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Collisionless plasma modeling in an arbitrary potential energy distribution
M. W. Liemohn and G. V. Khazanov
Space Sciences Laboratory, National Aeronautical and Space Administration, Marshall Space Flight Center,
Mail Code ES-83, Huntsville, Alabama 35812

~Received 26 August 1997; accepted 4 November 1997!

A new technique for calculating a collisionless plasma along a field line is presented. The primary
feature of this new ion-exospheric model is that it can handle an arbitrary~including nonmonotonic!
potential energy distribution. This was one of the limiting constraints on the existing models in this
class, and these constraints are generalized for an arbitrary potential energy composition. The
formulation for relating current density to the field-aligned potential as well as formulas for density,
temperature, and energy flux calculations are presented for several distribution functions, ranging
from a bi-Lorentzian with a loss cone to an isotropic Maxwellian. A comparison of these results
with previous models shows that the formulation reduces to the earlier models under similar
assumptions. ©1998 American Institute of Physics.@S1070-664X~98!01502-X#
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I. INTRODUCTION

Modeling the behavior of a plasma through the use
the collisionless kinetic equation~Vlasov equation! is a com-
monly used technique in plasma physics, especially when
primary factors influencing the changes in the distribut
function are potential energy structures. It began with e
spheric modeling of the Earth’s upper atmosphere1,2 and has
broad applications across many disciplines: in near-Earth
describing the hot plasma along inner magnetospheric fi
lines, high-latitude ionospheric outflows, and other situatio
involving a field-aligned potential; for rotating planeta
magnetospheres to determine the effects of the centrif
force; expansion into evacuated regions such as the L
wake; in astrophysics for describing objects such as puls
for modeling the solar wind acceleration region; and in lab
ratory plasmas to describe collisionless expansion int
vacuum.

For instance, there are many exospheric models des
ing collisionless flows in solar system plasmas. For exam
the trapped radiation in the Earth’s magnetic field was fi
considered with this technique by obtaining a solution us
a delta function distribution for the plasma.3 This was fol-
lowed by calculations involving more complicated distrib
tions, such as a Maxwellian or bi-Maxwellian4–15 or a drift-
ing Maxwellian.16 There is also a rich history of mode
describing ionospheric outflows and precipitation5,17–20 as
well as solar wind acceleration.21–23 Several excellent re
views of these applications have been compiled.24–26

These collisionless kinetic ion-exosphere models
have the same basic approach of knowing the distribu
function at some reference point in a given magnetic fi
and then mapping this distribution along the field line a
cording to the potential energy structure, whether that po
tial energy is self-consistently calculated or externally a
plied. They use one or more of the first few moments of
velocity space distribution function~density, flux, pressure
etc.! either to obtain a self-consistent calculation or to use
conjunction with other results. Also, because of the defi
5801070-664X/98/5(3)/580/10/$15.00
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tions of the velocity space integration regions, all of the
models require that the potential energy distribution alo
the field line be smooth and monotonic. This was eventua
formalized into a set of constraints on the potential energ9

In that study, the only potential was the self-consistent el
trostatic potentialw, and the constraints on this quantity a
limitations on its derivative with respect to the magnetic fie
B,

dw/dB.0, ~1!

d2w/dB2<0. ~2!

These constraints must be satisfied when the calculatio
the moments of the velocity distribution at a point along t
field line only includes the parameters~such as potential en
ergy and magnetic field strength! at the end points of the
simulation region and those for the local spatial point. It
quite possible, however, to violate these constraints, not o
during inner magnetospheric plasma calculations, but a
during any collisionless plasma scenario where this type
solution is appropriate.

The purpose of this study is to develop a generalizat
of these previous studies to allow for the calculation o
collisionless plasma along a magnetic field line in the pr
ence of an arbitrary potential energy structure. The formu
tion of the generalized approach is given in Sec. II, follow
by a discussion of the implementation of this model for se
eral distribution functions. Two cases of its application w
also be discussed, followed by a comparison of this form
lation with previous models.

II. THE MODEL

A. Moments of the velocity distribution function

The collisionless nature of the plasma means that
distribution function depends only on the two constants
motion,8,21 namely, the total energyE,

E5
mn i

2

2
1

mn'
2

2
1P ~3!
© 1998 American Institute of Physics
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and the first adiabatic invariantm,

m5
mn'

2

2B
, ~4!

wherem is the plasma particle mass,n i andn' are the par-
ticle velocities parallel and perpendicular toB, andP is the
total potential energy. This choice is quite beneficial beca
it removes the spatial dependence in the distribution func
f and only the region of integration inE–m velocity space
changes. The zeroth, first, second, and third moments o
velocity distribution function transformed to these variab
from their standard definitions27 are written as

n5
&pB

m3/2 E E f ~E,m!

AE2mB2P
dEdm, ~5a!

f5
2pB

m2 E E f ~E,m!dEdm, ~5b!

Pi5S 2

mD 3/2

pBE E AE2mB2P f ~E,m!dEdm, ~5c!

P'5
&pB2

m3/2 E E m f ~E,m!

AE2mB2P
dEdm, ~5d!

« i5
2pB

m2 E E ~E2P! f ~E,m!dEdm, ~5e!

where~5! has already been integrated over the velocity a
muthal angle. Note that the flow terms must be subtrac
out of ~5c!–~5e! in order to obtain the thermal portion o
these quantities~such as temperature and thermal heat flu!.

It should be noted thatP is an arbitrary potential energ
structure, and can include an electrostatic potential energ
the form ew, a gravitational potential energy of the form
mCg , or other potential energies. Also, the squaring ofn i in
~3! obscures the hemispherical direction of the distribut
function. For the integration, then,f must be split into hemi-
spherical descriptionsf 1 and f 2. The sign ofn i must then
be taken into account in~5! such that the functions are sub
tracted in the flux calculation and summed in the others.

The function f (E,m) is then defined at the referenc
altitude and can be mapped to any point along the field l
The problem which should be solved is the calculation of
region of theE–m plane filled by particles for an arbitrar
point along the field line. For a given plasma in a giv
magnetic field, this region is determined by the location
the source of the particles~reference points0 on the mag-
netic field line!, and by the conservation laws~3! and ~4!,

n i>0, E>mB1P. ~6!

We will restrict our analysis to the case of a one-to-one
lation between distance and field strength, i.e., the magn
field is a monotonic function ofs.

Figure 1 shows the regions of integration for~a! decel-
erated and~b! accelerated particles when the reference po
s0 is located atB5Bmin . While the region of integration for
the decelerated species is defined simply by then i50 line
for the local spatial point, the accelerated species requ
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two lines to define the region. The space below thes0n i

50 line and above thes1 n i50 line is an empty region in
velocity space ats1 , created by the acceleration from th
potential drop the particles have experienced. The reg
above thes0 line yet below thes1 line are particles that have
magnetically mirrored betweens0 ands1 . These regions are
also shown inn i –n' coordinates in Figs. 1~c! and 1~d!, il-
lustrating the region of velocity space ats1 that maps tos0

for Figs. 1~a! and 1~b!, respectively. In Fig. 1~d!, n1 corre-
sponds to the offset along theE axis in Fig. 1~b! between the
s0 ands1 intercepts,n2 corresponds to the intersection of th
two n i50 curves, andu1 is thes0 line, algebraically defined
by

mn1
2

2
5P02P1 ,

mn2
2

2
5

B1

B12B0
~P02P1!2P1 ,

sin2 u15
B1

B0
S E2P0

E2P1
D . ~7!

For anisotropic trapped plasma in the magnetosphere,
situation corresponds tos0 at the equatorial plane with th
decelerated species being the ions and the accelerated sp
being the anisotropic electrons.8

B. Generalization of the previous constraints

Because the previous collisionless kinetic models
clude only the calculation of the local and reference po
n i50 lines in their definition of the filled region of velocity
space, constraints must be imposed on the the potentia
ergy to ensure that the solution is valid. These were defi
above for the electrostatic potential during magnetosph
precipitation, given in~1! and~2!. Here, these criteria will be
extended for an arbitrary potential energyP. This will be
analyzed using three neighboring points:si 21 , si , andsi 11 ,
wherei is the spatial grid index. The boundary lines for the
points are found from~6!,

FIG. 1. Regions of integration inE–m velocity space for~a! decelerated
and ~b! accelerated plasma populations ats1 for a reference point atB
5Bmin . Plots~c! and~d! are the analogous regions inn i –n' velocity space.
The dotted areas are the regions of integration, the striped areas are e
regions in velocity space ats1 . The distribution function is defined abov
the s0 n i50 line, with no particles below it.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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E5mBa1Pa , a5 i 21,i ,i 11. ~8!

Let us begin by supposing thatsi 21 is the reference poin
and thatP i 2150, but the argument is easily generalized f
any three points in the spatial domain. The region above
line E5mBi 211P i 21 is therefore filled atsi 21 .

In order for the region of integration to be defined
only the n i50 lines from the reference point and the loc
point, there is just one necessary and sufficient condition
must be met: If thesi 11 n i50 line is ever above the refer
ence point~here,si 21! n i50 line for m.0, then it must also
be above thesi n i50 line for thesem values. If the potential
energy distribution is nonmonotonic, then this condition w
not be met for the decelerated species. Because mag
field and distance are one-to-one, this requirement can
written as follows: The first derivative of the potential ener
with respect to the magnetic field must be monoto
throughout the spatial range.

Beginning with this constraint of monotonicity, a seco
criteria can be derived by considering the intersection of
n i50 lines. The point of intersection for the lines of spat
pointss ands1ds ~any two adjacent spatial points! is

m* 52
dP

dB
, E* 5P2B

dP

dB
. ~9!

If dP/dB.0, m* is negative and the lines do not cross
the region of definition (m.0). This is shown in Fig. 2~a!
for the case when the minimum magnetic field is at the r
erence point~e.g., the magnetospheric trap!. Figure 2~d! is
the transformation of Fig. 2~a! into n i –n' coordinates,
showing the region of velocity space atsi that is filled by
particles flowing fromsi 21 . When this derivative is positive
the only criteria on the potential energy for validity of th
previous models is monotonicity.

If dP/dB,0, then the lines intersect at somem* .0. If
the points of intersection between linesi 21 andi (m i 21,i* )
and the intersection betweeni and i 11 (m i ,i 11* ) are ar-

FIG. 2. Schematics of the definition of the filled region of velocity spa
~dotted area! at si 11 based on three neighboring spatial points. This regio
shown for ~a! dP/dB.0, ~b! dP/dB,0 with d2P/dB2.0, and ~c!
dP/dB,0 with d2P/dB2,0. Plots ~d!–~f! are the analogous regions i
n i –n' space.
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ranged so thatm i 21,i* ,m i ,i 11* @i.e., m* (s),m* (s1ds)# and
dB/ds,0, thend2P/dB2.0. Similarly, if them* ’s are ar-
ranged so thatm i 21,i* .m i ,i 11* @i.e., m* (s).m* (s).m* (s
1ds)# and dB/ds.0, then againd2P/dB2.0. This situa-
tion is shown in Fig. 2~b!, and the filled region is determine
by only two lines, from the reference point (i 21) and from
the local point~i or i 11, but not both!. Figure 2~e! is this
situation for n i –n' , with n1 , n2 , and u1 defined analo-
gously to~7!. Therefore, when the first derivative is mon
tonically negative and the second derivative is positive, th
the previous models will be valid.

Finally, if dP/dB,0 and either ~a! m* (s),m* (s
1ds) with dB/ds.0, or ~b! m* (s).m* (s1ds) with
dB/ds,0, then the second derivative ofP with respect toB
will be negative. When this occurs the boundary of the fill
region for pointi 11 will consist of three line segments. Fo
a situation such as that in Fig. 2~c!, the boundary is defined
first by thesi 21 line E5mBi 211P i 21 up tom i 21,i* , then by
the si line up to m i ,i 11* , and finally by the rayE5mBi 11

1P i 11 . In general, for these cases the filled region ofE–m
space depends not only on the reference and local poinn i

50 lines, but also on the potential energy and magnetic fi
of other~perhaps all! nonlocal points. Then i –n' version of
this shown in Fig. 2~f!. Therefore, the functional dependen
of P with respect toB, then, that ensures the validity of th
previous models can be written as two conditions:

dP~B!

dB
,

dP~B1dB!

db
for all B ~10a!

or
dP~B!

dB
.

dP~B1dB!

dB
for all B ~10b!

~i.e., dP/dB must be monotonic!, and

d2P

dB2.0 if
dP

dB
,0. ~11!

These constraints must be met for all populations in
calculation. Violation of these constraints leads to other n
local n i50 lines entering into the definition of the region o
integration for the moments in~5!. These extra lines define
additional empty regions in velocity space where the p
ticles that would have occupied that region have been
flected before reaching the local spatial point. Althou
some of the new empty regions in velocity space can be q
small, their proximity to the low-energy range~where f is
typically larger! means that they could cause a significa
change in the moment calculations.

C. The generalized approach

It is clear that situations can arise that violate these c
straints, and the region of integration inE–m velocity space
requires more than just then i50 line defined in~6! for the
reference point and the local spatial point. Deriving the m
ments for each possible scenario would be cumbersome,
a general formulation is needed that is applicable for a
number of lines defining the integration region at any spa
point along the field line.

Consider the integration region in Fig. 3~a! in E–m
space and Fig. 3~b! in n i –n' space. The shaded area defin

s
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a region of phase space above an arbitraryn i50 line be-
tween two arbitrary end points. Whilema andma11 can be
arbitrarily chosen, they will usually be defined by the inte
section of thea line with thea21 anda11 lines, wherea
is the index ranging through the number of regions comp
ing the filled velocity space. InE–m space, the expression
for the end points and lower line are

ma5
Pa212Pa

Ba2Ba21
, Emin,a5mBa1Pa ~12!

and forn i –n' they are

mna
2

2
5

Ba

Ba2Ba21
~Pa212Pa!2Ps ,

sin2 ua5
Bs

Ba
S E2Pa

E2Ps
D , ~13!

where the subscripts denotes the current spatial point value
Note thata51 will be at m50 (n'50) anda5amax will
extend tom→` (n'→`).

Integration over this shaded area~at spatial points! rep-
resents an arbitrary integral of the form

I j~Ba ,Pa!5E
ma

ma11F E
Emin,a

`

F j~E,m!dEGdm, ~14!

whereF j is the appropriate kernel from the definition in~5!,
with B5Bs andP5Ps . Note thatBa , Pa , do not need to
be specifically defined to perform this integral, but will eve
tually be defined by somen i50 line bordering an integration
region. Note that these integration boundaries could be
fined by any point in the spatial range. The solution over t
arbitrary region ofE–m space is what is needed for a ge
eralization of the previous models. From this, a summat
of these integrals can be constructed to obtain the nee
moments of the distribution function. These moments c
then be used in Maxwell’s equations to couple the plas
parameters to the magnetic and electric fields.

III. IMPLEMENTATION

It is now necessary to define the distribution function
the reference altitude. Many functions have been used in
previous studies, particularly the Maxwellian and kap
~Lorentzian! distribution functions. Delta functions inn i and
n' have also been used, as well as more complex distr
tions like bi-Maxwellians. The choice of this function prima

FIG. 3. Integration over a region~dotted area! of ~a! E–m space and~b! the
correspondingn i –n' space above an arbitraryn i50 line with arbitrarym
end points.
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rily depends on the application of interest. A concise table
the common Lorentzian distribution functions and their a
sociated Maxwellian limits fork→` is available.28

While the use of any function that satisfies Liouville
theorem is possible, the most general is the bi-Lorentz
loss cone distribution,28 written in E–m velocity space as

f 5S m

2p D 3/2 n0A1

t i
3/2 S mB0A1

t i
D s

3
G~k11!

ks13/2G~k21/2!G~s11!

3S 11
E2P01mB0A

kt i
D 2~k1s11!

, ~15!

where t i5Ti(k23/2)/k, A15A115Ti /T' , the i sub-
script indicates the point of maximumB, and s quantifies
the level of depletion in the loss cone. Various forms of lo
cone distributions have been used for the past few deca
The bi-Maxwellian loss cone description of this form w
originally used for analyzing plasma wave generation
geomagnetically trapped plasma.29

A bi-Maxwellian loss cone distribution using a subtra
tive Maxwellian instead of an' multiplier was used for a
similar application.30 This subtractive loss cone distribution

f 5S m

2p D 3/2 n0A1 expS 2
E2mB02P0

Ti
D

Ti
3/2

3H d expS 2
mBA1

Ti
D1

12d

12b FexpS 2
mBA1

Ti
D

2expS 2
mBA1

bTi
D G J ~16!

was also used for field-aligned mapping of precipitati
particles.11 This distribution defines a partially filled los
cone, whered andb range from 0 to 1 and indicate the siz
and filling ratio of the loss cone atn i50. These two func-
tions are complimentary, and a limit ofb→1 in ~16! reduces
to thes51 distribution of~15!.

Because the original use of these functions was for d
persion relation calculations, a delta function at the reson
n i was immediately applied, and thus the loss cone wa
fixed size inn' . For this application, however, there is n
delta function specifyingn i , and so the size of the loss con
must vary withn i . In fact, the loss cone size depends on t
field-aligned distribution of the total potential energy. In th
case, then, a more rigorous approach to a loss cone defin
is to define the loss cone as the region of integration aB
5Bmax and define a distribution function to be subtract
from the trapped population in this ‘‘loss cone region’’ o
velocity space.

Several other distributions are also commonly used. O
is the isotropic Lorentzian distribution function,

f 5S m

2p D 3/2 n0

t3/2

G~k11!

k3/2G~k21/2! S 11
E2P0

kt D 2~k11!

,

~17!
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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which has been used for describing the solar wind accel
tion region31,32 as well as near-Earth plasma temperat
profiles.18 The bi-Maxwellian distribution is another functio
that is often used in collisionless plasma modeling, hav
the form

f 5S m

2p D 3/2 n0A1

Ti
3/2 expS 2

E2P01mB0A

Ti
D . ~18!

This function is primarily used for modeling magnetic fiel
aligned potential energy distributions caused by mirror
anisotropic plasmas,14,15 and also for rotating planetar
magnetospheres.13,33A further simplification that is also use
extensively is the isotropic Maxwellian distribution functio

f 5S m

2p D 3/2 n0

T3/2 expS 2
E2P0

T D ~19!

and was used, for instance, in an ion-exosphere model5,16,27

and in several recent polar wind outflow studies.19,20

In principle, each of these distribution functions can
used in the general model to obtain an analytical form of
velocity moments along a magnetic field line.

IV. APPLICATIONS OF THE MODEL

While there are many applications for mapping a co
sionless plasma along a magnetic field in the presence o
arbitrarily complex field-aligned potential distribution, tw
applications will be discussed here: obtaining a relation
tween the field-aligned current and potential drop; and qu
tifying the plasma density and temperature changes along
field line.

A. Current calculations

Finding the relation between the current density and
field-aligned potential has long been a topic of critical im
portance. The self-consistent formation of a field-aligned
tential drop due to field-aligned currents has been consid
since the early 1970s,6,34–37and there are several good di
cussions of this topic available.38,39 From the present mode
the final result of the particle flux calculation along the fie
line will yield a general relation for the current density. Th
distributions presented in Sec. III can be applied to~5b! us-
ing the general integration region limits of 14. As discuss
above, the loss cone is best handled by defining the loss
region of velocity space and subtracting an integration o
that area, and sos50 will be used here. For compariso
with the formulation of Ref. 11, though,~16! has not been
reduced. The resulting general flux integrals are

fgen
bi2L5

n0

2
A2t i

mp

B

Ba

jk
0

k1/2~k21!

A1

11
B0

Ba
A

3F S 11
m1~Ba1B0A!2P01Pa

kt i
D 2~k21!

2S 11
m2~Ba1B0A!2P01Pa

kt i
D 2~k21!G ,

~20!
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fgen
LCM5

n0

2
A2Ti

pm

Bs

Ba
A1 expS P02Pa

Ti
D

3H d1S 12d

12b D
11

B0

Ba
A

FexpS 2
m1~Ba1AB0!

Ti
D

2expS 2
m2~Ba1AB0!

Ti
D G2

S 12d

12b D
11

B0

Ba
S A1

b
21D

3FexpS 2
m1@Ba1B0~A1 /b21!#

Ti
D

2expS 2
m2~Ba1B0@A1 /b21# !

Ti
D GJ , ~21!

fgen
L 5

n0

2
A 2t

mp

B

Ba

jk
0

k1/2~k21!
@~z1

a!2~k21!

2~z2
a!2~k21!#, ~22!

fgen
bi2M5

n0

2
A2Ti

pm

Bs

Ba

A1

11
B0

Ba
A

expS P02Pa

Ti
D

3FexpS 2
m1~Ba1AB0!

Ti
D

2expS 2
m2~Ba1AB0!

Ti
D G , ~23!

fgen
M 5

n0

2
A 2T

pm

Bs

Ba
expS P02Pa

T D
3@e2m1Ba /T2e2m2Ba /T#, ~24!

wherejk
05G(k11)/G(k21/2) andz1,2

a 511(m1,2Ba1Pa

2P0)/kt.
To obtain the appropriate line segments to integr

above, the potential energy structure must be known o
spatial grid from the reference point to the point of intere
If constraints~10! and ~11! are met, then the summation o
regions yields the previous relation for the current as a fu
tion of the field-aligned potential difference between the
cal point and the reference point.6 The potential energy dis
tribution can be more complicated, though, and in this cas
calculation along the field line is needed to obtain then i

50 lines defining the region of integration for the flux.

B. Density, temperature, and heat flux

It is often important to determine the local density, tem
perature, and heat flux of a plasma species, and these
also be obtained by using the functions in Sec. III in t
moments in~5! with the limits of ~14!. This will yield gen-
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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eral relations for the density, parallel pressure, perpendic
pressure, and heat flux that can be piecewise summed
the appropriaten i50 lines to obtain the total density or tem
perature component of the plasma at any given point al
the field line. Here, the expressions are presented only
two of the most useful distribution functions: the Lorentzi
and bi-Maxwellian. Note that both of these will reduce to t
isotropic Maxwellian solution.

The general relations forn, Pi , P' , ande i for ~17! are

ngen
L 5

n0

2
jk

1H S 12
B
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D k

z0
k21/2 H1~z1* ,z2* !1
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z1
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2
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z2
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J , ~25!

Pi ,gen
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n0t

3
kjk

1H S 12
B
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D k

z0
k23/2 H2~z1* ,z2* !1

H2~0,z1!

z1
k23/2

2
H2~0,z2!

z2
k23/2

J , ~26!
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L 5Pi ,gen

L 1
n0t

2
kjk

1H B

Ba
S 12

B

Ba
D k

z0
k23/2 @H1~z1* ,z2* !

1H2~z1* ,z2* !#1
m1B

kt

H1~0,z1!

z1
k23/2

2
m2B

kt

H1~0,z2!

z2
k23/2

J , ~27!

e i ,gen
L 5~Pa2P!fgen

L 1
n0

2
A 2t

pm

B

Ba

jk
0

k1/2~k21!

3H m1Ba~z1
a!2~k21!1m2Ba~z2

a!2~k21!

1
2kt

k22
@~z1

a!2~k22!2~z2
a!2~k22!#J , ~28!

wherejk
15jk

0/G(3/2), the newz terms are

z0512
B

Ba
1

P2P01
B

Ba
~P02Pa!

kt
,

z1,2511
m1,2B1P2P0

kt
, ~29!

the z limits are
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g
or

z1,25
z1,2

11
m1,2Ba1Pa2P0

kt

,

z1,2* 5
z0

S 11
B

Ba
D S 11

m1,2B1P2P0

kt D , ~30!

and the twoH functions are the integrals

H1~u1 ,u2!5E
u1

u2
tk23/2~12t !1/2dt,

H2~u1 ,u2!5E
u1

u2
tk25/2~12t !3/2dt, ~31!

which can be readily written in series form.40

The general relations forn, Pi , P' , ande i for ~18! are
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Ti
D

3H erfc~Ax1!expS 2
m1~Bs1AB0!

Ti
D

2erfc~Ax2!expS 2
m2~Bs1AB0!

Ti
D

1G1~y!expS Bs1AB0

Ba2Bs

Pa2Ps

Ti
D J , ~32!
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~34!
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e i ,gen
bi2M5S Pa2P1TiF11S Ba
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1
n0

2
A2Ti

pm
e(P02Pa)/Ti

BA1Ba
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D

2m2 expS 2
m2~Ba1B0A!

Ti
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wherex andy are
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Ti
, y5

Ba1AB0

Ba2Bs
~36!

and the threeG functions are defined as
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ns
as-

g
no-
l
this
ntial
ap-
These equations can be used for many applications, s
as polar wind outflows, magnetospheric precipitation,
trapped plasma anisotropies.

V. COMPARISON WITH PREVIOUS MODELS

By applying these general formulas for the regions
integration satisfying the constraints of previous io
exospheric models, the original equations from those stu
can be obtained, showing the generality of this new mod
ch
r

f
-
es
l.

To obtain the formulation of Ref. 27, integration regio
consistent with their model must be taken. This includes
suming that the generalized constraints~10! and~11! are met
and using a Maxwellian distribution function. For outflowin
particles, for example, the source region is above the io
spheric boundaryn i50 line. Accelerated populations wil
always escape and the integration is always defined by
boundary line. Plasma populations decelerated by a pote
barrier can be divided into two groups: ballistic and esc
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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ing. Calculation of the ballistic particle parameters is then
integration above the local point’sn i50 line and below the
s`n i50 line while remaining above thes0 line, and the es-
caping particle integrations are above thes` and s0 lines.
ar

o
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nThe equations for this escaping population of a decelera
population can then be written out by applying~24! and
~32!–~35! with A50 for each of these lines and summing t
result, obtaining
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T D 2AB02B
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T
2FB`
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T
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~44!
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where

x5
B02B

B02B`

P`2P0

T
1

P02P

T
. ~45!

These are the same equations as~17!–~19! of Ref. 27, where
their shorthand notations can be written in terms of our v
ables as

p5
B02B

B0
, s5

B2B`

B`
, q5

P2P0

T
,

V`
2 5

P`2P

T
, X25x. ~46!

The other classes of particles discussed by them can als
compared with this model by applying~24! and ~32!–~35!
i-

be

for the appropriate regions and converting the two sets
equations to a common set of variables. It can be shown
the results are the same. It can also be shown that applica
of ~22! and ~25!–~28! for these same integration region
yield the results of Ref. 18, although the heat flux of th
study, their Equation~29!, does not exactly reduce to th
corresponding equations of Ref. 27, and this has been
rected by those authors.41

The same approach can be used to compare this for
lation with other models. Because only the local spatial po
in defining the integration region was taken into account
the results of Ref. 15, it is only necessary to apply~32! once
above the local point’sn i50 line, with them end points at
zero and infinity. As mentioned in that study, this impli
some scattering mechanism is filling in the low-energy ho
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in the accelerated population distributions. Although t
scattering is inconsistent with the use of Vlasov’s equati
the new model is still capable of reproducing their results
similar assumption was probably made in Ref. 13, beca
the formulation is the same except for a more generali
potential energy. For this comparison,P56ef, and the
solution gives unity for everything inside the curly bracke
of ~32!, making the moments proportional to an anisotro
factor and an exponential term. Equating the accelerated
decelerated population densities yields their explicit form
for the field-aligned potential,

ef5
Ti iTie

Ti i1Tie
lnS 11S Bs

B0
21D Y A1e

11S Bs

B0
21D Y A1i

D . ~47!

Another result of these studies is a relation forT' , and ap-
plication of the above-mentioned integration limits to~34!
will give this T' formula. In general, though, a more com
plicated formula will arise that depends on a summation
integrals.

Two integrals, one aboveE50 and one above the loca
n i50 line when it crosses the first line, are needed to rep
duce the density formula of Ref. 14. Again, the introducti
of the Heaviside step function implies that some proces
scattering the accelerated particles and partially filling
low-energy hole. This step function in their results causes
multiplying term to appear for the anisotropic electrons d
to theE50 line integration, while the ions will have a for
mulation like that of Ref. 15.

The results in Sec. IV A can also be checked aga
previous models. To obtain the parallel current formula
Ref. 6, the region of integration for~23! must be above the
n i50 lines for the magnetospheric and ionospheric bou
aries, with the populations being only ionospheric (i ) and
plasma sheet (m) electrons. Setting the integration regions
the end pointn i50 lines ~count only those particles not be
ing reflected! and multiplying by the charge, this summatio
will yield

j i5eBsH ni

Bm
A Ti

2pm FexpS 2
Pm2P i

T D
2S 12

Bm

Bi
DexpS 2

Pm2P i

T

Bi

Bi2Bm
D G

2
nm

Bm
A Tm

2pm F12S 12
Bm

Bi
D

3expS 2
Pm2P i

T

Bm

Bi2Bm
D G J , ~48!

which is the result previously obtained. As a final compa
son, the field-aligned current for the loss cone distribution
Ref. 11 can be derived from this model in a similar mann
to ~48! by using~21! instead of~23! for magnetospheric par
ticles only. This yields
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j i5enmA Ti

2pm

Bi

Bm
H 12

de2w

11b
2

12d

12b

3F e2w

11b
2

b2e2w/b

b1b G J , ~49!

which is his result withr 50, b5A1Bm /(Bi2Bm), and w
5(Pm2P i)/Ti . Although the previous results can be o
tained from this new model, a more general approach to
cone distribution calculations was discussed above~Sec. III!.

VI. SUMMARY

While the existing ion-exospheric models of calculati
moments of a collisionless plasma by applying Liouville
theorem to solve the Vlasov equation are valid and use
their validity is limited by at the very least the constraints
the distribution of the potential with respect to the magne
field strength given in~10! and~11!. These constraints can b
violated by common geophysical situations by the inclus
of one or more other potential energies or plasma specie

To address this problem, we have developed a gene
zation to the previous models for the solution of the se
consistent potential energy with an arbitrary field-align
distribution, including any number of nonmonotonicitie
The formulas for a wide range of distribution functions at t
reference point, from a loss cone bi-Lorentzian down to
isotropic Maxwellian distribution, are derived and present
It can handle an arbitrary definition of the reference poi
even multiple reference points for different plasma spec
and can handle widely varying plasma populations and
tribution functions for those populations simultaneous
Also, it can be used for any collisionless plasma situati
where a field-aligned solution is needed. Application of th
exospheric model to determining the relationship betwe
field-aligned current and potential difference has been
cussed, as well as the calculation of other moments of
distribution function. It has discussed that the solution c
depend on all of the spatial points above and below a gi
spatial point, and that the solution must be iterated to c
vergence. It was also demonstrated that this new general
mulation reduces to the results of the previous models un
the same constraints.
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