PHY 401 Fall 2004. Solutions to HW3.

2-52.

a) \(F(x) = -\frac{dU}{dx} = -\frac{4U_0 x}{a^2} \left(1 - \frac{x^2}{a^2}\right) \)

b)

![Graph of potential energy function](image)

When \(F = 0 \), there is equilibrium; further when \(U \) has a local minimum (i.e. \(dF/dx < 0 \)) it is stable, and when \(U \) has a local maximum (i.e. \(dF/dx > 0 \)) it is unstable.

So one can see that in this problem \(x = a \) and \(x = -a \) are unstable equilibrium positions, and \(x = 0 \) is a stable equilibrium position.

c) Around the origin, \(F = -\frac{4U_0 x}{a^2} \equiv -kx \Rightarrow \omega = \sqrt{\frac{k}{m}} = \sqrt{\frac{4U_0}{ma^2}} \)

d) To escape to infinity from \(x = 0 \), the particle needs to get at least to the peak of the potential,

\[
\frac{mv_{\text{esc}}^2}{2} = U_{\text{max}} = U_0 \Rightarrow v_{\text{esc}} = \sqrt{\frac{2U_0}{m}}
\]

e) From energy conservation, we have

\[
\frac{mv^2}{2} + \frac{U_0 x^2}{a^2} = \frac{mv_{\text{esc}}^2}{2} \Rightarrow \frac{dx}{dt} = v = \sqrt{\frac{2U_0}{m}} \left(1 - \frac{x^2}{a^2}\right)
\]

We note that, in the ideal case, because the initial velocity is the escape velocity found in d), ideally \(v \) is always smaller or equal to \(a \), then from the above expression,

\[
t = \int\sqrt{\frac{m}{2U_0}} \left(\frac{dx}{\sqrt{1 - \frac{x^2}{a^2}}}\right) = \sqrt{\frac{ma^2}{8U_0}} \ln \frac{a + \sqrt{a^2 - x^2}}{x} \Rightarrow x(t) = \frac{a}{2} \left(\exp\left(i \sqrt{\frac{8U_0}{ma^2}}\right)
ight) - 1 \right)
\]

\[
\exp\left(i \sqrt{\frac{8U_0}{ma^2}} + 1\right)
\]

![Graph of position over time](image)
3-1.

a) \[v_0 = \frac{1}{2\pi} \sqrt{\frac{k}{m}} - \frac{1}{2\pi} \sqrt{\frac{10^8 \text{ dynes/cm}}{10^2 \text{ gram}}} - \frac{10}{2\pi} \sqrt{\frac{\text{ gram} \cdot \text{cm}}{\text{sec}^2 \cdot \text{cm}}} - \frac{10}{2\pi} \text{sec}^{-3} \]
or,
\[v_0 \equiv 1.6 \text{ Hz} \]
\[\tau_0 = \frac{1}{v_0} = \frac{2\pi}{10} \text{ sec} \]
or,
\[\tau_0 \equiv 0.63 \text{ sec} \]

b) \[E = \frac{1}{2} kA^2 = \frac{1}{2} \times 10^8 \times 3^2 \text{ dynes-cm} \]
so that
\[E = 4.5 \times 10^4 \text{ erg} \]

3-10. The amplitude of a damped oscillator is expressed by
\[x(t) = Ae^{-\beta t} \cos(\omega_1 t + \delta) \]
(1)
Since the amplitude decreases to 1/e after n periods, we have
\[\beta n T = \beta \frac{2\pi}{\omega_1} = 1 \]
(2)
Substituting this relation into the equation connecting \(\omega_1 \) and \(\omega_0 \) (the frequency of undamped oscillations), \(\omega_1^2 = \omega_0^2 - \beta^2 \), we have
\[\omega_0^2 = \omega_1^2 + \left[\frac{\omega_1}{2\pi n} \right]^2 = \omega_1^2 \left[1 + \frac{1}{4\pi^2 n^2} \right] \]
(3)
Therefore,
\[\frac{\omega_1}{\omega_0} = \left[1 + \frac{1}{4\pi^2 n^2} \right]^{-\beta^2} \]
(4)
so that
\[\frac{\omega_1}{\omega_0} \equiv 1 - \frac{1}{8\pi^2 n^2} \]
3-12.

The equation of motion is

\[-mt \ddot{\theta} = mg \sin \theta \] \hspace{1cm} (1)

\[\ddot{\theta} = \frac{g}{l} \sin \theta \] \hspace{1cm} (2)

If \(\theta \) is sufficiently small, we can approximate \(\sin \theta \approx \theta \), and (2) becomes

\[\ddot{\theta} = \frac{g}{l} \theta \] \hspace{1cm} (3)

which has the oscillatory solution

\[\theta(t) = \theta_0 \cos \omega_0 t \] \hspace{1cm} (4)

where \(\omega_0 = \sqrt{g/l} \) and where \(\theta_0 \) is the amplitude. If there is the retarding force \(2m \sqrt{g/l} \dot{\theta} \), the equation of motion becomes

\[-mt \ddot{\theta} = mg \sin \theta + 2m \sqrt{g/l} \dot{\theta} \] \hspace{1cm} (5)

or setting \(\sin \theta \approx \theta \) and rewriting, we have

\[\ddot{\theta} + 2\omega_0 \dot{\theta} + \omega_0^2 \theta = 0 \] \hspace{1cm} (6)

Comparing this equation with the standard equation for damped motion [Eq. (3.35)],

\[\ddot{x} + 2\beta \dot{x} + \omega_0^2 x = 0 \] \hspace{1cm} (7)

we identify \(\omega_0 = \beta \). This is just the case of critical damping, so the solution for \(\theta(t) \) is [see Eq. (3.43)]

\[\theta(t) = (A + Bt)e^{-\alpha t} \] \hspace{1cm} (8)

For the initial conditions \(\theta(0) = \theta_0 \) and \(\dot{\theta}(0) = 0 \), we find

\[\theta(t) = \theta_0 (1 + \omega_0 t)e^{-\omega_0 t} \]

3-22. For overdamped motion, the position is given by Equation (3.44)

\[x(t) = A_1 e^{-\beta_1 t} + A_2 e^{-\beta_2 t} \] \hspace{1cm} (1)
The time derivative of the above equation is, of course, the velocity:

$$v(t) = -A_1 \beta_1 e^{-\beta_1 t} - A_2 \beta_2 e^{-\beta_2 t}$$ \hspace{1cm} (2)

a) At $t = 0$:

$$x_0 = A_1 + A_2 \hspace{1cm} (3)$$

$$v_0 = -A_1 \beta_1 - A_2 \beta_2 \hspace{1cm} (4)$$

The initial conditions x_0 and v_0 can now be used to solve for the integration constants A_1 and A_2.

b) When $A_1 = 0$, we have $v_0 = -\beta_2 x_0$ and $v(t) = -\beta_2 x(t)$ quite easily. For $A_1 \neq 0$, however, we have $v(t) \to -\beta_1 A_1 e^{-\beta_1 t} = -\beta_1 x$ as $t \to \infty$ since $\beta_1 < \beta_2$.