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Collisionless plasma modeling in an arbitrary potential energy distribution
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A new technique for calculating a collisionless plasma along a field line is presented. The primary
feature of this new ion-exospheric model is that it can handle an arbiirariyding nonmonotonic
potential energy distribution. This was one of the limiting constraints on the existing models in this
class, and these constraints are generalized for an arbitrary potential energy composition. The
formulation for relating current density to the field-aligned potential as well as formulas for density,
temperature, and energy flux calculations are presented for several distribution functions, ranging
from a bi-Lorentzian with a loss cone to an isotropic Maxwellian. A comparison of these results
with previous models shows that the formulation reduces to the earlier models under similar
assumptions. ©1998 American Institute of Physids$$1070-664X98)01502-X]

I. INTRODUCTION tions of the velocity space integration regions, all of these
models require that the potential energy distribution along
Modeling the behavior of a plasma through the use ofthe field line be smooth and monotonic. This was eventually
the collisionless kinetic equatigivlasov equatiopis a com-  formalized into a set of constraints on the potential enérgy.
monly used technique in plasma physics, especially when thi that study, the only potential was the self-consistent elec-
primary factors influencing the changes in the distributiontrostatic potentiak, and the constraints on this quantity are
function are potential energy structures. It began with exolimitations on its derivative with respect to the magnetic field
spheric modeling of the Earth’s upper atmosphéand has B,
broad applications across many disciplines: in near-Earth for do/dB>0 (1)
describing the hot plasma along inner magnetospheric field ¢ '
lines, high-latitude ionospheric outflows, and other situations  d2¢/dB?<0. 2

involving a field-aligned potential; for rotating planetary These constraints must be satisfied when the calculation of

magnetospheres fo determine the effects of the centnfug%e moments of the velocity distribution at a point along the

force; expansion into evacuated regions such as the Lunar . . . X
. . . . ield line only includes the parameteisuch as potential en-
wake; in astrophysics for describing objects such as pulsars S :
. . . . . €rgy and magnetic field strengtlat the end points of the

for modeling the solar wind acceleration region; and in labo-_. . . . : .
ratorv plasmas to describe collisionless expansion into g,lmulatlon region and those for the local spatial point. It is
vacuﬁn? P quite possible, however, to violate these constraints, not only

For instance. there are manv exospheric models descri during inner magnetospheric plasma calculations, but also
. - : X y P uring any collisionless plasma scenario where this type of a
ing collisionless flows in solar system plasmas. For example

o ) S " %olution is appropriate.
the trapped radiation in the Earth’s magnetic field was first The purpose of this study is to develop a generalization

considered With th.is t'ech'nique by obtaining a_solution usingof these previous studies to allow for the calculation of a
a delta function distribution for the plasriathis was fol- collisionless plasma along a magnetic field line in the pres-

Ipwed by calculations myolvmg more com.p_h%ated dls_trlbu- ence of an arbitrary potential energy structure. The formula-
tions, such as 816Maxwelll_an or bl—ngweI_h”aﬁ or a drift- tion of the generalized approach is given in Sec. Il, followed
ng I\/!axwel'llan. Thgre is also a rich h|s'to.ry Of_g(])OdelS by a discussion of the implementation of this model for sev-
describing ionospheric outflows and precipitatio aS  eral distribution functions. Two cases of its application will

: )
well asfs;:lar W|nd|_aC(_:eIerer1]t|c?ﬁ. o Severalpgé_cégllent '€ also be discussed, followed by a comparison of this formu-
views of these applications have been compffed Jation with previous models:

These collisionless kinetic ion-exosphere models a
have_ the same basic approach of knovymg the dlstr|bu_t|or|1|_ THE MODEL
function at some reference point in a given magnetic field S .
and then mapping this distribution along the field line ac-A- Moments of the velocity distribution function

cording to the potential energy structure, whether that poten-  The collisionless nature of the plasma means that the

tial energy is self-consistently calculated or externally ap-gistribution function depends only on the two constants of
plied. They use one or more of the first few moments of theyotion82% namely, the total energg,

velocity space distribution functiofdensity, flux, pressure,

. . . . . 2 2
etc) either to obtain a self-consistent calculation or to use in E— my, n mvy I 3)
conjunction with other results. Also, because of the defini- 2 2
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and the first adiabatic invariamnt, E sp=0
my? e
n= ﬁ , (4) Filled (integration) region
vi(s,)=0
wherem is the plasma particle mass, and v, are the par- - -
\ | : . l @) 2
ticle velocities parallel and perpendicularBg andlIl is the
total potential energy. This choice is quite beneficial because E
it removes the spatial dependence in the distribution function Filled region Vys)=0 L

f and only the region of integration iB—u velocity space EETERSE SRRy

changes. The zeroth, first, second, and third moments of the[:::::::i:: ) . S
velocity distribution function transformed to these variables \
from their standard definitioR5are written as

Empty region

b) d) V1V V”
e V2B f f f(E,u) dEdu 53 ( (
m®? VE—uB—1II ' FIG. 1. Regions of integration iE—u velocity space for(@) decelerated

and (b) accelerated plasma populations satfor a reference point aB
27B =B - Plots(c) and(d) are the analogous regionsifi-v, velocity space.
b= W J J f(E,,u)dEd,u, (5b) The dotted areas are the regions of integration, the striped areas are empty
regions in velocity space &, . The distribution function is defined above
thesy v,=0 line, with no particles below it.

3/2
p_<m) WBJJ\/E uB—TIIf(E,u)dEdu, (50

Vi B2 Mf(E @) two lines to define the region. The space below #3e
=TT f f ———— dEdg, (5d) =0 line and above the; »,=0 line is an empty region in
VE—uB—1I velocity space as;, created by the acceleration from the
2B potential drop the particles have experienced. The region
&)= J f (E-II)f(E,u)dEdu, (5e) above thes; line yet below thes; line are particles that have

magnetically mirrored betweesy ands;. These regions are
where(5) has already been integrated over the velocity azi2lso shown iny—v, coordinates in Figs. (&) and Xd), il-
muthal angle. Note that the flow terms must be subtracted!strating the region of velocity space st that maps tcs,
out of (5¢)—(56) in order to obtain the thermal portion of for Figs. 1@ and 1b), respectively. In Fig. (), »; corre-
these quantitieésuch as temperature and thermal heat)flux Sponds to the offset along tfieaxis in Fig. 1b) between the

It should be noted thdl is an arbitrary potential energy So ands; interceptsy, corresponds to the intersection of the

structure, and can include an electrostatic potential energy dWo »,=0 curves, and, is thes line, algebraically defined
the form ee, a gravitational potential energy of the form by
mW¥ g, or other potential energies. Also, the squaringpin my2 2 B,

m
(3) obscures the hemispherical direction of the distribution leno—ﬂl, 2 (IMy—11,) —1I,,

function. For the integration, thef,must be split into hemi- 2 B Bo
spherical descriptions* andf~. The sign ofy, must then . E-II,
be taken into account ifb) such that the functions are sub- sir? 01=B—0 (E—Hl)' (7)

tracted in the flux calculation and summed in the others.
The functionf(E,x) is then defined at the reference For anisotropic trapped plasma in the magnetosphere, this

altitude and can be mapped to any point along the field lineSituation corresponds ts, at the equatorial plane with the

The problem which should be solved is the calculation of thedecelerated species being the ions and the accelerated species

region of theE—px plane filled by particles for an arbitrary being the anisotropic electrofis.

point along the field line. For a given plasma in a given

magnetic field, this region is determined by the location of

the source of the particlegeference poins, on the mag-

netic field ling, and by the conservation law8) and (4), Because the previous collisionless kinetic models in-

clude only the calculation of the local and reference point

n=0, E=uB+II. © =0 Iine); in their definition of the filled region of veloc?ty

We will restrict our analysis to the case of a one-to-one respace, constraints must be imposed on the the potential en-

lation between distance and field strength, i.e., the magnetiergy to ensure that the solution is valid. These were defined

field is a monotonic function o$. above for the electrostatic potential during magnetospheric
Figure 1 shows the regions of integration fa) decel- precipitation, given if(1) and(2). Here, these criteria will be

erated andb) accelerated particles when the reference poinextended for an arbitrary potential enerbly This will be

S is located aB=B,,,. While the region of integration for analyzed using three neighboring poirds:;, s;, ands; 1,

the decelerated species is defined simply by #we0 line  wherei is the spatial grid index. The boundary lines for these

for the local spatial point, the accelerated species requirgsoints are found fron{6),

B. Generalization of the previous constraints
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oo ranged so that]” ;;<uf; ., [i.e., u* (s)<u*(s+ds)] and
;;;;fr‘:)‘;";?j"”f dB/ds<0, thend?[1/dB2>0. Similarly, if the u*’s are ar-
_ S ranged so thap ;;>ufj,q [i.e., u*(s)>u*(s)>u*(s
- (d) v +ds)] anddB/ds>0, then agaird®[1/dB?>0. This situa-

tion is shown in Fig. &), and the filled region is determined
by only two lines, from the reference point<1) and from

the local point(i ori+1, but not both Figure Ze) is this
situation for »y—v, , with v, v,, and 6, defined analo-
gously to(7). Therefore, when the first derivative is mono-
tonically negative and the second derivative is positive, then
the previous models will be valid.

Finally, if dII/dB<0 and either(a u*(s)<u*(s
+ds) with dB/ds>0, or (b) w*(s)>u*(s+ds) with
dB/ds<0, then the second derivative Hf with respect tdB
will be negative. When this occurs the boundary of the filled
region for pointi +1 will consist of three line segments. For

FIG. 2. Schematics of the definition_of the_ filled rt_agion_of velo_city space 5 sjtyation such as that in Fig(c, the boundary is defined
(dotted arepats; ., based on three neighboring spatial points. This region is

shown for 3 dT1/dB>0, (b) dI/dB<0 with QTI/dB?>0, and () 1St DY thesi—y line E=uBi_1+1li_; uptouf”,;, then by
dI1/dB<0 with d2[1/dB2<0. Plots(d)—(f) are the analogous regions in thes; line up to u';,,, and finally by the raye=uB;,
v,—v, Space. +1I1I;,41. In general, for these cases the filled regiorEefu
space depends not only on the reference and local pgint
=0 lines, but also on the potential energy and magnetic field
®) of other(perhaps ajl nonlocal points. The—v, version of
this shown in Fig. &). Therefore, the functional dependence
Let us begin by supposing thaf_, is the reference point of IT with respect taB, then, that ensures the validity of the
and thatll;_, =0, but the argument is easily generalized for previous models can be written as two conditions:
any three points in the spatial domain. The region above the dII(B) dII(B+dB)
line E=uB;_,+II;_; is therefore filled as;_; . for all B (103
In order for the region of integration to be defined by dB db
only the ;=0 lines from the reference point and the local or
point, there is just one necessary and sufficient condition that dII(B) dII(B+dB)
must be met: If thes;,; »,=0 line is ever above the refer- daB = dB
ence pointhere,s;_;) v,=0 line for x>0, then it must also
be above the; v;=0 line for theseu values. If the potential
energy distribution is nonmonotonic, then this condition will d_H 0 T ——
not be met for the decelerated species. Because magnetic dB? dB
field and distance are one-to-one, this requirement can be These constraints must be met for all populations in the
written as follows: The first derivative of the potential energy cajculation. Violation of these constraints leads to other non-
with respect to the magnetic field must be monotoniCigca| 1, =0 lines entering into the definition of the region of
throughout the spatial range. integration for the moments if5). These extra lines define
Beginning with this constraint of monotonicity, a second gqditional empty regions in velocity space where the par-
criteria can be derived by considering the intersection of thgjcles that would have occupied that region have been re-

E=uB, +II,, a=i—1,,i+1.

for all B (10b)

(i.e., dII/dB must be monotonij¢ and

0. (11

pointss ands+ds (any two adjacent spatial pointes some of the new empty regions in velocity space can be quite
diI diI small, their proximity to the low-energy randeheref is
wr=— B’ E*=I1-B dB" (9)  typically large) means that they could cause a significant

change in the moment calculations.
If dII/dB>0, u* is negative and the lines do not cross in
the region of definition £>0). This is shown in Fig. @)
for the case when the minimum magnetic field is at the ref- It is clear that situations can arise that violate these con-
erence pointle.g., the magnetospheric thagrigure 2d) is  straints, and the region of integrationfi-u velocity space
the transformation of Fig. (@ into »—», coordinates, requires more than just the=0 line defined in(6) for the
showing the region of velocity space gtthat is filled by  reference point and the local spatial point. Deriving the mo-
particles flowing froms; _, . When this derivative is positive, ments for each possible scenario would be cumbersome, and
the only criteria on the potential energy for validity of the a general formulation is needed that is applicable for any

C. The generalized approach

previous models is monotonicity. number of lines defining the integration region at any spatial
If dI1/dB<0, then the lines intersect at som& >0. If  point along the field line.
the points of intersection between lines1 andi (ui"q;) Consider the integration region in Fig(a in E—pu

and the intersection betweenandi+1 (uf; ;) are ar- space and Fig.(®) in v—v, space. The shaded area defines
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rily depends on the application of interest. A concise table of
the common Lorentzian distribution functions and their as-
sociated Maxwellian limits foi— is available?®

While the use of any function that satisfies Liouville’s
theorem is possible, the most general is the bi-Lorentzian
loss cone distributiof® written in E—u velocity space as

|
I
1
1
:
l-llu+1 u

(@) o ( m |2 noA; [ uBoAs | ”
a = —
277 T‘:‘g 2 TH
FIG. 3. Integration over a regidotted arepof (a) E—u space andb) the
correspondingy—v, space above an arbitrany=0 line with arbitraryu % I'(k+1)
end points. Pra 3/2F( k—1/2)T(o+1)
: , _ E—Tlo+ uBoA| ~(xFotD)
a region of phase space above an arbitrary 0 line be- X1+ e ) (15
I

tween two arbitrary end points. While, and ., , can be
arbitrarily chosen, they will usually be defined by the inter-where 7,=T(x—3/2)/x, A;=A+1=T,/T,, the i sub-
section of thex line with thea—1 anda+1 lines, wherew  script indicates the point of maximuB, and o quantifies

is the index ranging through the number of regions compristhe level of depletion in the loss cone. Various forms of loss
ing the filled velocity space. lE—u space, the expressions cone distributions have been used for the past few decades.

for the end points and lower line are The bi-Maxwellian loss cone description of this form was
I .—1 originally used for analyzing plasma wave generation by
p=—t e B = uB,+11, (12  geomagnetically trapped plasifta.
Ba—Ba-1 A bi-Maxwellian loss cone distribution using a subtrac-
and forv,—v, they are tive Maxwellian instead of av, multiplier was used for a
2 similar applicatiort® This subtractive loss cone distribution,
VO( a
2 = Ba_Bafl (Hafl_na)_H51 E—MBO—HO
m \ 372 NoA; exp — T
Bs (E-1I :(_> 312
i =__ a 2 T
Sir? 6, B, ( E—HS)’ (13 I
where the subscrig denotes the current spatial point values. X168 ex;{ - '“BA1> + 1-9 ex;{ - '“BAl)
Note thata=1 will be atu=0 (v, =0) anda= @z Will Ty 1-B8 T
extend tou—o (v, —x). uBA
Integration over this shaded aréat spatial poins) rep- —exp — BT ] (16
II

resents an arbitrary integral of the form

pasa] [ was also used for field-aligned mapping of precipitating
Ij(Ba,Ha)=f f Fj(E,,u,)dE}d,u,, (14 particles'! This distribution defines a partially filled loss
Ka Emin.a cone, wheres and B8 range from 0 to 1 and indicate the size

whereF; is the appropriate kernel from the definition@),  and filling ratio of the loss cone at;=0. These two func-
with B=B andI1=1II. Note thatB,, II,, do not need to tions are complimentary, and a limit gf— 1 in (16) reduces

be specifically defined to perform this integral, but will even-to the o=1 distribution of(15).

tually be defined by somg,=0 line bordering an integration Because the original use of these functions was for dis-
region. Note that these integration boundaries could be depersion relation calculations, a delta function at the resonant
fined by any point in the spatial range. The solution over thisyy was immediately applied, and thus the loss cone was a
arbitrary region ofE—u space is what is needed for a gen- fixed size inv, . For this application, however, there is no
eralization of the previous models. From this, a summatiordlelta function specifying, and so the size of the loss cone
of these integrals can be constructed to obtain the needddust vary withy, . In fact, the loss cone size depends on the
moments of the distribution function. These moments carfield-aligned distribution of the total potential energy. In this
then be used in Maxwell's equations to couple the plasm&ase, then, a more rigorous approach to a loss cone definition

parameters to the magnetic and electric fields. is to define the loss cone as the region of integratioB at
=B and define a distribution function to be subtracted
1. IMPLEMENTATION from the trapped population in this “loss cone region” of

velocity space.

Itis now necessary to define the distribution function at  geyeral other distributions are also commonly used. One
the reference altitude. Many functions have been used in thg the isotropic Lorentzian distribution function,

previous studies, particularly the Maxwellian and kappa

(Lorentzian distribution functions. Delta functions in, and _(m 2 ny  T(k+1) E—1Il,| <"V
v, have also been used, as well as more complex distribu- |\ 27 72 3 (k—1/2) KT :
tions like bi-Maxwellians. The choice of this function prima- (17
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which has been used for describing the solar wind accelera-
tion regiorf? as well as near-Earth plasma temperature
profiles® The bi-Maxwellian distribution is another function
that is often used in collisionless plasma modeling, having
the form

(m

“l2n
This function is primarily used for modeling magnetic field-
aligned potential energy distributions caused by mirroring
anisotropic plasma¥;!® and also for rotating planetary

magnetospheres:>3A further simplification that is also used
extensively is the isotropic Maxwellian distribution function,
m

B 32 n, E-1II, 1
=\3-] TR 7 (19

and was used, for instance, in an ion-exosphere mogi#l
and in several recent polar wind outflow studf&g’

In principle, each of these distribution functions can be
used in the general model to obtain an analytical form of the
velocity moments along a magnetic field line.

8/2 noAl F< _ E_HOJFMBoA) (18)

ex
T? T,

IV. APPLICATIONS OF THE MODEL

While there are many applications for mapping a colli-
sionless plasma along a magnetic field in the presence of an
arbitrarily complex field-aligned potential distribution, two
applications will be discussed here: obtaining a relation be-
tween the field-aligned current and potential drop; and quan-
tifying the plasma density and temperature changes along the
field line.

A. Current calculations

Finding the relation between the current density and the
field-aligned potential has long been a topic of critical im-
portance. The self-consistent formation of a field-aligned po-
tential drop due to field-aligned currents has been considered
since the early 197053*~3"and there are several good dis-
cussions of this topic availabf&3° From the present model,
the final result of the particle flux calculation along the field

M. W. Liemohn and G. V. Khazanov

noe [2T,B M,—TI1
tem_ 0 (2117 0 e
e =2 NmB, M exF‘( T, )

st 1- 5)

1-8 {X’{_Ml(Bcﬁ‘ABo))
1420 A R

B

a

(1 6)
MZ(Ba+ABO)>:| 1_ﬂ
—exd - -

Ty Bo (A1
1+B_a<?_l)
F{ Ml[Ba+Bo(A1/ﬁ_1)])
Xiexp — TH

_eXF{_Mz(Ba"‘Bo[Al/B_l])” @

TH
27 B &
d’gen 5 il Tz(K—l[(g) (e=1)
—(53)‘<“‘1], (22)

a

gt B AT,
gen 2 mmB BO TH
1+ —A

a

4 /'Ll(Ba+ABO))
exp —-———m

X
TH

B xp( H2(B, +ABo)”’ 23

2T II,—-11,

3 o o
x[e*MlBa/T—e*MZBa/T], (24)

line will yield a general relation for the current density. The where £&2=T"(k+1)/T'(x—1/2) and{f,=1+(uB,+1I,
distributions presented in Sec. Il can be applied3b) us- —Ig)/ k.

ing the general integration region limits of 14. As discussed To obtain the appropriate line segments to integrate
above, the loss cone is best handled by defining the loss corhove, the potential energy structure must be known on a
region of velocity space and subtracting an integration ovegpatial grid from the reference point to the point of interest.

that area, and so=0 will be used here. For comparison If constraints(10) and (11) are met, then the summation of

with the formulation of Ref. 11, thougt{16) has not been
reduced. The resulting general flux integrals are

[ 0
¢b| L_ 27'” B §K Al
gen Ba Kl/Z(K_l) BO
1+
N p1(B,+BoA)— I+ Ha) B

KT
(Kl)}

(20

X

B ( 14 2(Byt+BoA)—Ilg+11,

KT

regions yields the previous relation for the current as a func-
tion of the field-aligned potential difference between the lo-
cal point and the reference pofhhe potential energy dis-
tribution can be more complicated, though, and in this case a
calculation along the field line is needed to obtain the
=0 lines defining the region of integration for the flux.

B. Density, temperature, and heat flux

It is often important to determine the local density, tem-
perature, and heat flux of a plasma species, and these can
also be obtained by using the functions in Sec. Il in the
moments in(5) with the limits of (14). This will yield gen-
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eral relations for the density, parallel pressure, perpendicular {10
pressure, and heat flux that can be piecewise summed over Z12= i BTy
the appropriater,=0 lines to obtain the total density or tem- 0
perature component of the plasma at any given point along ad
the field line. Here, the expressions are presented only for
two of the most useful distribution functions: the Lorentzian . o 30
and bi-Maxwellian. Note that both of these will reduce to the 21,0~ wi BHIT—TI,)\" (30
isotropic Maxwellian solution. o 1 B v—
The general relations far, P, P, , ande for (17) are “
B\« and the twoH functions are the integrals
1_ -
n ( ) H1(0,2;)
L _ 0 .1 @ * el u
Ngen= 75 &« ﬁ_gg—lz Hi(z7 ,25)+ ﬁ_ﬁ—lz H1(U1,U2)=J ZtK—S/Z(l_t)l/Zdt,
up
1(0,22) u
— Tz | (25 Hz(U11U2)=f ¥ 1-t)¥Adt, (31
2 uy
1- B\" which can be readily written in series fortf.
noq- H,(0,z;) The general relations far, P, P, , ande for (18) are
Pl ger= = K&r Wz— Ho(z7 , Zz)"’Wz_
. n A II,—1I
bi—m_ Mo 1 0 ls
Ten T2 B, ex“( T )
H2(02,) 1+A 5
— 3z | (26) s
2
Ml(Bs+ABo))
X3 erfa(x ex;{ -
5 - o(Vxq) T
T B, "B, (B.+ABy)
0 @ @
Pi ,gen I:’\Il_gen Kfi TIZ_[Hl(Z’{ 12;) —erfC(\/X_z)eX[{—MZST—O)
I
m1B H1(0,29) Bs+AB, IT,— 11,
+Hy(z7 ,25) ]+ — —« + @
2(27 ,73)] kr 7 Gi(y)ex B.—B, T, , (32
1 Aq
_H2B %22_) ’ 27) PP gen =Ngen "' T+ 5 NoTy B, Gs(y)
KT {3 1+A —
Bs
(L)t 27 B & o] To— s BstABy IT,— I a3
i ger™ gent TmB, K% x—1) ex T, B.—B. T, |’ (33
X4 paBa(Z9) T Y+ pupB(¢5) T oiw PRo ngTy  (Mp—TIg A
Pl gen= + ex 5
' Bo 2 I Bo
2kT o —(x—2) o —(x-2) 1+A = 1+A —
+ 5 (D) (=2 —(£3) 1t (29) Bs Bs
Ml(B +ABy)
where£L=¢%T(3/2), the new? terms are T erfel \x)
B ><exp( _ Ml(Bs+ABo)) _ H2(BstABy)
B -1+ B. (ITp—11,) T, T
fo=1-o+ ,
B, KT B+ AB
X erfo( \/x—z)ex;< — MZ(+O))
I
B+I1-11
£1,2:1+ %, (29) +Ha_HS (y EX[< BS+ABO Ha_Hs)]
Ty 2 Bo—Bs T ’

the z limits are
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B, 2 bl wherex andy are
1+ B.1BoA PDgen

€ gen —(H —II+T,

? 22 (Ho*Ha)/TH% (o PadBBI LT, BtABy
4 a’ =0 12 Ty Y B,—Bs
#1(BytBoA)
X, exg — ——————
TII
112(B o+ BoA) and the threés functions are defined as
— o exp( ‘fl_ ” (35)
I
( 2
y=0: Gi=—=[Vx;—x.]
Jr
1
y>0: Gi=——=[erf(Jyx))—erf(Vyxy)]
2(y)={ Yy ! , 37)
y<O: — [e” YD (V—yx)—e V2D (V—yXy)]
\ y—»: G1=0
,
_2y [Bs+ABy
=0:
B+
>0:
Gay)={ T G [(B +AB)[e”“yX) ey xe)] , (38)
B;+AB
y<0: Gp=-2\— - B +ABO) [e7Y4D(V-yx) —e V2D (V=yX,)]
| Yy—»: Gp=0
2y (Bg+AB,
—-0: _ 3/2_ 312
R N Ba+ABO) e
B.+AB f( f(/
y>0: G3= BS+ABO) er(\/z/xl) er(\/zxz)—\/%eyxl+\/z;eyxz
Ga(y) = « e Y y (39)
BS+ABO)
y<O0: Ga.— B.TABy e Y D(V—=yx1) \/X— e V% D(V— sz) \/X—
Y — —— Xy 2
ar V-y V=
Yy—0! G3:0

These equations can be used for many applications, such To obtain the formulation of Ref. 27, integration regions
as polar wind outflows, magnetospheric precipitation, orconsistent with their model must be taken. This includes as-

trapped plasma anisotropies. suming that the generalized constraiit§) and(11) are met
and using a Maxwellian distribution function. For outflowing
V. COMPARISON WITH PREVIOUS MODELS particles, for example, the source region is above the iono-

By applying these general formulas for the regions ofspheric boundary, =0 line. Accelerated populations will
integration satisfying the constraints of previous ion-always escape and the integration is always defined by this
exospheric models, the original equations from those studiggoundary line. Plasma populations decelerated by a potential
can be obtained, showing the generality of this new model.barrier can be divided into two groups: ballistic and escap-
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ing. Calculation of the ballistic particle parameters is then anThe equations for this escaping population of a decelerated

integration above the local pointig =0 line and below the
s,.v;=0 line while remaining above thg, line, and the es-
caping particle integrations are above the and s, lines.

population can then be written out by applyiig4) and
(32)—(35) with A=0 for each of these lines and summing the
result, obtaining

HO_H
n=ng ex T

L2 BB B IL.—II
= VB e B T

f\/Hw—H \/BO—B B II,—1II . [ B
er T - By ex B, B T er BO—BX

B. IL-II|
®AB-B, T

B, II.—1II
B-B. T

5 o B 40
—exp g X 5 8. %[ (40)

- 2T B (To—IL.|[ Bo—B. B, [My—IL. "
$=No\ Tme, O T T 7B, MB,-B, T ' (41)
- ,—1I1 B II,-II\ B BB Bo |, \ﬁ B

i=nT+neT exp — NE B T | B, B o B._B X e e

B II.—II\ 1 B B. B—-B. b B. \/_ B, II.—II
®Pe.—B T | /mB.["ME-B. /| VB, B-B. ) V) ®ABTE. T
B—-B. B, II.—II 1. —11I 49
“I V7B, B=e. T | VT /|| (42)
o _pnT o— T\ (TIo—TI B Il,—II\ B [ B f
L=PIT ol &R T T ®AB,—B T /By VBo-B 1 VBy-B
N I, —11I B II.—II\ B B. B, II.—1II b B, II.—1II
T ®MAB.—B T /B. VB-B, |"¥B-8B. T NB=B, T
B b B 43
P g-g, * BB, /||’ (43
(278 (To-IL( TL—T0 [B. M-Il BB, IL-II B, Ilp—IL,
€1="o mB, ST T T |Bg B, T | |®B,—B, T ||’
(44)
|
where for the appropriate regions and converting the two sets of
B-B I I I.—TI equations to a common set of variables. It can be shown that
x=—2 > 0,0 (45  the results are the same. It can also be shown that application

Bo—B. T T
These are the same equationgB8—(19) of Ref. 27, where

of (22) and (25)—(28) for these same integration regions
yield the results of Ref. 18, although the heat flux of that

their shorthand notations can be written in terms of our vari-study, their Equatior(29), does not exactly reduce to the

ables as
_BO—B _B—Bm _H—HO
p_ BO ’ o= Bgc ’ q_ T y
II..—11
V2= X2=x (46)

corresponding equations of Ref. 27, and this has been cor-
rected by those authof$.

The same approach can be used to compare this formu-
lation with other models. Because only the local spatial point
in defining the integration region was taken into account in
the results of Ref. 15, it is only necessary to ap{@g) once
above the local point's; =0 line, with thex end points at

The other classes of particles discussed by them can also Bero and infinity. As mentioned in that study, this implies

compared with this model by applyin@4) and (32)—(35)

some scattering mechanism is filling in the low-energy holes
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in the accelerated population distributions. Although the T, B Se W 1-§
h=eMm\ 5~
2mmB,,

scattering is inconsistent with the use of Vlasov's equation, BT m
the new model is still capable of reproducing their results. A

similar assumption was probably made in Ref. 13, because

the formulation is the same except for a more generalized X
potential energy. For this comparisol,= =e¢, and the o )
solution gives unity for everything inside the curly bracketsWhich is his result withr =0, b=A,B,/(B;—B), andw

of (32), making the moments proportional to an anisotropy = (IIm—I1i)/T; . Although the previous results can be ob-
factor and an exponential term. Equating the accelerated arf@ned from this new model, a more general approach to loss
decelerated population densities yields their explicit formulacone distribution calculations was discussed ati@ee. II).

for the field-aligned potential,

e W IBZe—W/ﬁ

170 gib ||’ “9

VI. SUMMARY
Bs While the existing ion-exospheric models of calculating
TiTie 1+ B_O_l Ate moments of a collisionless plasma by applying Liouville’s
=TT In B . (47)  theorem to solve the Vlasov equation are valid and useful,
i e 14 (B_S_ 1) / Aj their validity is limited by at the very least the constraints on
0

the distribution of the potential with respect to the magnetic
field strength given iri10) and(11). These constraints can be
violated by common geophysical situations by the inclusion
plication of the above-mentioned integration limits ®4)  f one or more other potential energies or plasma species.
will give this T, formula. In general, though, a more com- To address this problem, we have developed a generali-
plicated formula will arise that depends on a summation Ofation to the previous models for the solution of the self-
mtegrals._ consistent potential energy with an arbitrary field-aligned
Two integrals, one abovE=0 and one above the local gistribution, including any number of nonmonotonicities.
=0 line when it crosses the first line, are needed to reprothe formulas for a wide range of distribution functions at the
duce the density formula of Ref. 14. Again, the introduction eference point, from a loss cone bi-Lorentzian down to an
of the Heaviside step function implies that some process igotropic Maxwellian distribution, are derived and presented.
scattering the accelerated particles and partially filling thet can handle an arbitrary definition of the reference point,
low-energy hole. This step function in their results causes th@yen multiple reference points for different plasma species,
multiplying term to appear for the anisotropic electrons dugang can handle widely varying plasma populations and dis-
to theE=0 line integration, while the ions will have a for- tripution functions for those populations simultaneously.
mulation like that of Ref. 15. _ Also, it can be used for any collisionless plasma situation,
The results in Sec. IV A can also be checked againsfyhere a field-aligned solution is needed. Application of this
previous models. To obtain the parallel current formula ingyospheric model to determining the relationship between
Ref. 6, the region of integration fa23) must be above the fig|d-aligned current and potential difference has been dis-
=0 lines for the magnetospheric and ionospheric boundgyssed, as well as the calculation of other moments of the
aries, with the populations being only ionosphenig &nd  gistribution function. It has discussed that the solution can
plasma sheetn) electrons. Setting the integration regions to depend on all of the spatial points above and below a given
the end point; =0 lines (count only those particles not be- gpatial point, and that the solution must be iterated to con-
ing reflected and multiplying by the charge, this summation yergence. It was also demonstrated that this new general for-

will yield mulation reduces to the results of the previous models under
the same constraints.

Another result of these studies is a relation Tgr, and ap-

n; Ti I, —1II;
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