all the samples
together, the covariance matrix Σ(𝑋,𝑋) is of size 𝛿𝜖×
𝛿𝜖 with entries

Σ(𝑥𝑖, 𝑗 , 𝑥𝑖′, 𝑗 ′) =
𝑄∑
𝑞=1
(𝑎𝑖,𝑞𝑎𝑖′,𝑞+𝑏𝑖,𝑞𝛿𝑖,𝑖′)𝑘𝑞 (𝑥𝑖, 𝑗 , 𝑥𝑖′, 𝑗 ′)+𝑑𝑖𝛿𝑖,𝑖′𝛿 𝑗, 𝑗 ′

(4)
where 𝛿𝑖, 𝑗 is the Kronecker delta function, and𝑏𝑖,𝑞 and
𝑑𝑖 are diagonal regularization parameters. The learn-
ing task in the modeling phase is to find the best hy-
perparameters of the model, i.e. the hyperparameters
𝜎𝑞, 𝑙

𝑞

𝑖
in the Gaussian kernel Eq.(3) and coefficients

𝑎𝑖,𝑞, 𝑏𝑖,𝑞, 𝑑𝑖 in Eq.(4). We use a gradient-based opti-
mization algorithm to maximize the log-likelihood
of the model on the data. Specifically, we employ the
limited-memory Broyden– Fletcher–Goldfarb–Shanno
algorithm (L-BFGS) [19]. Note that the log-likelihood
function is usually highly nonconvex, so local opti-
mization may not converge to the/a global optimum.
Therefore, one can run L-BFGS with random initial
guesses for a few times, and pick the hyperparame-
ters yielding the largest log-likelihood. Note that we
can fix 𝜎𝑞 = 1 and 𝑑𝑖 is only needed for the inversion
of Σ.

3. Search phase. Once the model has been updated,
the objective function values at new points 𝑋 ∗ =

[𝑥∗1 ;𝑥∗2 ; . . . ;𝑥∗𝛿] can be predicted with posterior mean
𝜇∗ = [𝜇∗1 ; 𝜇∗2 ; . . . ; 𝜇∗𝛿] and posterior variance (confi-
dence) 𝜎∗2 = [𝜎∗21 ;𝜎∗22 ; . . . ;𝜎∗2

𝛿
] as:

𝜇∗ = Σ(𝑋 ∗, 𝑋)Σ(𝑋,𝑋)−1𝑌 (5)
𝜎∗2 = diag

(
Σ(𝑋 ∗,𝑋 ∗)−Σ(𝑋 ∗,𝑋)Σ(𝑋,𝑋)−1Σ(𝑋 ∗,𝑋)𝑇

)
(6)

Here diag is the vector containing the diagonal en-
tries. Note that the posterior variance is equal to the
prior covariance minus a term that corresponds to the
variance removed by observing 𝑋 [9]. The mean and

variance can be used to construct the EI acquisition
function, which can be maximized in order to choose
a new point 𝑋 ∗ for function evaluation (additional
sampling). Since the EI is cheap to compute, we can
generate large numbers of samples and use global,
evolutionary algorithms such as the Particle Swarm
Optimization (PSO) algorithm to optimize the EI. PSO
iteratively evolves a population of candidate samples
towards the optimal sample with maximum EI value
using a heuristic evolution strategy.
We finish oneMLA iteration with one additional func-
tion evaluation at 𝑋 ∗, increment 𝜖 by 1 and move to
next MLA iteration (phases 2 and 3) until 𝜖 reaches
the prescribed sample count 𝜖tot (i.e., a prescribed bud-
get of function evaluations). This iterative process is
summarized as Algorithm 1.

3.2 Multi-objective autotuning
When the measured performance data consists of mul-
tiple quantities, such as (runtime, accuracy), then one
can perform multi-objective autotuning. For example,
in the case of runtime and accuracy, which are likely
to tradeoff against one another (faster runtime leading
to worse accuracy), then one may want to compute the
Pareto front of these two quantities.
The MLA algorithm described in Section 3.1 can be

easily extended to multi-objective, multi-task settings.
Algorithm 2 describes the multi-objective extension of
Algorithm 1. Let 𝑦𝑠 (𝑡, 𝑥), 𝑠 ≤ 𝛾 denote the 𝑠th objective
function. Algorithm 2 essentially builds one LCM model
per objective function 𝑦𝑠 (𝑡, 𝑥) in the modeling phase.
In addition, the search phase relies on multi-objective
evolutionary algorithms such as non-dominated sort-
ing generic algorithm II (NSGA-II) [5] to search for 𝑘

Algorithm 1 Bayesian optimization-based single-
objective MLA
1: Sampling phase: Compute 𝑦 (𝑡𝑖 , 𝑥), 𝑖 ≤ 𝛿 at 𝜖 =

𝜖𝑡𝑜𝑡/2 initial random tuning parameter configura-
tions for 𝛿 selected tasks.

2: while 𝜖 < 𝜖𝑡𝑜𝑡 do
3: Modeling phase: Update the hyperparameters

in the LCMmodel of𝑦 (𝑡𝑖 , 𝑥), 𝑖 ≤ 𝛿 using all available
data.

4: Search phase: Search for an optimizer 𝑥∗𝑖 for
the EI of task 𝑡𝑖 , 𝑖 ≤ 𝛿 . Let 𝑋 ∗ = [𝑥∗1 ;𝑥∗2 ; . . . ;𝑥∗𝛿].

5: Compute 𝑦 (𝑡𝑖 , 𝑥), 𝑖 ≤ 𝛿 at the new tuning pa-
rameter configurations 𝑋 ∗.

6: 𝜖 ← 𝜖 + 1.
7: end while
8: Return the optimum tuning parameter configura-

tions and objective function values for each task.

237

new tuning parameter configurations in each iteration.
The multi-dimensional sorting is based on the Pareto
dominance and crowding distance [5].

3.3 Incorporation of performance models
A performance model refers to an analytical formula for
any feature (time, memory, communication volume, flop
counts) of the objective function. For example, one can
provide an analytical formula for the flop count when
the objective function is the runtime. When available,
performance models can be incorporated to build a more
accurate LCM model with fewer samples needed. In
what follows, the performance model incorporation is
explained assuming single objective 𝛾 = 1 for simplicity.

We defineMS to be the performance Model Spacewith
dimension 𝛾 being the number of models. Let 𝑦 (𝑡, 𝑥)
denote the results of the performance models for tun-
ing parameters 𝑥 and task 𝑡 . Without the performance
model, entries of the LCM kernel matrix represents the
nonlinear inner products between points 𝑥 and 𝑥 ′ in the
tuning parameter space PS of dimension 𝛽 . One can use
the values 𝑦 (𝑡, 𝑥) as the extra features to construct an
enriched space of dimension 𝛽 + 𝛾 consisting of points
[𝑥,𝑦 (𝑡, 𝑥)]. Note that the enriched LCM matrix still has
the same dimension 𝜖𝛿 × 𝜖𝛿 . Once the LCM model is
built, the objective function at the new point 𝑥∗ can
still be predicted using (5) and (6) by replacing 𝑥∗ with
[𝑥∗, 𝑦 (𝑡, 𝑥∗)].
It is worth mentioning that the performance model

can have its own hyperparameters. For example, con-
sider tuning the runtime of ScaLAPACK QR on a𝑚 × 𝑛
matrix. Let 𝑦 (𝑡, 𝑥) denote the objective function with
task parameters 𝑡 = [𝑚,𝑛] and tuning parameters 𝑥 =

Algorithm 2 Bayesian optimization-based multi-
objective MLA
1: Sampling phase: Compute 𝑦𝑠 (𝑡𝑖 , 𝑥), 𝑖 ≤ 𝛿 , 𝑠 ≤
𝛾 at 𝜖 = 𝜖𝑡𝑜𝑡/2 initial random tuning parameter
configurations for 𝛿 selected tasks.

2: while 𝜖 < 𝜖𝑡𝑜𝑡 do
3: Modeling phase: For each objective 𝑠 ≤ 𝛾 ,

update the hyperparameters in the LCM model of
𝑦𝑠 (𝑡𝑖 , 𝑥), 𝑖 ≤ 𝛿 using all available data.

4: Search phase: Search for 𝑘 best tuning param-
eter configurations using the multi-objective EI of
task 𝑡𝑖 , 𝑖 ≤ 𝛿 .

5: Compute 𝑦𝑠 (𝑡𝑖 , 𝑥), 𝑖 ≤ 𝛿 at the 𝑘 new tuning
parameter configurations.

6: 𝜖 ← 𝜖 + 𝑘 .
7: end while
8: Return the optimum tuning parameter configura-

tions and objective function values for each task.

[𝑝, 𝑝𝑟 , 𝑏𝑟 , 𝑏𝑐]. One can consider the following analytical
formula as a performance model:

𝑦 (𝑡, 𝑥) = 𝐶𝑓 𝑙𝑜𝑝 × 𝑡𝑓 𝑙𝑜𝑝 +𝐶𝑚𝑠𝑔 × 𝑡𝑚𝑠𝑔 +𝐶𝑣𝑜𝑙 × 𝑡𝑣𝑜𝑙 (7)

with the number of floating point operations 𝐶𝑓 𝑙𝑜𝑝 , the
number of messages 𝐶𝑚𝑠𝑔 and the volume of messages
𝐶𝑣𝑜𝑙 given by [6]

𝐶𝑓 𝑙𝑜𝑝=
2𝑛2 (3𝑚 − 𝑛)

2𝑝
+𝑏𝑟𝑛

2

2𝑝𝑐
+ 3𝑏𝑟𝑛(2𝑚 − 𝑛)

2𝑝𝑟
+𝑏𝑟

2𝑛

3𝑝𝑟
(8)

𝐶𝑚𝑠𝑔=3𝑛 log𝑝𝑟 +
2𝑛
𝑏𝑟

log𝑝𝑐 (9)

𝐶𝑣𝑜𝑙=

(
𝑛2

𝑝𝑐
+𝑏𝑟𝑛

)
log𝑝𝑟 +

(
𝑚𝑛 − 𝑛2/2

𝑝𝑟
+𝑏𝑟𝑛

2

)
log𝑝𝑐 (10)

For simplicity, we assumed 𝑏𝑟 = 𝑏𝑐 in these formulas.
The coefficients 𝑡𝑓 𝑙𝑜𝑝 , 𝑡𝑚𝑠𝑔 and 𝑡𝑣𝑜𝑙 represent unknown
hyperparameters in this performance model. Their esti-
mation can be integrated into the Bayesian optimization
framework in Algorithm 1 and 2 by inserting a perfor-
mance model update phase before the modeling phase at
line 3. The update phase can use the available 𝜖 samples
to perform a data fitting and update the hyperparame-
ters. The hyperparameter update is important as a bad
hyperparameter estimate will result in worse tuning
performance compared to no performance model.

4 Parallel implementations
GPTune supports both shared-memory and distributed-
memory parallelism through dynamic thread and pro-
cess management. Here we only explain the distributed-
memory parallelism and refer the readers to the Users
Guide [26] for more details.

4.1 Dynamic process management
By design only one MPI process executes the GPTune
driver (in Python), and it dynamically creates new groups
of MPI processes (workers) to speed up the objective
function evaluation, modeling phase and search phase
through the use ofMPI spawning. To describe the spawn-
ingmechanism, we recall that there are two kinds of MPI
communicators, i.e. intra- and inter-communicators. An
intra-communicator consists of a group of processes and
a communication context, while an inter-communicator
binds a communication context with two groups (lo-
cal and remote) of processes. The master process (run-
ning the GPTune driver) will call the function Spawn
in mpi4py to create a group of new processes. The
master process is contained in the intra-communicator
“MPI_World" with only one process. The Spawn function
will return an inter-communicator “SpawnedComm"
that contains a local group (the master itself) and a
remote group (containing the workers). The workers
also have their own intra-communicator “MPI_World"

238

and call the mpi4py function Get_parent that returns
an inter-communicator “ParentComm" that contains a
local group (the workers) and a remote group (the mas-
ter). Data can be communicated between the master and
workers using the inter-communicators. This scheme
can be conceptually depicted in Fig. 1. In what follows,
we describe the parallelism in the objective function
evaluation, and modeling and search phases (in MLA)
separately.

Figure 1. GPTune parallel programming model.

4.2 Launching the application code
For a distributed-memory application code, GPTune will
call the objective function that spawns the application
code with given task and tuning parameters. The MPI
count can be passed to the application code as an argu-
ment of the Spawn function, and the thread count can
be passed using the environment variable. Depending
on how the application code is implemented, one can
pass the parameters using command line, environment
variables, or input files stored on the disk. To collect the
returning value(s) from the workers, one can choose to
read from the individual log file per function execution
or communicate using the inter-communicators. GP-
Tune also supports calling multiple function evaluations
concurrently, we refer the reader to the Users Guide [26]
for details.

4.3 Modeling and search phases of MLA
The modeling phase, described in Section 3.1, uses the
L-BFGS algorithm to find a set of LCM hyperparame-
ters that maximizes the log-likelihood function using
selected objective function samples. The GPTune imple-
mentation can choose 𝑛𝑠𝑡𝑎𝑟𝑡 random starting guesses of
the hyperparameters, each used by L-BFGS to search for
the maximum log-likelihood. GPTune then chooses the
set of hyperparameters that yields the best log-likelihood.
The current implementation supports two levels of

parallelism in this phase: (1) The number of 𝑛𝑠𝑡𝑎𝑟𝑡 ran-
dom starts for the hyperparameters and corresponding
L-BFGS optimization are distributed over a prescribed

number of MPI processes. (2) For each L-BFGS opti-
mization, the factorization of the covariance matrix is
parallelized over a prescribed number of MPI processes.
GPTune uses MPI spawning to support the distributed-
memory parallelism over the random starts and factor-
ization of the covariance matrix.
The search phase uses evolutionary algorithms to

search for the next sample point for each task (see Sec-
tion 3.1 for details). The multi-task search can be paral-
lelized over the 𝛿 tasks using a user-specified number of
MPI processes. GPTune uses MPI spawning to support
the distributed-memory parallelism over the tasks.

5 Related Work
The fundamental aspect of autotuning is optimization,
i.e., finding a parameter configuration so that it solves a
given input problem optimally. The nature of autotuning
makes this optimization problem lie within the family
of black-box optimization problems, which are among
the hardest to solve.
The simplest black-box optimization methods often

tried first are: (1) The exhaustive search (and its variant
grid search), which tries all (or subset of all, respectively)
possible combinations of all possible values of the pa-
rameters and selects the best performing one. These
quickly become intractable when the number of parame-
ters increases, due to curse of dimensionality [2]; (2) The
stochastic random search, which randomly selects the
value of each parameter in order to generate candidate
solutions, then selects the best performing candidate.

The more advanced optimization methods can usually
be categorized as model-free (non-Bayesian) optimiza-
tion or Bayesian optimization. There are two main fam-
ilies of model-free optimization approaches. The global
approaches explore the entire search space and attempt
to find a balance between exploration of new regions of
the search space and exploitation of the data gathered
to give more attention to the promising regions of space.
Examples of such methods are Simulated Annealing [25],
Genetic Algorithms [27] and PSO [15]. In contrast, the
local approaches attempt to improve upon previous so-
lutions by exploring their neighboring region only until
converging to a local minimum. Examples of such ap-
proaches are Nelder–Mead simplex [11] and Orthogonal
Search [4].
OpenTuner [10] is one of the state-of-the-art gen-

eral purpose autotuners, which implements most of the
above model-free optimization algorithms. Moreover,
at a higher level, it relies on meta-heuristics to solve
a multi-armed bandit problem [14] where application
runtime (function evaluation) is the resource to be allo-
cated. Specifically, it allocates and distributes the func-
tion evaluations over a collection of the aforementioned

239

optimization methods in multiple “arms” in order to
adaptively select the best performing method, which is
used to solve the autotuning optimization problem.
Several other non-Bayesian black-box optimization

packages for autotuning exist in the literature. Particu-
larly, SuRf [23] uses random forests to model the per-
formance of an application and find its optimum. One
of its main strengths is its ability to handle categorical
parameters (choices) in an elegant way.
HpBandSter [8] is another state-of-the-art general

purpose autotuner. It combines Bayesian optimization
and bandit-based methods. The earlier hyperband [18]
is a multi-armed bandit strategy that dynamically allo-
cates resources to a set of random configurations and
uses successive halving to stop poorly performing con-
figurations. HpBandSter infuses a model-based search
(Bayesian optimization) algorithm instead of random
selection of configurations at the beginning of each hy-
perband iteration. In the Bayesian optimization aspect,
HpBandSter differs from GPTune in that it uses a kernel
density estimator, called Tree Parzen Estimator (TPE)
to select a new configuration to evaluate, instead of di-
rectly optimizing EI as GPTune does. This is faster, but
less accurate.
Recent autotuning work using a Bayesian optimiza-

tion framework is presented byMenon et al. [21]. Similar
to HpBandSter, it also uses the TPE method to search for
the next configuration to evaluate. Unlike HpBandSter,
it does not use the multi-armed bandit framework.
In Section 6.6, we compare GPTune only with Open-

Tuner and HpBandSter, because they are publicly avail-
able, and we utilize the MPI spawning approach to call
distributed-memory MPI codes.

6 Experimental results
This section presents the experimental results of the
methods described in this paper together with the com-
parisons with state-of-the-art autotuning tools.

6.1 GPTune software
GPTune software is freely available at https://github.
com/gptune/GPTune. The software is implemented in
Python (mostly) and C, and depends on the follow-
ing Python packages: numpy, scikit-learn, scipy, GPy,
lhsmdu, pygmo, scikit-optimize, mpi4py and autotune.
In addition, the C implementation requires OpenMPI/4.0,
BLAS/LAPACK, and ScaLAPACK. All results in this sec-
tion can be reproduced following the instructions and
example scripts at the Github repository.

To make it easier for users to try different autotuners,
our interface allows the user to invoke them as well. So
far, OpenTuner [10], HpBandSter [8], and ytopt [31] are
supported.

6.2 Parallel machine and HPC codes
We use the Cori machine at NERSC,1 which is a Cray
XC40 system with 2, 388 Haswell nodes, each with two
16-core Intel Xeon E5-2698v3 processors and 128GB of
2133MHz DDR4 memory.
Table 2 lists the parallel application codes used in

our experiments. Unless otherwise stated, the objec-
tive function/performance metric is the runtime of the
application. The routine PDGEQRF from the ScaLAPACK
library [3] performs dense QR factorization of a matrix
of size 𝑚 × 𝑛. The ScaLAPACK routine PDSYEVX com-
putes selected eigenvalues and, optionally, eigenvectors
of a real symmetric matrix. SuperLU_DIST is a sparse
direct solver for nonsymmetric linear systems [16, 29,
30]. In ScaLAPACK, a dense matrix is partitioned into
blocks. The processes are arranged in a 2D process
grid. The matrix blocks are distributed in the 2D pro-
cess grid in a block-cyclic fashion in both dimensions.
SuperLU_DIST uses a similar 2D block-cyclic distribu-
tion for the L and U factored matrices, except that the
block partition follows supernode partition with non-
uniform block sizes, depending on matrix sparsity pat-
tern. Nevertheless, for both dense and sparse codes, the
shape of the 2D process grid 𝑝 = 𝑝𝑟 × 𝑝𝑐 is a tuning pa-
rameter. More specially, 𝑡 = [𝑚,𝑛], 𝑥 = [𝑏𝑟 , 𝑏𝑐 , 𝑝, 𝑝𝑟] for
PDGEQRF and PDSYEVX. For PDSYEVX, we enforce𝑚 = 𝑛

and 𝑏𝑟 = 𝑏𝑐 . We use the matrix name to define a task
for SuperLU_DIST, and the tuning parameters are 𝑥 =

[COLPERM, LOOK, 𝑝, 𝑝𝑟 ,NSUP,NREL] where COLPERM,
LOOK, NSUP and NREL represent the type of column
permutation to preserve sparsity of the LU factors, num-
ber of look-ahead columns in the pipeline factorization,
the maximum supernode size and the relaxed supern-
ode size corresponding to the bottom subtrees of the
elimination tree. To cope with runtime noise in the mea-
surements, all the runs of PDGEQRF and PDSYEVX were
performed 3 times, and the minimal runtime was se-
lected.
The package hypre [7] contains several families of

parallel algebraic multigrid preconditioners and solvers
for large-scale sparse linear systems. Here we focus on
autotuning the performance of GMRESwith the Boomer-
AMG preconditioner for solving the Poisson equation on
structured 3D grids. We define a task as 𝑡 = [𝑛1, 𝑛2, 𝑛3]
where 𝑛𝑖 denotes the grid size in 𝑖th dimension. The
process is arranged in a 3D process grid 𝑝 = 𝑝1 ×𝑝2 ×𝑝3
where 𝑝𝑖 denotes the number of processes in 𝑖th dimen-
sion. In addition to the process grid, we consider a total
of 12 tuning parameters of integer and real types, in-
cluding choice of coarsening algorithms, smoothers and

1http://www.nersc.gov/users/computational-systems/cori/

240

https://github.com/gptune/GPTune
https://github.com/gptune/GPTune
http://www.nersc.gov/users/computational-systems/cori/

interpolation operators, and their corresponding param-
eters.

Both M3D_C1 [20] and NIMROD [22] solve the extended
magnetohydrodynamic equations. They are primarily
used for calculating the equilibrium, stability, and dy-
namics of fusion plasmas, and are critical simulation
codes for designing the reactor-scale tokamaks such
as ITER. The tokamak device has 3D torus geometry.
M3D_C1 uses 𝐶1 finite element discretization in three
dimensions. NIMROD uses spectral finite element dis-
cretization in two dimensions and finite Fourier series
in the third dimension. Both are time-marching codes
and solve nonsymmetric sparse linear systems with pre-
conditioned GMRES, for which multiple instances of
SuperLU_DIST are used to solve the poloidal plane prob-
lems as a block Jacobi preconditioner. We fix the geom-
etry model, its discretizations and MPI count 𝑝 , and
define a task 𝑡 as the number of time steps. For M3D_C1,
the tuning parameters are 𝑥 = [ROWPERM, COLPERM,
𝑝𝑟 ,NSUP, NREL] where ROWPERM is the type of row
permutation to maintain numerical stability; for NIMROD,
the tuning parameters are 𝑥 = [ROWPERM, COLPERM,
𝑝𝑟 , NSUP, NREL, nxbl, nybl] where nxbl and nybl are
block sizes for assembling the NIMROD matrices. Here
ROWPERM and COLPERM are of categorical type.

Application Description 𝛽

analytical sequential function 1
ScaLAPACK PDGEQRF dense QR factorization 3
ScaLAPACK PDSYEVX dense symmetric eigenvalue 3
SuperLU_DIST sparse direct linear solver 6
hypre algebraic multigrid solver 12
M3D_C1 fusion plasma 5
NIMROD fusion plasma 7

Table 2. Descriptions of the HPC codes used in the
tuning experiments. All but the first one are MPI codes.
𝛽 is the number of parameters to be tuned.

6.3 Parallel speedups of GPTune
Consider the following analytical problem to be tuned,
with the objective function given explicitly as

𝑦 (𝑡, 𝑥) = 1 + 𝑒−(𝑥+1)𝑡+1cos(2𝜋𝑥)
3∑

𝑖=1
sin

(
2𝜋𝑥 (𝑡 + 2)𝑖

)
(11)

where 𝑡 and 𝑥 (both of real type) denote the task and
tuning parameters. Note that this function is highly non-
convex, representing a very hard problem for black-box
optimization. We are interested in finding the (global)
minimum for 𝑥 ∈ [0, 1] for multiple tasks 𝑡 . Fig. 2 plots
𝑦 (𝑡, 𝑥) for four values of 𝑡 and marks the function mini-
mum.
We evaluate the parallel performance of the MLA

algorithm on 1 Cori node using 𝛿 = 20 tasks. In Fig. 3,

(a) (b)

(c) (d)

Figure 2. The objective functions in (11) for four task
parameter values 𝑡 .

we plot the runtime of the modeling and search phases
using 1 and 32 MPIs. For simplicity, we set the initial
random sample count to 𝜖 = 𝜖𝑡𝑜𝑡 − 1 (i.e., only one MLA
iteration is performed). Note that with 1 MPI process,
the modeling and search phases obey the theoretical
scaling of 𝑂 (𝜖3𝑡𝑜𝑡𝛿3) and 𝑂 (𝜖2𝑡𝑜𝑡𝛿2), respectively. As we
increase the number of total samples 𝜖𝑡𝑜𝑡 from 20 to 320
(with the LCM kernel matrix size changing from 400
to 6400), 32X (comparing the two blue curves) and 11X
(comparing the two black curves) speedups are observed
for the modeling and search phases, respectively. For the
modeling phase, we parallelized the factorization of the
covariance matrix using ScaLAPACK, so an ideal speedup
is achieved for large enough covariance matrices; for
the search phase, we distributed the 𝛿 tasks over MPI
ranks, so the speedup is at most 𝛿 = 20.

20 40 80 160 320
10

0

10
1

10
2

10
3

10
4

Figure 3. Modeling and search time for 1 and 32 MPI
processes using the analytical objective function in Eq
11.

6.4 Advantage of using performance models
Next, we evaluate the effects of the performance mod-
els using the analytical function in Eq. (11) and the
ScaLAPACK PDGEQRF example. We expect that the coarse
performance model will be useful when the objective

241

function is highly non-convex with only a small number
of samples available.
For the analytical function, we consider a perfor-

mance model 𝑦 (𝑡, 𝑥) = (1+ 0.1× 𝑟 (𝑥))𝑦 (𝑡, 𝑥) (the model
is the objective with random scaling factors). Here, 𝑟 (𝑥)
is a random number drawn from the normal distribution
N(0, 1). We generate 𝛿 = 20 tasks 𝑡 = 0, 0.5, . . . , 9.5, and
compare the performance of MLA with and without the
performance model. The ratios of objective minimum
found by MLA with 𝜖𝑡𝑜𝑡 = 20, 40, 80 are plotted in Fig.
4 (left). For all tasks, the performance model yields an
equal or better minimum (ratio ≥ 1). Also, the ratios of
the minimum found by MLA and the true minimum are
also plotted. Clearly the true minimum is attained for
most data points. Note that the tasks are sorted by 𝑡 in
an ascending order. From (11) and Fig. 2, larger 𝑡 yields
a more complex-shaped objective function. It is clear
that the noisy performance model is more beneficial for
larger 𝑡 . Also, the ratios are in general higher for smaller
𝜖𝑡𝑜𝑡 . In other words, with the noisy performance model,
GPTune requires significantly fewer samples to build an
accurate LCM model.

1 2 3 4 5 6 7 8 9 1011121314151617181920
0

1

2

R
at

io
v
s

n
o

m
o
d

el

εtot=20, 20(≥1)

εtot=40, 20(≥1)

εtot=80, 20(≥1)

1 2 3 4 5 6 7 8 9 1011121314151617181920
Task ID

0.0

0.5

1.0

R
at

io
v
s

tr
u

e

εtot=20

εtot=40

εtot=80

1 2 3 4 5
Task ID

0.00

0.25

0.50

0.75

1.00

1.25

R
at

io
of

ob
je

ct
iv

e
m

in
im

u
m

εtot=10, 5(≥1)

εtot=20, 3(≥1)

εtot=40, 3(≥1)

Figure 4. Left: analytical function (Eq. 11), ratios of the
tuned minimum without performance model over that
with performance model (upper), or ratios of the true
minimum over the tuned minimum with performance
model (lower). Right: ScaLAPACK PDGEQRF, ratios of the
tuned minimum without the performance model over
that with the performancemodel.𝑥 (>= 1) in the legends
means that there are 𝑥 tasks out of the 𝛿 tasks with the
ratio greater than 1.

For the PDGEQRF example, we consider the perfor-
mance model in Eq. (7) with on-the-fly hyperparameter
estimation. We generate 5 random tasks with 𝑚,𝑛 <

20000 and run MLA without and with the performance
model using 16 Cori nodes. The ratios of the best run-
time are plotted in Fig. 4 (right). When 𝜖𝑡𝑜𝑡 = 10, the
coarse performance model yields an up to 35% improve-
ment. As 𝜖𝑡𝑜𝑡 becomes larger (20 and 40), MLA has suffi-
cient samples to build the accurate LCM model, and the
performance model has less effect.
6.5 Efficiency of multi-task learning
Next, we compare the performance of the GPTune MLA
algorithms with single-task (𝛿=1) and multitask (𝛿>1)

PDGEQRF
total objective modeling search

Single-task 8831.6 8800.1 6.7 24.6
Multitask 7315.1 5699.9 1529.4 85.6

PDSYEVX
total objective modeling search

Single-task 9831.1 9032.1 632.1 166.7
Multitask 6595.1 6334.8 74.7 185.5

M3D_C1 NIMROD
minimum total minimum total

Single-task 11.19 12310 112.7 14710
Multitask 11.17 7797 112.8 9559

Table 3.Upper: Runtime of different phases for PDGEQRF
and PDSYEVX. Lower: Best runtime and the total time
spent in the application code for M3D_C1 (𝑡 = 3) and
NIMROD (𝑡 = 15).

settings. We enforce that the total number of function
evaluations 𝛿 × 𝜖𝑡𝑜𝑡 is the same between the single-task
and multitask settings.

For the PDGEQRF example, we use 64 Cori nodes (2048
cores) assuming a fixed budget of 𝛿 × 𝜖𝑡𝑜𝑡 = 100. For
𝛿=1, we consider the task (𝑚 = 23324, 𝑛 = 26545); for
𝛿=10, we also consider 9 other tasks that are randomly
generated with 𝑚,𝑛 < 40000. Table 3 shows the run-
time breakdown of the single-task and multitask tuning
algorithms. The multitask algorithm requires less objec-
tive evaluation time as it involves 9 other less expensive
tasks. Fig. 5(left) plots the best and worst runtime for
all 10 tasks identified by their flop counts. The multi-
task MLA not only achieves a very similar minimum
to the single-task MLA (for (𝑚 = 23324, 𝑛 = 26545)),
but also finds minima for all the other 9 tasks. Note that
PDGEQRF can achieve 3.6 TFLOPS with optimal tuning
parameters.

For the PDSYEVX example, we use 1 Cori node. For 𝛿=1,
we consider the task (𝑚 = 7000) with 𝜖𝑡𝑜𝑡 = 90, 180. For
𝜖𝑡𝑜𝑡 = 90, the best runtime from 𝜖𝑡𝑜𝑡/2 initial samples
and all 𝜖𝑡𝑜𝑡 samples is 9.63 and 9.41. For 𝜖𝑡𝑜𝑡 = 180,
the best runtime from 𝜖𝑡𝑜𝑡/2 initial samples and all 𝜖𝑡𝑜𝑡
samples is 9.47 and 9.36. This clearly demonstrates the
usefulness of Bayesian optimization. For 𝛿=9, we also
add other 8 tasks with 3000 ≤ 𝑚 ≤ 7000 with 𝜖𝑡𝑜𝑡 =

10, 20. Fig. 5 (right) plots the best and worst runtime
among all 𝜖𝑡𝑜𝑡 samples for each task. The best runtime
scales as 𝑂 (𝑚3); the single-task and multitask settings
attain similar best runtime for𝑚 = 7000; using larger
𝜖𝑡𝑜𝑡 slightly improves the best runtime. Table 3 shows
the runtime breakdown of the single-task and multitask
tuning algorithms.

242

10
12

10
13

0.25

0.5

1

2

5

10

20

40

80

3000 4000 5000 6000 7000

1

2

5

10

20

Figure 5. Left: best and worst runtime of PDGEQRF for
𝛿 = 10 tasks with 𝜖𝑡𝑜𝑡 = 10 using 64 Cori nodes (2048
cores). The tasks are sorted by their flop counts. Right:
best and worst runtime of PDSYEVX for 𝛿 = 9 tasks with
𝜖𝑡𝑜𝑡 = 10, 20 using 1 Cori node.

For the M3D_C1 and NIMROD examples, we use the num-
ber of time steps as the task parameter 𝑡 . Specifically,
a practical M3D_C1 or NIMROD simulation can require
hundreds of time steps to compute meaningful physical
quantities, and it can be prohibitively expensive to di-
rectly use it for autotuning. Therefore, using MLA one
can run applications with both small and large number
of steps to reduce the tuning time. For M3D_C1, we com-
pare single-task (𝑡 = 3 and 𝜖𝑡𝑜𝑡 = 80) with multitask
(𝑡 = 1, 1, 1, 3 and 𝜖𝑡𝑜𝑡 = 20) settings. Each simulation
requires 1 Cori node. For NIMROD, we compare single-
task (𝑡 = 15 and 𝜖𝑡𝑜𝑡 = 80) with multitask (𝑡 = 3, 3, 3, 15
and 𝜖𝑡𝑜𝑡 = 20) settings. Each simulation requires 6 Cori
nodes. As Table 3 shows, multitask tuning obtained min-
imum runtimes similar to the single-task tuning but
significantly reduced the total function evaluation time.
Our tuning shows a 15% to 20% improvement compared
to default. Once the optimal tuning parameters are dis-
covered, they can be used in the realistic simulation
requiring hundreds of time steps.

6.6 Performance comparison with other tuners
Next, we compare the performance of GPTune MLA
with two other autotuners, OpenTuner and HpBand-
Ster. OpenTuner dynamically selects the optimization
techniques if none is specified by users. For HpBand-
Ster, we disabled the multi-armed bandit feature since it
requires running applications with varying fidelity/bud-
gets. More details regarding the configuration of Open-
Tuner and HpBandSter can be found in the GPTune
software repository.
For the PDGEQRF example, we generate 𝛿 = 10 ran-

dom tasks with𝑚,𝑛 < 20000 and run the three tuners
with 𝜖𝑡𝑜𝑡 = 10 using 64 Cori nodes (2048 cores). Since
OpenTuner and HpBandSter do not support multitask
learning, we run them separately on each task. The ra-
tios of the best runtimes of the two other tuners over
those of GPTune are plotted in Fig. 6. GPTune outper-
forms OpenTuner up to 4.9X for 7 tasks and HpBandSter
up to 2.9X for 8 tasks.

For the SuperLU_DIST example, we consider 𝛿 = 7
matrices from the PARSEC group of SuiteSparse Matrix
Collection [28], and tune the factorization time with
𝜖𝑡𝑜𝑡 = 20 using 32 Cori nodes (1024 cores). The ratios
of the best runtimes of the two other tuners over those
of GPTune are plotted in Fig. 6. GPTune outperforms
OpenTuner up to 1.6X for 6 tasks and HpBandSter up
to 1.3X for 7 tasks.
For the hypre example, we generate 𝛿 = 30 random

tasks with 10 ≤ 𝑛1, 𝑛2, 𝑛3 ≤ 100 and run the three
tuners with 𝜖𝑡𝑜𝑡 = 10, 20, 30 using 1 Cori node and 4
Cori nodes respectively. Table 4 compares both final per-
formance and anytime performance with OpenTuner
and HpBandSter. The final performance is measured by
the metric WinTask, which is the percentage of tasks
that GPTune finds a better objective minimum and out-
performs the other tuner. In addition to the final per-
formance, the anytime performance of the three tuners
(i.e., quality of the function minimum when the tun-
ing is terminated at any time) is also compared. For
each tuner, we define the stability for each task 𝑡𝑖 as
mean(𝑦∗ (𝑡𝑖 , 𝑥1), . . . , 𝑦∗ (𝑡𝑖 , 𝑥𝜖𝑡𝑜𝑡))/𝑦∗ (𝑡𝑖), here𝑦∗ (𝑡𝑖 , 𝑥 𝑗) is
the best runtime among samples 1 to 𝑗 , and 𝑦∗ (𝑡𝑖) is the
best runtime over 𝜖𝑡𝑜𝑡 samples of all tuners. In an MLA
experiment, the anytime performance of a tuner is then
measured by the average stability among all tasks. It is
shown in Table 4 that GPTune outperforms other tuners
on both metrics on all experiments.

1 2 3 4 5 6 7 8 9 10
Task ID

0

1

2

3

4

5

R
at

io
of

b
es

t
ru

nt
im

e

[m, n] in [40000, 40000], εtot = 10

OpenTuner/GPTune, 7(≥1)

HpBandster/GPTune, 8(≥1)

1 2 3 4 5 6 7
Task ID

0.0

0.5

1.0

1.5

2.0

R
at

io
of

b
es

t
ru

nt
im

e

PARSEC matrices, εtot = 20

OpenTuner/GPTune, 6(≥1)

HpBandster/GPTune, 7(≥1)

Figure 6. Ratios of the objective minimum between
GPTune and the other tuners. Left: PDGEQRFwith 𝛿 = 10
tasks and 𝜖𝑡𝑜𝑡 = 10 using 64 Cori nodes (2048 cores).
Right: SuperLU_DIST with 𝛿 = 7 matrices and 𝜖𝑡𝑜𝑡 = 20
using 32 Cori nodes (1024 cores). The matrices are Si2,
SiH4, SiNa, Na5, benzene, Si10H16 and Si5H12. The task
count out of the 𝛿 tasks with ratio ≥ 1 is shown in the
legends.

6.7 Capability of multi-objective tuning
Finally, we illustrate the multi-objective feature of GP-
Tune for tuning the factorization performance in pack-
age SuperLU_DIST [17]. We consider 𝛾 = 2 objectives

243

Setups WinTask mean(stability)
nodes 𝜖𝑡𝑜𝑡 vs OT vs HB GPTune OT HB
1 10 74% 73% 1.27 1.97 1.58
1 20 63% 70% 1.21 1.46 1.38
1 30 60% 80% 1.23 1.56 1.37
4 10 60% 67% 1.38 1.79 1.77
4 20 66% 83% 1.29 1.90 1.64
4 30 64% 63% 1.33 1.51 1.33

Table 4. Comparisons of the final performance and
anytime performance between GPTune and other
tuners (OT: OpenTuner, HB: HpBandSter) on several
hypre MLA experiments. WinTask measures GPTune’s
final performance compared with another tuner, the
higher the better, while mean(stability) measures the
anytime performance of a tuner, the smaller the better.

(time,memory) representing factorization time andmem-
ory. We consider both the single-task and multitask tun-
ing tests for matrices from the PARSEC group using 8
Cori nodes.
For single task, we consider the matrix “Si2” and

compare the performance of single-objective (i.e., time
or memory) and multi-objective tuning. For example,
single-objective memory tuning means minimizing the
memory usage ignoring the impact on runtime. Table
5 lists the default and optimal tuning parameters; the
optimal ones are vastly different from the default ones.
Fig. 7 plots the objective function values using the de-
fault tuning parameters, and those optimal ones by the
GPTune single-objective and multi-objective MLA algo-
rithms with 𝜖𝑡𝑜𝑡 = 80. The multi-objective MLA algo-
rithm returns multiple tuning parameter configurations
and their objective function values (in black), among
which no data point Pareto-dominates over any other.
In other words, the black dots lie on the Pareto front.
We see that the single-objective minima (in yellow and
magenta) lie on or near the Pareto front formed by the
multi-objective minima (in black). Not surprisingly, the
default objective values (in cyan) are far from optimal in
either dimension. The tuned performance can achieve a
83% improvement in time or 93% improvement in mem-
ory compared to default.
Next, we consider 8 matrices and compare the per-

formance of single-task (calling GPTune with 𝛿 = 1 for
each matrix) and multitask (calling GPTune with 𝛿 = 8)
tuning with 𝜖𝑡𝑜𝑡 = 80. Fig. 7 plots the Pareto fronts using
both tuners. As expected, there are very few data points
returned by the single-task tuner that Pareto-dominates
over those returned by the multitask tuner.

COLPERM LOOK 𝑝 𝑝𝑟 NSUP NREL
Default 4 10 256 16 128 20
Time 2 6 216 149 295 37

Memory 2 5 193 20 31 22
Table 5. Default tuning parameters and optimal ones re-
turned by the GPTune single-objective MLA algorithm.

0.1 0.25 0.5 1 2 4
70

100

200

400

800

1600

2500

Pareto optima

Time optimum

Memory optimum

Default

0.1 0.25 0.5 1 2 4 8 16

50

100

200

400

800

1600

3200

6400

1M
1S

2M
2S

3M
3S

4M
4S

5M
5S

6M
6S

7M
7S

8M
8S

Figure 7. Logarithmic plots of the optimal objective
functions values (factorization time and memory of
SuperLU_DIST with 8 Cori nodes) discovered by GP-
Tune. Left: matrix Si2. Right: 8 PARSEC matrices: Si2,
SiH4, SiNa, Na5, benzene, Si10H16, Si5H12, SiO. “M" and
“S" denote multitask and single-task, respectively.

7 Conclusions
GPTune is amultitask learning and Bayesian optimization-
based autotuner well-suited for tuning exascale applica-
tion codes ranging from high-performance mathemat-
ical libraries to production-level scientific simulation
codes. To the best of our knowledge, GPTune is the first
distributed-memory parallel autotuner. In addition, GP-
Tune supports advanced features such as multi-objective
autotuning and incorporation of coarse performance
models. When compared to other state-of-the-art au-
totuners such as OpenTuner and HpBandSter, GPTune
achieves significantly better final and anytime perfor-
mance, particularly with a small budget.

Acknowledgments
This research was supported by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of the U.S.
Department of Energy Office of Science and the National
Nuclear Security Administration. We used resources
of the National Energy Research Scientific Computing
Center (NERSC), a U.S. Department of Energy Office
of Science User Facility operated under Contract No.
DE-AC02-05CH11231.

References
[1] B. Shahriari and K. Swersky and Z. Wang and R. P. Adams and N.

de Freitas. 2016. Taking the Human Out of the Loop: A Review
of Bayesian Optimization. Proceedings of the IEEE 104, 1 (Jan
2016), 148–175.

[2] Richard Bellman. 1957. Dynamic Programming (1
ed.). Princeton University Press, Princeton, NJ, USA.
http://books.google.com/books?id=fyVtp3EMxasC&pg=
PR5&dq=dynamic+programming+richard+e+bellman&

244

http://books.google.com/books?id=fyVtp3EMxasC&pg=PR5&dq=dynamic+programming+richard+e+bellman&client=firefox-a#v=onepage&q=dynamic%20programming%20richard%20e%20bellman&f=false
http://books.google.com/books?id=fyVtp3EMxasC&pg=PR5&dq=dynamic+programming+richard+e+bellman&client=firefox-a#v=onepage&q=dynamic%20programming%20richard%20e%20bellman&f=false

client=firefox-a#v=onepage&q=dynamic%20programming%
20richard%20e%20bellman&f=false

[3] Blackford, L. S. and Choi, J. and Cleary, A. and D’Azevedo, E.
and Demmel, J. and Dhillon, I. and Dongarra, J. and Hammarling,
S. and Henry, G. and Petitet, A. and Stanley, K. and Walker, D.
and Whaley, R. C. 1997. ScaLAPACK Users’ Guide. Society for
Industrial and Applied Mathematics, Philadelphia, PA.

[4] Chan, Timothy M. and Larsen, Kasper Green and Pătraşcu, Mihai.
2011. Orthogonal Range Searching on the RAM, Revisited. In
Proceedings of the Twenty-seventh Annual Symposium on Com-
putational Geometry (Paris, France) (SoCG ’11). ACM, New York,
NY, USA, 1–10.

[5] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Me-
yarivan. 2002. A fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE transactions on evolutionary computation 6, 2
(2002), 182–197.

[6] James Demmel, Laura Grigori, Mark Hoemmen, and Julien Lan-
gou. 2012. Communication-optimal parallel and sequential QR
and LU factorizations. SIAM Journal on Scientific Computing 34,
1 (2012), A206–A239.

[7] Robert D. Falgout and Ulrike Meier Yang. 2002. hypre: A Library
of High Performance Preconditioners. In Computational Science
— ICCS 2002, Peter M. A. Sloot, Alfons G. Hoekstra, C. J. Kenneth
Tan, and Jack J. Dongarra (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 632–641.

[8] Stefan Falkner, Aaron Klein, and Frank Hutter. 2018. BOHB:
Robust and Efficient Hyperparameter Optimization at Scale. In
Proceedings of the 35th International Conference onMachine Learn-
ing (Proceedings of Machine Learning Research, Vol. 80), Jennifer
Dy and Andreas Krause (Eds.). PMLR, Stockholmsmässan, Stock-
holm Sweden, 1437–1446. http://proceedings.mlr.press/v80/
falkner18a.html

[9] P.I. Frazier. 2018. A Tutorial on Bayesian Optimization. https:
//arxiv.org/abs/1807.02811.

[10] Jason Ansel and Shoaib Kamil and Kalyan Veeramachaneni
and Jonathan Ragan-Kelley and Jeffrey Bosboom and Una-
May O’Reilly and Saman Amarasinghe. 2014. OpenTuner:
An Extensible Framework for Program Autotuning. In Inter-
national Conference on Parallel Architectures and Compilation
Techniques. [Association for Computing Machinery], Edmonton,
Canada, 303–316. http://groups.csail.mit.edu/commit/papers/
2014/ansel-pact14-opentuner.pdf

[11] John A. Nelder and Roger Mead. 1965. A simplex method for
function minimization. Computer Journal 7 (1965), 308–313.

[12] Donald R. Jones, Matthias Schonlau, and William J. Welch. 1998.
Efficient Global Optimization of Expensive Black-Box Functions.
Journal of Global Optimization 13, 4 (01 Dec 1998), 455–492. https:
//doi.org/10.1023/A:1008306431147

[13] Andre G Journel and Charles J Huijbregts. 1978. Mining geo-
statistics. Vol. 600. Academic press London, London.

[14] Katehakis, Michael N. and Veinott,Jr., Arthur F. 1987. The
Multi-armed Bandit Problem: Decomposition and Computation.
Mathematics of Operations Research 12, 2 (May 1987), 262–268.
https://doi.org/10.1287/moor.12.2.262

[15] J. Kennedy and R. Eberhart. 1995. Particle swarm optimization.
In Proceedings of ICNN’95 - International Conference on Neural
Networks, Vol. 4. IEEE, Perth, 1942–1948 vol.4.

[16] X. S. Li and J. W. Demmel. 2003. SuperLU_DIST: A Scalable
Distributed-Memory Sparse Direct Solver for Unsymmetric Lin-
ear Systems. ACM Trans. Math. Software 29, 2 (June 2003), 110–
140.

[17] Xiaoye S. Li and James W. Demmel. 2003. SuperLU_DIST: a
scalable distributed-memory sparse direct solver for unsymmet-
ric linear systems. ACM Trans. Math. Softw. 29, 2 (June 2003),
110–140. http://doi.acm.org/10.1145/779359.779361

[18] Li, Lisha and Jamieson, Kevin and DeSalvo, Giulia and Ros-
tamizadeh, Afshin and Talwalkar, Ameet. 2017. Hyperband:
A Novel Bandit-based Approach to Hyperparameter Optimiza-
tion. J. Mach. Learn. Res. 18, 1 (Jan. 2017), 6765–6816. http:
//dl.acm.org/citation.cfm?id=3122009.3242042

[19] Dong C. Liu and Jorge Nocedal. 1989. On the Limited Memory
BFGS Method for Large Scale Optimization. MATHEMATICAL
PROGRAMMING 45 (1989), 503–528.

[20] m3dc1. 2004. M3D-C1. https://w3.pppl.gov/~nferraro/m3dc1.
html

[21] H. Menon, A. Bhatele, and T. Gamblin. 2020. Auto-tuning Param-
eter Choices in HPC Applications using Bayesian Optimization.
In 34th IEEE International Parallel & Distributed Processing Sym-
posium (IPDPS). IEEE, Virtual, 831–840.

[22] nimrod. 2004. NIMROD. https://nimrodteam.org/
[23] P. Balaprakash. 2015. SuRF: Search using Random For-

est. https://github.com/brnorris03/Orio/tree/master/orio/main/
tuner/search/mlsearch.

[24] S. J. Pan and Q. Yang. 2010. A Survey on Transfer Learning.
IEEE Transactions on Knowledge and Data Engineering 22, 10 (Oct
2010), 1345–1359.

[25] S. Kirkpatrick and C. D. Gelatt and M. P. Vecchi. 1983. Opti-
mization by simulated annealing. SCIENCE 220, 4598 (1983),
671–680.

[26] Wissam M. Sid-Lakhdar, James W. Demmel, Xiaoye S. Li, Yang
Liu, and Osni Marques. 2020. GPTune Users Guide. https://
github.com/gptune/GPTune/tree/master/Doc.

[27] Srinivas, M. and Patnaik, Lalit M. 1994. Genetic Algorithms: A
Survey. Computer 27, 6 (June 1994), 17–26.

[28] suitsparse. 2018. SuiteSparse Matrix Collection. https://sparse.
tamu.edu/.

[29] Xiaoye S. Li. 2005. An overview of SuperLU: Algorithms, im-
plementation, and user interface. ACM Trans. Math. Softw. 31, 3
(2005), 302–325. https://doi.org/10.1145/1089014.1089017

[30] Xiaoye Sherry Li and James Demmel and John R. Gilbert and
Laura Grigori and Meiyue Shao. 2011. SuperLU. In Encyclopedia
of Parallel Computing. Springer, Boston, 1955–1962. https://doi.
org/10.1007/978-0-387-09766-4_95

[31] ytopt. 2019. ytopt: Machine-learning-based search methods for
autotuning. https://github.com/ytopt-team/ytopt.

[32] Yu Zhang and Qiang Yang. 2017. A Survey on Multi-Task
Learning. CoRR abs/1707.08114 (2017), 1–1. arXiv:1707.08114
http://arxiv.org/abs/1707.08114

A Artifact Setup and Evaluation
A.1 Abstract
This artifact describes how to test the basic functionality
of GPTune, generate figures in the paper, and perform
the numerical experiments with smaller core counts,
sample counts, and cheaper applications than those in
the paper, using a personal computer. The expensive
experiments can be reproduced if the user has access to
the NERSC Cori supercomputer.

245

http://books.google.com/books?id=fyVtp3EMxasC&pg=PR5&dq=dynamic+programming+richard+e+bellman&client=firefox-a#v=onepage&q=dynamic%20programming%20richard%20e%20bellman&f=false
http://books.google.com/books?id=fyVtp3EMxasC&pg=PR5&dq=dynamic+programming+richard+e+bellman&client=firefox-a#v=onepage&q=dynamic%20programming%20richard%20e%20bellman&f=false
http://proceedings.mlr.press/v80/falkner18a.html
http://proceedings.mlr.press/v80/falkner18a.html
https://arxiv.org/abs/1807.02811
https://arxiv.org/abs/1807.02811
http://groups.csail.mit.edu/commit/papers/2014/ansel-pact14-opentuner.pdf
http://groups.csail.mit.edu/commit/papers/2014/ansel-pact14-opentuner.pdf
https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1287/moor.12.2.262
http://doi.acm.org/10.1145/779359.779361
http://dl.acm.org/citation.cfm?id=3122009.3242042
http://dl.acm.org/citation.cfm?id=3122009.3242042
https://w3.pppl.gov/~nferraro/m3dc1.html
https://w3.pppl.gov/~nferraro/m3dc1.html
https://nimrodteam.org/
https://github.com/brnorris03/Orio/tree/master/orio/main/tuner/search/mlsearch
https://github.com/brnorris03/Orio/tree/master/orio/main/tuner/search/mlsearch
https://github.com/gptune/GPTune/tree/master/Doc
https://github.com/gptune/GPTune/tree/master/Doc
https://sparse.tamu.edu/
https://sparse.tamu.edu/
https://doi.org/10.1145/1089014.1089017
https://doi.org/10.1007/978-0-387-09766-4_95
https://doi.org/10.1007/978-0-387-09766-4_95
https://github.com/ytopt-team/ytopt
http://arxiv.org/abs/1707.08114

A.2 Description
• Software prerequisites: APT (Ubuntu-like), home-
brew (MacOS) or Docker. The rest are installed by
the provided scripts.
• Hardware: personal computer with at least 4 cores,
or Cori Haswell with 64 nodes
• Metrics: Objective minimization (e.g., application
runtime)
• How much time is needed to prepare workflow
(approximately)?: Docker image: none. Manual
installation: 1 hour.
• How much time is needed to complete experi-
ments (approximately)?: 2 hours on a personal
computer
• Publicly available?: Yes.
• Code licenses (if publicly available)?: BSD

A.3 Installation
A.3.1 Docker image

1. docker pull liuyangzhuan/gptune:1.2
2. docker run -ti liuyangzhuan/gptune:1.2

A.3.2 Manual installation
1. git clone https://github.com/gptune/GPTune.git
2. cd GPTune
3. git checkout 1b897b05017
4. run one of the following installation scripts:
• Ubuntu-like: sudo sh config_ubuntu_moreinstall.sh
• MacOS: zsh config_macbook_moreinstall.zsh
• Cori Haswell: bash config_cori_haswell_gnu.sh

A.4 Testing the setup
The functionality of GPTune can be tested using one of
the following scripts.

• Docker: bash run_ubuntu_moreinstall.sh
• Ubuntu-like OS: bash run_ubuntu_moreinstall.sh
• MacOS: zsh run_macbook_moreinstall.zsh
• Cori Haswell: allocate one Cori node and bash
run_cori_moreinstall.sh

Three examples are illustrated: 1. Minimizing the ana-
lytical function with one task 𝑡 = 0 in (11). 2. Tuning
runtime of PDGEQRF on a small matrix (𝑚,𝑛 < 1300).
3. Tuning runtime of SuperLU_DIST on a small ma-
trix "big.rua". The command line options in the run_*.sh
can be changed if of interest to the users. The optimal
tuning parameters and objective function values are
printed after "Popt" and "Oopt" for each task. The tuner
time breakdown is printed after "stats:". For more de-
tails about interpreting the runlog, see the userguide
[26], Section 5.1.1 Listing 4 for an example of tuning
PDGEQRF.

A.5 Reproducing the experiments and figures
This subsection provides scripts to generate the paper
figures, and rerun most experiments on a much smaller
scale. The scripts are the same as those in Section A.4.
Take run_ubuntu_moreinstall.sh for Ubuntu-like OS as
an example, change "test" at line 27 to one of the fol-
lowing: "Fig.2", "Fig.3", "Fig.3_exp", "Fig.4", "Fig.4_exp",
"Fig.5", "Fig.5_exp", "Fig.6", "Fig.6_exp", "Fig.7", "Fig.7_exp",
"Tab.4_exp". See the descriptions in this script for their
usage. Essentially, "Fig.*" generates the corresponding
figures in the paper, and "*_exp" performs the corre-
sponding experiments on a much smaller scale.

246

	Abstract
	1 Introduction
	2 GPTune: Definitions and Notations
	3 GPTune Algorithms: Multitask Learning in Bayesian Optimization Framework
	3.1 Single-objective autotuning
	3.2 Multi-objective autotuning
	3.3 Incorporation of performance models

	4 Parallel implementations
	4.1 Dynamic process management
	4.2 Launching the application code
	4.3 Modeling and search phases of MLA

	5 Related Work
	6 Experimental results
	6.1 GPTune software
	6.2 Parallel machine and HPC codes
	6.3 Parallel speedups of GPTune
	6.4 Advantage of using performance models
	6.5 Efficiency of multi-task learning
	6.6 Performance comparison with other tuners
	6.7 Capability of multi-objective tuning

	7 Conclusions
	Acknowledgments
	References
	A blackArtifact Setup and Evaluation
	A.1 Abstract
	A.2 Description
	A.3 Installation
	A.4 Testing the setup
	A.5 Reproducing the experiments and figures

