
Thwarting Control Plane Attacks
with Displaced and Dilated Address Spaces

Lauren Biernacki
University of Michigan

lbiernac@umich.edu

Mark Gallagher
University of Michigan

markgall@umich.edu

Valeria Bertacco
University of Michigan

vale@umich.edu

Todd Austin
University of Michigan

austin@umich.edu

Abstract—To maintain the control-flow integrity of today’s
machines, code pointers must be protected. Exploits forge and
manipulate code pointers to execute arbitrary, malicious code on
a host machine. A corrupted code pointer can effectively redirect
program execution to attacker-injected code or existing code
gadgets, giving attackers the necessary foothold to circumvent
system protections. To combat this class of exploits, we employ a
Displaced and Dilated Address Space (DDAS), which uses a novel
address space inflation mechanism to obfuscate code pointers,
code locations, and the relative distance between code objects.
By leveraging runtime re-randomization and custom hardware,
we are able to achieve a high-entropy control-flow defense with
performance overheads well below 5% and similarly low power
and silicon area overheads. With DDAS in force, attackers come
up against 63 bits of entropy when forging absolute addresses
and 18 to 55 bits of entropy for relative addresses, depending on
the distance to the desired code gadget. Moreover, an incorrectly
forged code address will result in a security exception with a
probability greater than 99.996%. Using hardware-based address
obfuscation, we provide significantly higher entropy at lower
performance overheads than previous software techniques, and
our re-randomization mechanism offers additional protections
against possible pointer disclosures.

I. INTRODUCTION

Many prevalent security exploits are underpinned by precise
knowledge of the memory layout of the victim machine.
Control flow exploits are some of the most dangerous, and
most common, attacks of this nature [1]. In these exploits, at-
tackers leverage knowledge of the location and representation
of code pointers to abuse a memory corruption vulnerability
and overwrite control data with malicious pointers, enabling
the execution of arbitrary, malignant code on the victim
machine [2], [3], [4]. Attackers without knowledge of the
memory configuration employ techniques to readily discover
this information at runtime [5], [6], [7]. This class of exploits
occurs on the control plane, as attackers directly manipulate
control data and require knowledge of the code segment and
the representation of code pointers to be successful.

To deprive attackers of the information needed to synthesize
an exploit, protections have employed address obfuscation.
These defenses randomize the memory layout of the vic-
tim machine, effectively prohibiting attackers from accessing
memory and forging pointer values at whim. There exists a sig-
nificant body of work on address obfuscation defenses, yet the
techniques used to randomize memory vary broadly. Address
obfuscation techniques include address space displacement [8],
[9], [10], [11], permutation of code at the function [12],
[13], [14], [15], [16], basic block [17], [18], [19], [20], or

instruction level [21], [22], insertion of padding between code
objects [23], duplication of the code segment [24], [7], and
insertion of traps within the code space [25].

While obfuscation-based protections can be both effective
and efficient, they offer probabilistic security. Thus, achieving
both high entropy and fine-grained, frequent randomization is
critical for resilience [26]. Memory disclosures, or the leakage
of memory addresses, can be readily used to derandomize the
address space. For example, with techniques that only employ
address space displacement, such as Address Space Layout
Randomization (ASLR) [8], the entire code layout can be
inferred from a single pointer disclosure. Even permutation-
based defenses that obfuscate the relative distance between
code objects can be derandomized by multiple disclosures.
Fortunately, the use of runtime re-randomization to nullify
leaked pointers [9], [10], [11], [13], [17], [18] and in-
memory traps to detect probing attempts and trigger security
exceptions [25] have been instrumental at fortifying address
obfuscation techniques. However, systems with these added
protections suffer from far greater performance overheads
(14%-225% for function permutation [13], [18]), reducing the
appeal of randomization-based defenses.

The deficiencies of low entropy, memory disclosures, and
high overheads have hindered the adoption of software-based
address obfuscation techniques. Secure hardware integrated
into the processor pipeline can bridge this gap. Yet, existing
hardware-based defenses are far behind their software coun-
terparts, as they do not obfuscate relative distances [11]. In
this work, we leverage custom RISC-V hardware to imple-
ment a defense with all of these necessities: high entropy,
fine granularity, re-randomization, in-memory traps, and low
overheads. To protect code pointers from external influence,
we completely decouple pointers stored in the data segment
from the true location of their targets by expressing all code
pointers in the superimposed Displaced and Dilated Address
Space (DDAS). Within DDAS, we introduce address space
displacement, a low cost, one-time shift of the base of the
code segment. To obfuscate the relative distance between code
objects, we introduce address space dilation, the insertion of
undefined memory regions at an instruction-level granularity.

The design of DDAS permits high entropy, fine-grained
protections. Figure 1 illustrates the obfuscation of a function
in DDAS. Since displacement occurs in the superimposed
address space rather than in virtual memory, the code segment
can be relocated anywhere. Thus, we are able to shift the

57978-1-7281-7405-1/20/$31.00 c©2020 IEEE

Fig. 1: DDAS Overview. At load time, a 56 B function is displaced by 8 kB and dilated to 14.3 kB within the Displaced and Dilated
Address Space (DDAS). Invalid memory regions are inserted between instructions and trigger security exceptions when accessed. Every
50 ms, the function layout re-randomizes, changing in both size and location. In DDAS, this function can be maximally inflated to 14 MB,
and the entire address space can be dilated by over 250,000 times. DDAS addresses are derandomized before entering the virtual memory
system, thereby eliminating performance impacts on the memory system.

address space by a large, 64-bit key. To implement dilation,
we leverage the vast unused portions of the address space. In
RISC-V, the upper sixteen and lower two bits of code pointers
are unused, implying that we can dilate memory by 218 times
with no loss of usable space. Similar spans of unused addresses
are available in the ARM and x86-64 instruction sets.

Lastly, we defend against memory disclosures by employing
both in-memory traps and runtime re-randomization. Since
we dilate memory programmatically, we can detect accesses
to the undefined memory regions that interleave instructions,
effectively creating traps that detect attackers’ attempts to leak
code pointers. When these regions are accessed, the system
triggers an immediate security exception. Our analysis shows
that, on average, 99.996% of DDAS consists of untouchable
holes. Therefore, attackers have less than a 0.01% likelihood
of randomly guessing a valid code pointer (i.e., a pointer
to addressable memory) without detection. To protect against
potential memory disclosures, we re-randomize the addresses
of code objects at runtime, effectively hardening this technique
against advanced probing and side-channel attacks that have
the potential to derive obfuscated memory locations.

By implementing DDAS in hardware, our defense is trans-
parent to programmers while providing high entropy protec-
tions with low overheads. DDAS is integrated in the processor
pipeline via custom functional units for pointer translations
and secure storage for keys that parameterize the memory lay-
out. Additional modifications, including a second lightweight
core, are used to implement re-randomization. We maintain the
program counter and indexing of microarchitectural structures
as hardware-derandomized, virtual address space (VAS) point-
ers, allowing us to completely eliminate potential performance
impacts within the memory system. With hardware support,
our defense has negligible performance overheads, at ∼1%
with re-randomization every 50 ms, and it makes control-flow
hijacking attacks impracticable to execute.

A. Contributions of This Work

With Displaced and Dilated Address Spaces, we boost
uncertainty in code addresses to a point where it is incredibly
difficult to i) forge code pointers and ii) manipulate code point-
ers using relative distance information, effectively thwarting all

known forms of control-flow attacks in the control plane. In
this work, we make the following contributions:

• We introduce displacement to obfuscate absolute code
locations by shifting the address space by a 64-bit key.
We introduce dilation to create a super-inflated code plane
and detect code pointer corruption, dilating consecutive
instructions by a 100 kB untouchable hole, on average.

• We present a Displaced and Dilated Address Space
(DDAS) implementation on RISC-V that can be max-
imally inflated to over 250,000 times the size of the
existing virtual address space. We also propose DDAS-R
(with re-randomization), where the memory layout is
reconfigured under running programs to thwart memory
disclosure vulnerabilities.

• We show that our proposed DDAS-R implementation
(Table-Based, 2k-entries) introduces 55 bits of entropy
for relative locations and 64 bits of entropy for absolute
locations, and induces minimal overheads, with a 1.07%
average slowdown at 50 ms re-randomization for the
SPEC CPU2006 benchmarks.

This paper is organized as follows. Section II presents our
address dilation technique. Section III details the hardware
implementation, while Section IV provides support for runtime
re-randomization. Section V presents our experimental setup,
with Sections VI and VII analyzing the security and overheads
(i.e., performance, power, and silicon area) of our defense.
This analysis is accompanied by a comparison to related work
in Section VIII. Section IX concludes this paper.

II. DDAS: DISPLACED AND DILATED ADDRESS SPACE

To defend against code reuse attacks in the control plane,
we express all code pointers in a superimposed address space,
termed the Displaced and Dilated Address Space (DDAS),
layered atop the existing virtual address space (VAS). DDAS
is addressable by 264 distinct pointers, whereas the underlying
VAS is only addressable by 246 distinct pointers in RISC-V.
We leverage this fact to dilate the address space by over
250,000 times through the insertion of undefined memory
locations in the DDAS space. These regions do not exist
as accessible memory in the virtual address space, therefore
any access to these holes results in an immediate security

58 2020 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)

Fig. 2: Basic DDAS Design. The VAS is divided into segments of
size Svas. Each segment is mapped into DDAS and dilated by an
i byte hole to create a DDAS segment of size Sddas. The address
space is shifted by d bytes.

exception. Thus, to disclose or manipulate a code pointer, one
must guess the value of the code pointer through high-entropy
defenses without accidentally touching an undefined memory
location. This approach makes it incredibly unlikely for an
attacker to successfully disclose or manipulate a code pointer.
Combined with runtime re-randomization (Section IV), this
challenge is coupled with a countdown clock of typically
50 ms to exfiltrate a pointer and synthesize an attack.

In this section, we first overview our threat model for single-
gadget code reuse attacks on the control plane. Next, we
present a simple, function-based DDAS implementation that
dilates the address space uniformly. Then we examine a table-
based DDAS implementation that sacrifices simplicity to gain
increased spatial diversity. We then present constraints on these
implementations that allow for more efficient translations.

A. Threat Model

The Displaced and Dilated Address Space (DDAS) is de-
signed to protect against code reuse attacks on the control
plane. In this effort, we focus only on control-plane attacks–
although adapting DDAS to data pointers has the promise to
also thwart data-plane attacks like DOP [27]. Code injection
attacks are out of scope, as we assume existing protections
like W⊕X [28] are in place. In our attack model, a powerful
adversary is attempting to execute code gadgets, where the
execution of a single gadget is indicative of a successful attack.
The attacker can access a memory disclosure vulnerability to
leak arbitrary information from the system and is able to ana-
lyze the program binary to derive the code layout. In addition,
they have access to a memory corruption vulnerability that
can be used to bootstrap gadget chains. While the attacker is
knowledgeable about DDAS and the current re-randomization
rate of the system, the keyed configuration of DDAS is secret
at the start of the attack. Lastly, the system’s random number
source is assumed to produce true, non-repeating random
numbers that cannot be predicted by the attacker.

B. Basic DDAS Translation

The DDAS memory configuration is determined program-
matically and all code pointers in memory are expressed as
DDAS pointers. Consider a simplified DDAS memory layout
that lends itself to efficient dilation and compression, as shown
in Figure 2. Here, the address space is shifted by a single
displacement and divided into constant sized segments that

Fig. 3: Table-Based DDAS Design. Varying sized holes (i0-in) that
sum to i bytes are inserted between the valid addresses in each VAS
segment. Each segment is divided into smaller ranges of size r to
efficiently track the locations of holes in the Range-Map table.

are dilated uniformly by an undefined memory region (i.e., a
hole), shown in red. The layout of DDAS is parameterized by
three keys: the displacement size, d, the segment size, Svas,
and the dilation amount per segment, i.

In DDAS, all code pointers are represented as 64-bit DDAS
values. Thus, whenever a code pointer is created, it must reflect
the current DDAS configuration. Whenever a code pointer is
used, it must be translated from a DDAS address (Addas) to
a VAS address (Avas) to maintain correctness since memory
remains unmodified (i.e., indexed by VAS). Additionally, a
check must be performed to assert that the pointer does not
access an undefined memory region. These operations are
performed with the following functions:
VAS→DDAS Translation:

Addas = Avas + d+ (

⌊
Avas

Svas

⌋
∗ i) (1)

DDAS→VAS Translation:

Avas = Addas − d− (

⌊
Addas − d

Sddas

⌋
∗ i) (2)

Valid Memory Location Assertion:

(Addas − d) mod Sddas < Svas (3)

Using these equations, we can translate between the VAS
and DDAS segments and verify code pointers. If the above
assertion ever fails, this indicates that a code pointer has been
manipulated and a security exception is thrown.

C. Table-Based DDAS Translation

Although basic DDAS is effective at inflating the address
space, there is little spatial diversity as i is a constant, single
hole. To increase the entropy of our defense, we present a
table-based memory configuration, shown in Figure 3, where
each segment is recursively divided into a range of size r.
The i byte inflation is now distributed throughout these ranges
as multiple, distinct holes of varying sizes. This increases
diversity by varying both the size and location of holes
across the code space. The configuration of the holes within a
segment is recorded by the Range-Map table. To translate from
DDAS→VAS, the address’s DDAS segment offset is used to
index the table, T , returning the size of the holes within the
segment that precede the queried address. This lookup also
returns the size of the hole in the address’s range, denoted

2020 IEEE International Symposium on Hardware Oriented Security and Trust (HOST) 59

Tr, which is used to validate the DDAS code pointer. In our
implementation, we index T and Tr with the address’s range
to minimize the total number of table entries required. To
translate from VAS→DDAS, the address’s VAS segment offset
is used to index a separate, analogous table, T ′.

Under this implementation, the layout of DDAS is parame-
terized by the Range-Map table, as well as the three keys used
previously, d, i, and Svas, and a new key, r. The operations
for translating code pointers between DDAS addresses (Addas)
and VAS addresses (Avas) and asserting that code pointers are
valid are given by the following functions:
VAS→DDAS Translation:

Addas = Avas + d+(

⌊
Avas

Svas

⌋
∗ i)+T ′[Avas mod Svas] (4)

DDAS→VAS Translation:

Avas = Addas − d− (

⌊
Addas − d

Sddas

⌋
∗ i)− T [Rddas] (5)

Where the DDAS range number (Rddas) is calculated via:

Rddas = �((Addas − d) mod Sddas)/r� (6)

Valid Memory Location Assertion:

(Addas − d) mod Sddas mod r ≥ Tr[Rddas] (7)

With this implementation, we can support dilation between
every instruction in the code segment. Each table entry must
correspond to a single 4 B instruction in the virtual address
space to dilate at an instruction-level granularity. Since the
table is implemented in hardware and its size is fixed, this
constraint implies that Svas can be no more than four times the
number of table entries. We analyze the performance-security
tradeoffs of different table sizes in Section VI and Section VII.

D. Architecting an Efficient DDAS Implementation

The keys that parameterize DDAS can be constrained to
match the desired performance-security trade-offs of the appli-
cation. In this work, we optimize the DDAS→VAS translation
and valid memory location assertion as these functions are
computed on every indirect jump. By constraining Sddas to
be a power of two, the division operations in Equations 2
and 5 are replaced by a right shift of log2(Sddas) bits, and
the modulo operators in Equations 3, 6, and 7 are replaced by
a bitmask that selects the upper 64− log2(Sddas) bits. These
values are stored locally for efficient computation.

Constraining Sddas removes lengthy operations on the crit-
ical path. Furthermore, by constraining other key parameters,
we can further simplify outstanding multiply, divide, and
modulo operations. For example, r must be a power of two
since it is a divisor of Sddas. This constraint further simplifies
Equations 6 and 7. We can similarly constrain the hole size,
i, to be a power of two to eliminate the multiplication in
Equations 1, 2, 4, and 5. We employ this optimization when a
multiply instruction is on the critical path, which occurs only
for the basic DDAS configuration.

III. HARDWARE IMPLEMENTATION

We implement DDAS on a modified RISC-V architec-
ture [29]. With hardware support, we achieve a strong layer
of isolation between the software and the secret keys that
parameterize DDAS. The parameters of the keyed configu-
ration and Range-Map table are stored in dedicated hardware
registers guaranteed to remain secret. Additionally, hardware
allots reduced performance overheads on running programs.
As DDAS only impacts indirect jumps during program ex-
ecution, the pipeline only needs to be instrumented with a
small, dedicated functional unit to translate code pointers
before use. Although indirect jumps make up a small per-
cent of instructions (about 2.4% in our analyzed workloads),
instrumenting binaries to perform pointer translations before
indirect control transfers would be costly and could expose
the DDAS memory configuration to user programs, further
motivating our hardware-based implementation. In addition to
presenting load-time protections below, we present extensions
that support runtime re-randomization in Section IV.

A. Extending the RISC-V Architecture to Support DDAS

The use of unaligned, 64-bit DDAS code pointers introduces
a layer of indirection that requires pipeline modifications to en-
sure correct control flow. To reduce the impact on direct jumps
and instruction fetch, the program counter (PC) is maintained
as a VAS value. Thus, no modifications to these operations
are required. Further details on how the modified code pointer
representation effects program execution are below.

1) Direct Jumps (JAL/BR): Direct jumps add a constant
offset to the program counter, encoded in an immediate. Since
we maintain the program counter in VAS, no modifications are
made for direct jumps. To our knowledge, this does not have
security implications as direct jump targets are encoded in the
instruction and cannot be modified by malicious inputs.

2) Indirect Jumps (JALR): Indirect jumps handle function
calls and returns, as well as other arbitrary control flow,
by loading a code pointer from a register into the program
counter. With DDAS, all code pointers stored in registers are
DDAS values. Therefore, before loading the register value
into the program counter, the pointer must be asserted as
valid and translated to its VAS equivalent. This translation
occurs implicitly in the microarchitecture through a dedicated
functional unit, detailed in Section III-B. Additionally, when
the link register is written, the microarchitecture translates the
(pc+ 4) link address from a VAS to a DDAS address.

3) Code Pointer Provenance (LUI/AUIPC): The targets of
function calls are formed at runtime via a lui (or auipc)
and addi instruction sequence. To generate a DDAS pointer
rather than a VAS pointer, the compiler relocates code pointers
to the global segment, which are then translated to DDAS
values by the program loader. This implementation allows
us to configure DDAS pointers without injecting backdoor
instructions that perform VAS→DDAS translations at runtime.

4) Code Pointer Arithmetic (ADD/ADDI/etc.): DDAS is
designed to thwart attacks that use relative distance infor-
mation and arithmetic to forge code pointers. While DDAS

60 2020 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)

Fig. 4: Functional Unit for Basic DDAS. This unit computes
Equations 2 and 3 in parallel for a given code pointer, Addas.

Fig. 5: Functional Unit for Table-Based DDAS. This hardware
unit computes Equations 5 and 7. The Range-Map table, indexed by
the range number, returns T for the Avas calculation and Tr for the
valid pointer assertion.

does not prohibit pointer arithmetic, it randomizes the result.
Using a modified code pointer will result in an access to an
unintended valid memory location or, with high probability,
to an invalid hole. Thus, code pointer arithmetic is ill advised
in DDAS. We argue that arithmetic on code pointers is not
normal program behavior, as the C1x Standard [30] does not
allow arithmetic operations on pointers to function types or
incomplete types, like void* (§6.5.6-2 & §6.2.5.1). Although
the GNU extension for C does permit operations on code
pointers, DDAS supports this at the program’s peril.

B. Integrating DDAS Support into the Processor Pipeline

To maintain correctness, all indirect control flow transfers
are preceded by a DDAS→VAS translation and valid pointer
assertion. We instrument the execute stage of the pipeline
with a dedicated functional unit to perform this computation
for each indirect jump target (Addas). The latency of this
translation is masked by the writeback stage, which is idle for
indirect jump instructions. Figures 4 and 5 show the functional
units for basic DDAS and table-based DDAS, respectively.
The Range-Map table is implemented as a fixed-size memory
structure with 8 B entries. We evaluate the exposed latency of
these functional units with different table sizes in Section V.

1) Key Generation: The DDAS memory configuration is
determined by secret parameters generated at load-time. For
basic DDAS, a true random number generator (TRNG) is
queried to determine the three keys: d, i, and Svas. These
values are stored in dedicated hardware registers. For table-
based DDAS, r and a Range-Map key are generated in
addition to those above. The Range-Map key is used to seed a
pseudorandom number generator (PRNG) to deterministically
populate the Range-Map table. This optimization allows for
efficient context switching, as described below.

2) Context Switching Support: To be a viable defense
in modern systems, the DDAS hardware must support con-
text switching between individual processes that have unique
DDAS configurations (i.e., separate keys). During a context
switch for basic DDAS, its keys are encrypted under a boot-
time hardware key before being written out to memory.
Context switching for the table-based implementation requires
storing both the range size, r, and the Range-Map key that
seeds the PRNG to generate the Range-Map table. When a
process switches back in, the offloaded DDAS parameters
are loaded and decrypted to be used again. For the table-
based configuration, the Range-Map key seeds the PRNG
to then generate the same table layout as before. With this
optimization, the contents of the Range-Map table do not need
to be encrypted and written to memory, saving a considerable
amount of time given our large table sizes.

IV. DDAS-R: RUNTIME RE-RANDOMIZATION

The research community has frequently cited re-
randomization as a protection mechanism for both
derandomization probes and memory disclosures [9],
[10], [11], [13], [17], [18]. Additionally, re-randomization
is effective at deterring multi-stage attacks that require the
discovery and use of numerous code gadgets. DDAS with
runtime re-randomization (DDAS-R) periodically re-keys
the memory configuration and updates all code pointers
accordingly with minimal stalling of running programs. This
creates a hostile address space that inflates and contracts, with
moving undefined memory locations that must be avoided.

When a re-randomization cycle begins, the pipeline is
flushed to resolve in-flight instructions that contain stale
code pointers. Then, custom hardware generates new keys to
parametrize the re-randomized DDAS memory layout. These
keys are loaded into dedicated hardware structures and the
code pointers in registers are updated to reflect the new keys.
At this point, program execution is resumed. All code pointers
in the caches and DRAM are currently stale, i.e., use the old
key set. In parallel with program execution, these values are
updated by the DDAS Remapper– a small, finite state machine
that is responsible for pointer updates. The Remapper uses a
DAS→VAS and subsequent VAS→DDAS functional unit to
translate a pointer from the old to new key set.

A new re-randomization cycle can commence as soon
as the memory scan in the prior period terminates. In our
analysis, most benchmarks take no more than a few millisec-
onds to re-randomize, depending on their memory footprint.
However, operating at high re-randomization rates can incur
increased performance overheads (Section VII). In this work,
we recommend a 50 ms re-randomization period because it
is sufficiently faster than existing exploits without introducing
much overhead. Namely, JIT-ROP exploits have been recorded
to take 2.3 seconds or more [5], whereas Blind-ROP takes a
minute on nginx [6]. Additionally, other interval-based re-
randomization defenses (e.g., Shuffler [13] and Morpheus [11])
operate at 50 ms with this justification.

2020 IEEE International Symposium on Hardware Oriented Security and Trust (HOST) 61

Fig. 6: DDAS-R Hardware. The DDAS→VAS FU and pipeline
registers are extended to accommodate the mixed state of pointers
during re-randomization. The DDAS Remapper uses tagged memory
to identify and update stale code pointers.

A. Hardware Support

Hardware extensions to support re-randomization are shown
in Figure 6. Similar to prior work [11], tagged memory is used
to locate code pointers and identify the stale code pointers that
require updating. The L1 and L2 caches are extended by a 1-bit
tag for every pointer-width word (8 B). In physical DRAM,
these tags are stored in a fixed block determined statically
by the physical address. Tag information is obtained by an
LLVM IR pass and loaded into the system via binary metadata.
Lastly, the pipeline is extended to support the propagation of
tag information throughout the system.

The processor is extended to include the DDAS Remapper,
a small hardware unit responsible for key generation and
code pointer updates. When a periodic re-randomization cycle
begins, the DDAS Remapper generates a new set of DDAS
keys and loads them into the associated structures before
program execution resumes. The remapper then scans tag
information sequentially to identify stale code pointer values,
which are loaded into the remapper and updated using internal
functional units. The new pointers are written back via a
cache-coherent bus between the L1 and L2. The current VAS
address being processed, termed the threshold value, is stored
to indicate the progress of the remapper. All memory values
above this address have been updated with the new key.

Since both updated and stale code pointers exist in memory
during re-randomization, the pipeline must accommodate this
mixed state. The functional unit is expanded to store the new
and old key sets, and, for table-based DDAS, the block size of
each Range-Map entry is doubled from 8 B to 16 B. During
a load, code pointers are compared to the threshold value to
determine if they are using the new or old key set. This result is
reflected in a 1-bit register tag, which is fed into the functional
unit to select the corresponding new or old key set and table
entry, thereby maintaining correctness. Lastly, when a stale
code pointer is stored to a region of memory that has since
been updated, it must be updated with the new key set before
being written back. Our simulations show that this case is rare
and has negligible performance impacts.

B. Support for Context Switching in DDAS-R

When the DDAS Remapper is idle during a context switch
(i.e., all code pointers are updated), support for context
switching is equivalent to DDAS without re-randomization
(Section III-B). However, when a context switch occurs during

a re-randomization cycle where the remapper is active, the
complete DDAS context must be encrypted and stored to
memory. This information includes both the new and old sets
of DDAS keys and the threshold value, which indicates the
progress of memory updates in the current re-randomization
cycle. When a context is switched-in, the threshold value is
loaded into the DDAS Remapper and re-randomization begins
from this virtual address. Since a process may be switched-
out for longer than the specified re-randomization period (e.g.,
50 ms), the remapper initiates another re-randomization cycle
immediately upon completion to ensure that any code pointer’s
lifetime in an old key set is as short as possible.

V. EXPERIMENTAL METHODOLOGY

We implemented DDAS on a RISC-V out-of-order core in
gem5 [31], [32] in system call emulation mode with the param-
eters listed in Table I. We modeled the memory contention for
tagged memory and pointer updates using DRAMSim2 [33].
To determine the latency of the DDAS functional unit, we
modeled the Range-Map table in CACTI 7 [34] at the 28 nm
technology node. To analyze the security and performance
trade-offs of our defense, we examined three distinct DDAS
configurations with load-time and runtime randomization–
1) Basic DDAS where i is restricted to a power of two (1 cycle
of exposed latency), 2) Table-based DDAS with a 2k-entry
table (2 cycles of exposed latency), and 3) Table-based DDAS
with a 32k-entry table (4 cycles of exposed latency).

Core Type 2.5GHz, O3CPU (Out-of-Order)
Superscalar 4-wide
Cache Line Size 64B
L1 Cache Size 32KB with 2-cycle latency
L2 Unified Cache Size 256KB with 20-cycle latency

TABLE I: Experimental Configuration. The specifications of our
baseline RISC-V out-of-order core in gem5 [31].

A. Compiler Support and Benchmarks

We implement our compiler passes in LLVM 5.0.0 con-
figured for the RISC-V RV64IMA architecture [35]. All pro-
grams were compiled with optimization level -O2 and linked
against the RISC-V Musl C library [36]. Function pointers
that are normally formed by arithmetic code sequences during
runtime are relocated to the global segment so they can easily
be randomized by the gem5 loader or by the DDAS Remapper.
We have found that this simple compiler change on average
speeds up programs by ∼1.85%. We also analyzed the size
increase of the binaries and found that they only increase
by 1.8% on average. Since one could migrate code pointers
to the static global section, we lend this optimization to the
baseline in order to reveal the performance overheads incurred
as a result of the DDAS hardware. We evaluate DDAS on
the first 3 billion instructions of the SPEC CPU2006 C-code
benchmarks [37] with the reference input: perlbench, bzip2,
gcc, mcf, milc, gobmk, hmmer, sjeng, libquantum, h264ref,
lbm, and sphinx3.

62 2020 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)

VI. SECURITY ANALYSIS

DDAS prevents code reuse attacks on the control plane
by obfuscating the absolute and relative addresses of code
objects. Unlike prior approaches, which permute code objects
or encrypt pointers, DDAS does more than obfuscate the code
segment. DDAS also catches when a pointer is overwritten by
detecting any access to the undefined regions of memory that
make up a majority of the address space. Notably, in table-
based, 2k-entry DDAS, more than 99.996% of the address
space is undefined memory on average. Of the remaining
0.004%, only a fraction is mapped and in the code segment.
Thus, there is a high likelihood that any attempt to forge a
code pointer will result in an exception from either accessing
an invalid memory region, an unmapped region of memory, or
the data segment. Additionally, frequent re-randomization of
the memory layout during runtime prevents the reuse of leaked
code pointers, effectively thwarting control-plane attacks.

Below we qualitatively reason about how DDAS prevents
sophisticated code reuse attacks, including return-oriented
programming (ROP) [2] and its variants, as well as Spectre
Variant 2. Since DDAS is a probabilistic defense, the subse-
quent sections quantify the entropy of DDAS to demonstrate
its effectiveness at stopping these control-plane exploits.

A. Qualitative Security Analysis for Classic Attacks

ROP: To dispatch ROP gadgets, a memory corruption vul-
nerability is exploited to overwrite a return address with a code
pointer. In DDAS, this pointer is unknown and randomized
every 50 ms on average. Additionally, if DDAS is maximally
inflated, the attacker has less than an 0.01% chance of gen-
erating a valid code pointer, i.e. one to addressable memory.
Variants of ROP that exploit other control flow statements, like
jump-oriented programming [3], also fall under this category.

JIT-ROP: JIT-ROP [5] uses a leaked code pointer to read
code pages and construct gadgets at runtime. Using a leaked
DDAS pointer as the address of a load will result in an
unintended memory access because the pointer will not be
translated to VAS. Furthermore, a single leaked pointer cannot
be used to entirely derandomize the address space. Even if
an attacker can leak enough information to create a gadget
chain, they must complete their attack before the next re-
randomization cycle as all pointers will become stale.

Blind-ROP: Blind-ROP [6] repeatedly overwrites a single
byte of the return address in a child process until the process
does not crash, signaling that the guess was correct. This pro-
cess is repeated for each subsequent byte to recover the entire
pointer. With DDAS, these guesses will trigger exceptions with
high probability. Additionally, this attack requires on average
1,500 requests to discover the ASLR offset and was recorded
to have taken 1 minute on nginx. We randomize 1,200 times
faster than the length of this attack at a period of 50 ms.

Spectre Variant 2: In Spectre Variant 2 [38], an attacker
process mimics the control flow of a victim process to train the
branch predictor to mis-speculate on a chosen indirect jump.
This causes the victim process to execute an attacker-specified
code gadget. In this exploit, an attacker must know the address

Average Average Average RelativeInflation Inflation Percent Entropyper Insn per Page of Holes

Basic 78.9 kB 80,650 kB 99.994% 54.89 bits
Table-Based, 2k 107.8 kB 111,341 kB 99.996% 55.30 bits
Table-Based, 32k 111.3 kB 111,784 kB 99.996% 55.31 bits

TABLE II: Evaluation of DDAS. The average inflation per
instruction or page is the mean dilation incurred by a jump of that
length in VAS. The table also includes the average percentage of
memory occupied by untouchable holes and the calculated relative
entropy (Section VI-B2) per configuration.

of the target indirect jump instruction in the victim program.
In DDAS, the attacker and victim process has different shifted
and dilated code segments, preventing attackers from being
able to understand and mimic the victim’s jump patterns.

B. Quantitative Security Analysis of DDAS Entropy

Since DDAS provides probabilistic security, we quanti-
tatively analyze the strength of our defense for our three
studied configurations. Specifically, we analyze the likelihood
an attacker can forge a valid code pointer at runtime. In our
analysis, we run a 100,000 trial Monte Carlo simulation, where
each trial has a randomly generated DDAS key set. For each
trial, we record the amount of inflation incurred by an indirect
jump in the VAS segment, starting from a jump to the next
instruction. Additionally, for each indirect jump distance, we
measure the inflation from 100 randomized starting locations
per trial. We then use these measurements to derive statistics
about the overall inflation of the control plane, including the
likelihood that a specific jump will encounter no dilation.

1) Inflation of the Control Plane: Our results, summarized
in Table II, show that both table-based configurations inflate
the address space more than basic DDAS, dilating a 4 B
jump by 107.8 kB or 111.3 kB on average, compared to
78.9 kB. The standard deviation of these metrics is also
telling. For table-based DDAS with 2k entries, a 4 B jump
has a standard deviation of 2086 kB, implying that there is
a large variance in the inflation of the code segment, even
for very short jumps. Page-length jumps were inflated by over
111,000 kB on average with a standard deviation of 200 MB.
These results suggest that a malicious code gadget cannot
be more than a few bytes away. Otherwise, the high entropy
of dilation forces attackers to resort to brute-force guessing.
Furthermore, guessing a pointer value subjects an attacker to
accessing an untouchable hole and triggering an immediate
security exception. Our analysis shows that a large portion
of the address space is filled with these untouchable holes.
Namely, in basic DDAS, 99.994% of memory on average
contains untouchable holes, compared to 99.996% for both
table-based configurations.

2) Entropy of Indirect Jumps: To measure the entropy of
our defense, we consider the obfuscation of both absolute and
relative addressing in the control plane. We define absolute
entropy as log2 of the average bytes of displacement. The un-
certainty of the absolute location of code objects is attributed
to the displacement key, d, which is 64 bits in length, giving

2020 IEEE International Symposium on Hardware Oriented Security and Trust (HOST) 63

Fig. 7: Entropy of Indirect Jumps. The primary axis, in orange,
shows the entropy of indirect jumps, where entropy is modeled as
log2 of the dilation in bytes. The secondary axis, in blue, shows the
probability that a given configuration will not inflate an indirect jump.

a mean displacement of 263 bytes. Thus, the absolute entropy
is 63 bits. Similarly, we define relative entropy as log2 of
the mean bytes of dilation, averaged across varying jump
distances. Previously, we quantified the entropy of dilation
for specific jump distances, as shown on the primary axis of
Figure 7. To measure the relative entropy of our whole defense,
we repeat this calculation across all jump distances and find
that our defense has an average relative entropy of 55 bits. This
metric captures the overall difficulty of guessing the dilation
for a jump of any distance. We find that the relative entropy
of DDAS is well above existing defenses, like Shuffler [13],
which typically has no more than 27 bits of entropy.

3) Likelihood of Zero Dilation: One limitation of DDAS is
that, when a region of memory experiences zero inflation, the
manipulation of jump targets within that range will succeed.
This prompts us to evaluate how often zero inflation occurs for
randomly chosen key configurations. We performed this anal-
ysis using the above simulation, now recording the frequency
of zero dilation. The result of this analysis is shown on the
secondary axis of Figure 7. Basic DDAS always inflates jumps
greater than 8 kB. Table-based DDAS performs better, inflating
all jumps greater than 4 kB (a page). For jumps within a page,
there is a small likelihood that no dilation occurs. Table-based
DDAS with 2k entries achieves a 95% likelihood of dilation
for jumps greater than 32 B. Table-based DDAS with 32k
entries and basic DDAS only achieves this likelihood for jumps
greater than 256 B and 1024 B, respectively. For comparison, a
function in our benchmarks is 890 B on average. Thus, limited
dilation for short relative distances can be tolerated and would
restrict attackers to using code gadgets within the current
function. Additionally, with re-randomization, these uninflated
jumps do not persist for long, at only 50 ms on average.

Overall, the evaluated DDAS configurations have compara-
ble entropy but varying amounts of inflation for short jumps.
Notably, although table-based, 2k-entry DDAS has a smaller
keyspace (Svas is constrained by the number of table entries),
it is more effective than 32k-entry DDAS at inflating short
jump distances. This is because, as the VAS segment becomes

larger, the possibility for consecutive valid memory locations
increases, causing the probability of dilation for short jumps
to decrease. Given these results, we recommend table-based
DDAS with 2k entries. We find the performance overheads for
this configuration to be reasonable, as presented in Section VII.

C. Attacking DDAS

With the DDAS secure hardware, existing control-plane
exploits will be unsuccessful due to the obfuscation of code
pointers in a high-entropy space. Attackers may try to cir-
cumvent DDAS by either brute-force guessing pointer val-
ues or derandomizing the memory layout. These techniques
have been used to bypass randomization-based defenses like
ASLR [5], [6], [39], [40], [41]. In this section, we analyze the
effectiveness of these methods to circumvent DDAS.

1) Brute-Force Attacks: Given a leaked pointer and knowl-
edge of uninflated relative distance information from the
program binary, an attacker can attempt to brute-force guess a
DDAS pointer for their desired target. We use a hypergeomet-
ric distribution to model how long it takes to accurately guess
the target pointer when the system is re-randomized every
50 ms (i.e., the attacker has a set number of guesses until the
system re-randomizes and all prior attempts are invalidated).
To be conservative in our analysis, we assume an attacker’s
guess results in a delay only when it accesses an undefined
memory location, triggering an immediate security exception
and stalling execution for 68 μs for exception handling [42].
We assume these security exceptions are taken and ignored,
allowing the attack to continue uninterrupted.

For basic DDAS-R, 61 hours of continuous probing is
required to correctly locate a code gadget that is 4 kB away
in the original binary. For table-based DDAS-R, 86 and 87
hours is required for a 2k and 32k-entry configuration, respec-
tively. To realistically capture relative distances, we profiled
indirect jumps in the first 3 billion instructions of the SPEC
benchmarks [43]. More than 68 days of probing is required
to guess a jump that is the average length in the first quartile
(75.7 kB) for both table-based configurations. Probing time
increases for larger target relative distances, with jumps in the
fourth quartile taking thousands of years for all configurations.

2) Derandomization: Timing side-channels [40], [41] and
memory disclosures [5], [7], [24] have been leveraged to
derandomize address obfuscation protections. DDAS is re-
silient to timing side-channel attacks because it does not
affect cache mappings, nor are DDAS addresses used to index
into microarchitectural structures (i.e., caches, TLB, BTB),
which are the traditional venues for side-channel exploits.
Furthermore, the latency of the DDAS functional unit is not
key or data dependent and is implemented in constant time.
Thus, timing an address translation similarly does not reveal
information about the existing DDAS configuration.

As side-channels are not viable, the only way to derandom-
ize DDAS is to tactfully leak pointer values. For basic DDAS,
an attacker can derive the dilation amount, i, if they obtain two
DDAS/VAS pointer pairs in consecutive segments, allowing
them to guess pointers with an increased likelihood of success.

64 2020 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)

Fig. 8: Average Performance Overheads. The average overhead
for the SPEC CPU2006 benchmark suite at varied re-randomization
rates for the analyzed DDAS configurations.

Fig. 9: Overheads for Table-Based, 2k DDAS. The performance
overheads per benchmark for a table-based, 2k-entry DDAS config-
uration, with 2 cycles of exposed latency.

Although finding pointers in neighboring segments is difficult,
an attacker can leverage the fact that the DDAS segment
size is a power of two to narrow their search space. Table-
based DDAS has more spatial diversity and therefore is more
resilient to memory disclosures. With n ranges per DDAS
segment, this previous technique exposes only 1/nth of valid
pointers in the address space. Furthermore, uncovering 1/nth

of the address space does not provide much of an advantage
for derandomizing the rest of memory as an attacker does not
know the range size or distance to the next range. Despite
this, we regard memory disclosures as dangerous and employ
runtime re-randomization to defend against derandomization.

By re-randomizing the DDAS configuration every 50 ms,
attackers have a tight window to leak pointer pairs, perform ad-
ditional probes, and synthesize an exploit. Prior work similarly
uses re-randomization to shield from memory disclosures [9],
[10], [13], [17], [18]. Additionally, we configure DDAS to re-
randomize immediately when a security violation is detected.
Thus, attempts to derandomize DDAS by leaking multiple
pointers will fail, as leaked pointers will be invalidated by
probing attempts that trigger security violations. To further
harden our defense against memory leaks, the DDAS archi-
tecture could be expanded to include pointer encryption [44],
[45], [46], [47]. Morpheus [11] and Shuffler [13] leverage
encryption on top of address obfuscation to make leaked
pointer values completely unusable. Obfuscating the virtual
address space [8] or the program binary [45] is also viable, as
derandomization attempts require knowledge of VAS pointers.

VII. RESULTS AND EVALUATION

To measure the performance impacts of DDAS, we ran
experiments against the SPEC CPU2006 C workloads [37],
described in Section V-A, for the chosen configurations– basic
(1 cycle latency), table-based, 2k-entry (2 cycles latency), and
table-based, 32k-entry (4 cycles latency). Figure 8 shows the
average performance overhead of these configurations for the
analyzed workloads. The DDAS functional unit introduces
latency in the pipeline that can delay branch prediction and
cause bottlenecks. The overhead for a load-time (tagless)
DDAS system illustrates the consequences of this added
latency alone. To support re-randomization, tags for every

pointer-width word must be stored and propagated in the
memory hierarchy. Additionally, the re-randomization process
accesses tag information and rewrites all code pointer values
in the data segment. These updates invalidate code pointers in
the data cache, increasing miss rates. Thus, compared to the
load-time system, re-randomization incurs higher performance
penalties and affects the memory system.

Our recommended configuration, DDAS-R with a 2k-entry
Range-Map table, has reasonable slowdowns, at 1.07% during
50 ms re-randomization. A detailed breakdown of the overhead
incurred by individual benchmarks for this configuration is
shown in Figure 9. Performance overheads generally increase
alongside re-randomization rates, especially for benchmarks
with a large number of code pointers, i.e. gcc has 5.18% slow-
downs at 50 ms. For these benchmarks, the DDAS Remapper
must perform more pointer updates, invalidating values in
the L1-cache and increasing both the number of read/write
misses and the overall average miss latency for the main core.
Some benchmarks with more jalr instructions experienced
reduced slowdowns at faster re-randomization rates. This is
likely a result of the DDAS remapper prefetching code pointers
into the caches during re-randomization, effectively making
these values more available to the core. However, as re-
randomization rates increase, this benefit will likely diminish
due to interference during pointer updates.

A. Area and Power Overheads

The hardware overhead of DDAS was estimated using
McPAT 1.3 at the 28 nm technology node [48]. We modeled
our system using an ARM Cortex-A9 out-of-order processor
augmented with: 1) the DDAS functional unit, 2) memory
system modifications (i.e., tagged memory and the Range-Map
table) modeled in CACTI 7 [34], and 3) the DDAS remapper,
estimated by the SiFive S51 standard core [49]. Table III shows
the estimated area and power consumption for the analyzed
DDAS configurations. The cost to implement table-based, 2k-
entry DDAS is fairly low, at less than 3% area overhead for
load-time randomization or 7% with runtime re-randomization
Table-based, 32k-entry DDAS-R experiences much higher area
overhead at nearly 40% because each table entry must double
in size to accommodate both key sets.

2020 IEEE International Symposium on Hardware Oriented Security and Trust (HOST) 65

Area (mm2) Overhead Power (W) Overhead

Baseline 4.387 - 3.653 -

Basic DDAS 4.411 0.55% 3.674 0.57%
Basic DDAS-R 4.524 3.13% 3.682 0.80%
Table-Based DDAS, 2k 4.506 2.71% 3.704 1.40%
Table-Based DDAS-R, 2k 4.690 6.90% 3.804 4.13%
Table-Based DDAS, 32k 4.865 10.88% 3.850 5.39%
Table-Based DDAS-R, 32k 6.111 39.29% 4.370 19.61%

TABLE III: Hardware Estimation. The area and power estimates
for the analyzed DDAS configurations.

B. Performance-Security Trade-offs

In this work, we constrain the parameters Sddas, r, and i to
be a power of two to make architecture-level optimizations in
the functional unit. When removing these optimizations, the
DDAS system has an increased keyspace, making it potentially
more secure. Intuitively, it is harder to brute-force guess
the value of keys like Sddas in an unconstrained system.
Derandomization becomes more challenging as attackers can
no longer leverage the fact that keys are a power of two
to constrain their search space. Yet, for a table-based, 2k-
entry configuration, the unconstrained variant only adds 2.5
additional bits of relative entropy and exhibits a 99.5% likeli-
hood of dilation for all jumps. Furthermore, this system incurs
intolerable slowdowns, with 42 cycles of exposed latency in
the pipeline (20 cycles per divide or modulo operation), com-
pared to 2 cycles previously. At 50 ms re-randomization, this
configuration incurs over 100% slowdowns over the baseline,
which we regard as an intolerable performance degradation.

VIII. RELATED WORK

The work related to address obfuscation protections is ex-
tensive. Here, we restrict our comparisons to the defenses that
are most relevant, i.e. those that employ runtime randomization
or in-memory traps. DDAS leverages hardware support to
guarantee the necessary efficiencies while providing 63 bits of
absolute entropy and 55 bits of relative entropy. With runtime
overheads of 1.07% at a 50 ms re-randomization rate, DDAS
outperforms many of its counterparts and offers increased
security via finer grained, higher entropy protections.

Randomization of Absolute Addresses: Defenses have em-
ployed re-randomization to fortify Address Space Layout Ran-
domization [8] against memory disclosures. These defenses re-
randomize the displacement of the code segment in response to
events that are indicative of an attack, like system calls [10] or
process forks [9], or at regular intervals [11]. TASR [10] has
high performance overheads of 30-40%. RuntimeASLR [9]
performs better than DDAS, with 0.5% overheads, but does
not obfuscate relative distances between code objects. Mor-
pheus [11] leverages hardware to achieve fast address obfus-
cation, with 0.9% overheads at 50 ms randomization. However,
Morpheus also does not randomize relative distances and thus
can be derandomized by a single pointer disclosure.

Randomization of Relative Addresses: Permutation-based
defenses are the leading approach to randomize relative dis-
tances between code objects. However, unlike DDAS, the
entropy of this technique correlates with code size as only
a fixed number of permutations exist, providing minimal

protection for short functions. Remix [17] employs periodic
re-randomization and is comparable to DDAS with a 2.8%
overhead. However, Remix only randomizes relative distance
within functions, not between them. DDAS and DDAS-R are
able to achieve more entropy than these works and randomizes
both intra-function and inter-function relative distance. We are
only aware of two defenses, Shuffler [13] and Mixr [18],
which obfuscate the relative distance between functions and
re-randomize at runtime. However, these defenses suffer from
higher overheads than DDAS, at 14.9% or 225% respectively,
and have lower entropy (much less than 30 bits).

In-Memory Traps: In addition to code diversification, some
defenses use traps to probabilistically detect attacks that probe
the code segment. CodeArmor [25] is a software technique
that instruments the program binary with “honey gadgets”,
similar to undefined memory regions in DDAS. Attackers
that mistakenly forge code pointers to these gadgets trigger
three security exceptions on average before reaching their
target. Using the same metric, an attacker would trigger over
100,000 exceptions in a DDAS system experiencing average
dilation before reaching a code gadget. CodeArmor achieves
low overheads, at 6.9% on SPEC CPU2006, but DDAS is able
to provide overheads well below 5% with hardware support.

IX. CONCLUSIONS

To combat code reuse attacks on the control plane, we deter
the manipulation of indirect jump targets by increasing the
uncertainty of the code segment. We introduce the Displaced
and Dilated Address Space, a superimposed address space
where all code pointers in the program are expressed. We
displace the address space by a 64-bit key to obfuscate
absolute addresses. Additionally, we leverage the vast unused
portions of the virtual address space to dilate memory by over
250,000 times, obfuscating relative addresses. We inject large,
undefined memory regions between instructions that result
in an immediate security exception when accessed. Finally,
DDAS code pointers are derandomized in the pipeline before
use, eliminating performance impacts on the memory system.

Compared to prior work, our defense achieves greater
entropy in the control plane (63 bits for displacement, 55 bits
for dilation), which attackers must overcome without touching
the undefined memory locations that make up 99.996% of
the address space on average. Additionally, with runtime re-
randomization, this challenge is coupled with a time limit
of 50 ms to synthesize an attack. By leveraging hardware
support, we are able to implement this defense while keeping
performance overheads well below 5%.

ACKNOWLEDGMENTS

This work was supported by DARPA under Contract
HR0011-18-C-0019. Any opinions, findings and conclusions
or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of DARPA.
Technology detailed in this paper has been licensed from
the University of Michigan by Agita Labs Inc., an ongoing
concern of Todd Austin and Valeria Bertacco.

66 2020 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)

REFERENCES

[1] CVEs by Type. (2019) Cve details: Vulnerabilities by type. [Online].
Available: https://www.cvedetails.com/vulnerabilities-by-types.php

[2] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-oriented
programming: Systems, languages, and applications,” ACM Trans. Inf.
Syst. Secur., vol. 15, no. 1, pp. 2:1–2:34, Mar. 2012.

[3] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented
programming: a new class of code-reuse attack,” in Proceedings of the
6th ACM Symposium on Information, Computer and Communications
Security. ACM, 2011, pp. 30–40.

[4] N. Carlini and D. Wagner, “ROP is still dangerous: Breaking modern
defenses,” in 23rd USENIX Security Symposium (USENIX Security 14).
San Diego, CA: USENIX Association, 2014, pp. 385–399.

[5] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A.-R.
Sadeghi, “Just-in-time code reuse: On the effectiveness of fine-grained
address space layout randomization,” in Security and Privacy (SP), 2013
IEEE Symposium on. IEEE, 2013, pp. 574–588.

[6] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazières, and D. Boneh,
“Hacking blind,” in Security and Privacy (SP), 2014 IEEE Symposium
on. IEEE, 2014, pp. 227–242.

[7] L. Davi, C. Liebchen, A.-R. Sadeghi, K. Z. Snow, and F. Monrose,
“Isomeron: Code randomization resilient to (just-in-time) return-oriented
programming.” in NDSS, 2015.

[8] PaX Team. (2003) Pax address space layout randomization (ASLR).
[Online]. Available: http://pax.grsecurity.net/docs/aslr.txt

[9] K. Lu, W. Lee, S. Nürnberger, and M. Backes, “How to make ASLR
win the clone wars: Runtime re-randomization.” in NDSS, 2016.

[10] D. Bigelow, T. Hobson, R. Rudd, W. Streilein, and H. Okhravi, “Timely
rerandomization for mitigating memory disclosures,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2015, pp. 268–279.

[11] M. Gallagher, L. Biernacki, S. Chen, Z. B. Aweke, S. F. Yitbarek,
M. T. Aga, A. Harris, Z. Xu, B. Kasikci, V. Bertacco, S. Malik,
M. Tiwari, and T. Austin, “Morpheus: A Vulnerability-Tolerant Secure
Architecture Based on Ensembles of Moving Target Defenses with
Churn,” in Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’19. New York, NY, USA: ACM, 2019.

[12] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning, “Address space layout
permutation (ASLP): Towards fine-grained randomization of commodity
software,” in 2006 22nd Annual Computer Security Applications Con-
ference (ACSAC’06). IEEE, 2006, pp. 339–348.

[13] D. Williams-King, G. Gobieski, K. Williams-King, J. P. Blake, X. Yuan,
P. Colp, M. Zheng, V. P. Kemerlis, J. Yang, and W. Aiello, “Shuffler:
Fast and deployable continuous code re-randomization,” in 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
16), 2016, pp. 367–382.

[14] S. Bhatkar, D. C. DuVarney, and R. Sekar, “Efficient techniques for
comprehensive protection from memory error exploits.” in USENIX
Security Symposium, 2005, pp. 17–17.

[15] L. V. Davi, A. Dmitrienko, S. Nürnberger, and A.-R. Sadeghi, “Gadge
me if you can: secure and efficient ad-hoc instruction-level random-
ization for x86 and ARM,” in Proceedings of the 8th ACM SIGSAC
symposium on Information, computer and communications security.
ACM, 2013, pp. 299–310.

[16] T. Jackson, B. Salamat, A. Homescu, K. Manivannan, G. Wagner,
A. Gal, S. Brunthaler, C. Wimmer, and M. Franz, “Compiler-generated
software diversity,” in Moving Target Defense. Springer, 2011, pp.
77–98.

[17] Y. Chen, Z. Wang, D. Whalley, and L. Lu, “Remix: On-Demand Live
Randomization,” in Proceedings of the Sixth ACM Conference on Data
and Application Security and Privacy, ser. CODASPY ’16. New York,
NY, USA: ACM, 2016, pp. 50–61.

[18] W. Hawkins, A. Nguyen-Tuong, J. D. Hiser, M. Co, and J. W. Davidson,
“Mixr: Flexible runtime rerandomization for binaries,” in Proceedings
of the 2017 Workshop on Moving Target Defense. ACM, 2017, pp.
27–37.

[19] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum, “Enhanced operating
system security through efficient and fine-grained address space random-
ization,” in Presented as part of the 21st {USENIX} Security Symposium
({USENIX} Security 12), 2012, pp. 475–490.

[20] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, “Binary stirring:
Self-randomizing instruction addresses of legacy x86 binary code,” in
Proceedings of the 2012 ACM conference on Computer and communi-
cations security. ACM, 2012, pp. 157–168.

[21] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W. Davidson, “Ilr:
Where’d my gadgets go?” in 2012 IEEE Symposium on Security and
Privacy. IEEE, 2012, pp. 571–585.

[22] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Smashing the
gadgets: Hindering return-oriented programming using in-place code
randomization,” in 2012 IEEE Symposium on Security and Privacy.
IEEE, 2012, pp. 601–615.

[23] H. Xu and S. J. Chapin, “Improving address space randomization with
a dynamic offset randomization technique,” in Proceedings of the 2006
ACM symposium on Applied computing. ACM, 2006, pp. 384–391.

[24] M. Backes and S. Nürnberger, “Oxymoron: Making fine-grained mem-
ory randomization practical by allowing code sharing.” in USENIX
Security Symposium, 2014, pp. 433–447.

[25] X. Chen, H. Bos, and C. Giuffrida, “Codearmor: Virtualizing the code
space to counter disclosure attacks,” in 2017 IEEE European Symposium
on Security and Privacy (EuroS&P). IEEE, 2017, pp. 514–529.

[26] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “Sok: Automated
software diversity,” in 2014 IEEE Symposium on Security and Privacy.
IEEE, 2014, pp. 276–291.

[27] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang,
“Data-oriented programming: On the expressiveness of non-control data
attacks,” in 2016 IEEE Symposium on Security and Privacy (SP). IEEE,
2016, pp. 969–986.

[28] G. Shvets. (2018) Enhanced virus protection / execute disable bit.
[29] The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Docu-

ment Version 2.2, RISC-V Foundation, Berkeley, CA, USA, May 2017,
editors Andrew Waterman and Krste Asanović. May 2017.

[30] ISO/IEC 9899:201x, “Programming Languages – C,” International Or-
ganization for Standardization, Geneva, CH, Standard, Apr. 2011.

[31] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The Gem5
Simulator,” SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7,
Aug. 2011.

[32] A. Roelke and M. R. Stan, “RISC5: Implementing the RISC-V ISA in
gem5,” in Proceedings of Computer Architecture Research in RISC-V,
ser. CARRV ’17, October 2017.

[33] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2: A cycle
accurate memory system simulator,” IEEE Comput. Archit. Lett., vol. 10,
no. 1, pp. 16–19, Jan. 2011.

[34] R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee,
and V. Srinivas, “CACTI 7: New tools for interconnect exploration in
innovative off-chip memories,” ACM Trans. Archit. Code Optim., vol. 14,
no. 2, pp. 14:1–14:25, Jun. 2017.

[35] AndesTech. (2017, Sep.) Andes Technology GitHub - riscv-llvm.
[Online]. Available: https://github.com/andestech/riscv-llvm

[36] rv8. (2018, Feb.) rv8.io github - musl-riscv. [Online]. Available:
https://github.com/rv8-io/musl-riscv

[37] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” SIGARCH
Comput. Archit. News, vol. 34, no. 4, pp. 1–17, Sep. 2006.

[38] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre attacks: Exploiting speculative execution,” in 40th IEEE Sym-
posium on Security and Privacy (S&P’19), 2019.

[39] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh,
“On the effectiveness of address-space randomization,” in Proceedings
of the 11th ACM conference on Computer and communications security.
ACM, 2004, pp. 298–307.

[40] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, “Jump over ASLR:
Attacking branch predictors to bypass ASLR,” in The 49th Annual
IEEE/ACM International Symposium on Microarchitecture. IEEE Press,
2016, p. 40.

[41] B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida, “ASLR on
the line: Practical cache attacks on the mmu.” in NDSS, vol. 17, 2017,
p. 13.

[42] V. Bridgers, “Real Time Linux Scheduling Compari-
son,” in Embedded Linux Conference 2015 (ELC 15).
CA: The Linux Foundation, 2015. [Online]. Avail-
able: http://events17.linuxfoundation.org/sites/events/files/slides/Real-
Time-Linux-Comparison-Bridgers-ELC2015.pdf

2020 IEEE International Symposium on Hardware Oriented Security and Trust (HOST) 67

[43] “Standard Performance Evaluation Corporation (SPEC). SPEC
CINT2006 Benchmarks. http://www.spec.org/cpu2006/CINT2006.”

[44] C. Cowan, S. Beattie, J. Johansen, and P. Wagle, “Pointguard TM: Pro-
tecting Pointers from Buffer Overflow Vulnerabilities,” in Proceedings of
the 12th conference on USENIX Security Symposium, vol. 12. Berkeley,
CA, USA: USENIX Association, 2003, pp. 91–104.

[45] K. Sinha, V. P. Kemerlis, and S. Sethumadhavan, “Reviving instruction
set randomization,” in 2017 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST). Piscataway, NJ, USA: IEEE Press,
May 2017, pp. 21–28.

[46] A. J. Mashtizadeh, A. Bittau, D. Boneh, and D. Mazières, “CCFI:
Cryptographically Enforced Control Flow Integrity,” in Proceedings of
the 22Nd ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’15. New York, NY, USA: ACM, 2015, pp. 941–951.

[47] A. Papadogiannakis, L. Loutsis, V. Papaefstathiou, and S. Ioannidis,
“ASIST: Architectural Support for Instruction Set Randomization,” in
Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security, ser. CCS ’13. New York, NY, USA: ACM,
2013, pp. 981–992.

[48] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen,
and N. P. Jouppi, “McPAT: An integrated power, area, and timing
modeling framework for multicore and manycore architectures,” in
Proceedings of the 42Nd Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO 42. New York, NY, USA: ACM,
2009, pp. 469–480.

[49] SiFive, Inc. (2019) SiFive S51. [Online]. Available:
https://www.sifive.com/cores/s51

68 2020 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)

