
 Introduction to SAS

1

Epidemiology 759:

Introduction to SAS

Kathy Welch, Instructor

email: kwelch@umich.edu

web page: http://www.umich.edu/~kwelch

 CSCAR Office: 3554 Rackham Bldg.

CSCAR phone: (734) 657-4611

mailto:kwelch@umich.edu
http://www.umich.edu/~kwelch

 Introduction to SAS

2

 Introduction to SAS

3

Contents
Chapter Page

Getting Started

Getting Started with SAS 5

Chapter 1: Introduction 13

Chapter 2: How to Enter Data in the Program Editor Window 22

Chapter 3: How to Create a SAS Data Set from Raw Data Files 25

 Addendum: How to Import an Excel File 35

Exploring Data Using SAS

Chapter 4: Simple Descriptive Statistics Using SAS Procedures 39

Working with Permanent SAS Data Sets

Chapter 5: How to Use a Permanent SAS Data Set 51

Chapter 6: How to Create a Permanent SAS Data Set 55

Data Management

Chapter 7: Overview of Data Management Tasks Using SAS 58

Chapter 8: Processing Data by Groups Using Proc Sort 67

Chapter 9: Combining SAS Data Sets 74

 Introduction to SAS

4

Variable Management

Chapter 10: Creating New Variables in a Data Step 81

Chapter 11: Missing Values 88

Chapter 12: Recoding and Creating Dummy Variables 98

Chapter 13: Dates in SAS 106

Case Management

Chapter 14: Summarizing Data Across Cases 111

Special Topics

Chapter 15: Working with SAS Formats 117

Statistics/Graphics Using SAS

Chapter 16: Statistical Procedures 128

Chapter 17: Statistical Graphics Using SAS 151

Miscellaneous

Managing Output in SAS 9.3 167

A Short Annotated List of SAS Manuals and Books 172

SAS Resources at the University of Michigan 174

Appendix: Descriptions of Data Sets 175

 Introduction to SAS

5

Getting Started with SAS

The SAS Desktop

When you open SAS, you will see the SAS desktop with three main windows:

1. The Editor window

This is the window where you create, edit, and submit SAS command files. The default editor is the

Enhanced Editor, which has a system of color coding to make it easier to edit and trouble-shoot

command files.

2. The Log window

This is the window where SAS will echo all of your commands, along with any notes (shown in

blue), error messages (shown in red), and warnings (shown in green). The log window is cumulative

throughout your session and helps to locate any possible problems with a SAS program.

3. The Explorer window

Among other things, this window shows the libraries that you have defined. SAS libraries are

folders that can contain SAS datasets and catalogs. When you start SAS, you will automatically have

the libraries Work, Sasuser, and Sashelp defined, plus Maps, if you have SAS/Maps on your system.

You can define other libraries where you wish to store and access datasets, as we will see later. If

you accidentally close this window, go to View > Contents Only to reopen it.

 Introduction to SAS

6

Additional Windows

1. The Output window

This window will be behind other windows until you generate some output. The text in this window

can be copied and pasted to a word processing program, but it cannot be edited or modified.

2. The SAS/Graph window

This window will not open until you generate graphs using procedures such as Proc Gplot or Proc

Univariate.

You can navigate among the SAS windows in this environment. Different menu options are

available depending on which window you are using.

Set the current directory

To do this, double-click on the directory location at the bottom of the SAS workspace window. You

will be able to browse to the folder to use. This folder will be the default location where SAS

command files and raw data files will be read from/written to.

Double-click here to change

the current directory.

 Introduction to SAS

7

Browse to the folder to use for the current folder, and then click on OK. Be sure that you have the

folder that you wish to select showing in the Look in: window. In the screenshot below, the folder

that was chosen is Labdata.

Once the folder has been chosen, you can see it displayed at the bottom of your SAS desktop.

 Introduction to SAS

8

Set Output Type

The default output type for SAS 9.3 is HTML. If you want to have plain text (listing) output in

addition (or instead of HTML) then go to Tools > Options > Preferences:

In the window that opens, choose the Results Tab, and then select Create Listing. At this point, you

can deselect Create HTML or select a different style of output from the Style dropdown list.

 Introduction to SAS

9

SAS Help

When you first open SAS, you will have the option to open SAS help, by clicking on "Start Guides"

in the Window that opens up.

If you close this window you can start SAS help later by going to Help > SAS Help and

Documentation.

 Introduction to SAS

10

To get help on statistical procedures, click on the Contents tab > SAS Products > SAS/Stat >

SAS/Stat User's Guide. A list of all SAS/Stat procedures will come up.

Click on the procedure that you wish to see. Each procedure has an introduction, a syntax guide,

information on statistical algorithms, and examples using SAS code.

The SAS help tab for the ANOVA procedure is shown below. All help is clickable.

 Introduction to SAS

11

You can also get help by going to the SAS support web page: http://support.sas.com. Click on

Samples & SAS Notes where you can search for help using keywords.

There is also a useful page that gives information on particular statistical topics, listed alphabetically.

The url for this page is http://support.sas.com/kb/30/333.html

http://support.sas.com/
http://support.sas.com/kb/30/333.html

 Introduction to SAS

12

Another great place to find information about SAS is the UCLA Statistics website.

http://www.ats.ucla.edu/stat/sas/

My web page is also a useful site.

http://www.umich.edu/~kwelch

http://www.ats.ucla.edu/stat/sas/
http://www.umich.edu/~kwelch

 Introduction to SAS

13

Chapter 1

INTRODUCTION
(commands=intro.sas)

1. What is SAS?

SAS is an integrated software system that allows users to carry out a variety of tasks including data

management, statistical analyses, report generation and graphical displays of data.

2. SAS Data sets

A SAS data set is a rectangular array of data, arranged so that cases are rows, and variables are

columns. SAS data sets can generally be formed by

-- manually reading in data,

-- reading in data from raw data files (text or ascii files),

-- importing data from other applications, such as Excel or Access,

-- importing data from other statistical packages, such as SPSS or Stata,

-- modifying other pre-existing SAS datasets,

-- as output from a SAS procedure.

An example of a SAS dataset is shown below:

SAS datasets can be temporary (i.e., exist only during the current SAS session) or permanent (i.e.,

be saved in files on the operating system, and be accessible for later use).

 Introduction to SAS

14

3. SAS Libraries

SAS libraries (usually) refer to folders or subdirectories where SAS data sets are stored. SAS

automatically assigns the libraries work and sasuser at startup. Temporary SAS data sets are stored

in the work library and are erased at the end of the current SAS session. Certain sample data sets are

stored in the sasuser library when they are created, and will be available when SAS is invoked in

later sessions. You may define additional libraries in which you wish to store SAS data sets by using

the libraries icon, or by using a libname statement in your SAS program. More information about

libraries is coming up in later chapters.

4. Types of Data

4.1. Numeric Data

Numeric data can be read into SAS in many forms. The following are examples of numeric data:

 23.45

 -23.45

 +23.45

 23.45000

 2.345e+1 (data in scientific notation)

Numeric values may not have any blanks embedded within them. They may have signs (+ or -), but

the signs must not be separated from the values by any blanks. By default, SAS stores numeric data

in double precision (8 bytes). Space can be saved in large SAS datasets by specifying length

statements for numeric variables to use fewer than 8 bytes, but caution must be used when doing

this, because precision may be lost, especially if the values in a variable are not integers or are very

large. The smallest length that may be used for numeric variables in SAS for Windows is 3 bytes.

4.2. Character Data

Character (alpha-numeric or string) data are generally represented by words or letters and numbers

or other character strings that cannot be displayed as numbers. A character variable may have any

length from 1 to 32,767 characters. The values of character variables are case sensitive. Here are

examples of 3 different values for character data:

 Ann Arbor

 ann arbor

 ANN ARBOR

These values are all different, because of different upper and lower case usage.

 Introduction to SAS

15

4.3. Missing Values

Missing values for numeric variables are displayed as a period (.). Missing values for character data

are represented by a blank ().

Note: SAS stores missing numeric values internally as values that are less than any possible

numeric value. This will become important later when recoding values of numeric variables into

categories, because comparison operators (i.e., < or <=) will always evaluate a missing value to be

less than any numeric value.

5. The SAS Language: Basic Concepts

A SAS Program is a series of statements that instruct SAS to perform certain tasks, such as

creating a dataset or carrying out an analysis. Properties of SAS statements are as follows:

SAS statements:

 begin with a keyword.

 can start in any column (indenting is for appearance only).

 may continue over several lines.

 may use upper or lower case, or a mixture.

 end with a semicolon (;).

One or more SAS statements used together to carry out a specific task form a step. There are two

basic types of steps: data steps and proc steps. A given SAS program may contain only data

step(s), only proc step(s), or a combination of both. When running SAS interactively it is good

practice to end every data or proc step with a run statement.

5.1. Data Step

The data step defines and creates (i.e., writes) a new SAS data set. It can be used to assign

variable names to new variables, set up the attributes of variables, define the source of raw data that

is to be read into SAS, sets up missing value codes, transformations and recodes, and carry out many

other data management tasks. In general, there is no written output from a SAS data step, other

than information in the SAS Log about the data set that was created.

NB: Each time a data step is invoked, a new SAS data set is created with the name given in the

data statement. If a data statement is given that names a data set that already exists, that data set

will be overwritten.

Some ways to create a SAS data set are listed below:

1. Enter the data directly via the SAS Program Editor Window.

2. Read raw data from a separate raw data file using a data step.

 Introduction to SAS

16

3. Import data from other data sources, such as Excel, .csv files, SPSS files and Stata files using the

SAS Import Wizard.

4. Read from a previously created SAS data set using a data step with a set statement.

5. Create a data set as output from a procedure (e.g., create a data set containing the residuals and

predicted values from a regression analysis.

5.1.1. Entering Data in the Program Editor Window (Instream Data)

This method of entering raw data is often used when you have only a few observations and a few

variables. It is convenient if you don't mind doing the typing. An example of creating a SAS data

using instream data is shown below. Note that periods are used as placeholders for missing

values for both numeric variables and character variables. The internal representation of missing

values for these data types are a period (.) for numeric variables and a blank () for character

variables, as discussed earlier.

data test;

 input id sex $ testgrp age height weight;

 cards;

1 F 1 20 62 .

2 F 2 23 65 133

3 M 1 21 68 154

4 . 1 20 69 160

5 F 2 20 63 118

;

run;

Note the semicolon on a separate line by itself. Check the log to see that the SAS commands are

echoed, but the actual data is not. See Chapter 2 for more information on entering instream data in

the SAS Program Editor.

5.1.2. Reading Raw Data from a File

If the data that you wish to read into SAS is in a separate raw data file, then you can use a data step

to read it into SAS. Note: A data step is not used to import Excel or other types of data base files..

An example of creating a SAS data set by reading in raw data from an external file is shown below:

data class;

 infile "class.dat";

 input lname $ sex $ age height sbp;

run;

Note: the $ following the variables LNAME and SEX indicate that they are to be read as character,

rather than as numeric variables (the default). See Chapter 3 for more information on reading

different types of raw data into SAS.

 Introduction to SAS

17

5.1.3. Importing Data from an Excel File

If you have 32-bit SAS, the Import Wizard can be used to import Excel files, provided that the

Excel files are in the form that SAS recognizes, and that they have the .xls (or .xlsx) file extension.

Do not use a data step to read in an Excel File. See Chapter 3 for the procedure outlining how to

import an Excel file using the Import Wizard if you have 32-bit SAS.

If you have 64-bit SAS, you will need to type Proc Import commands yourself, as shown below.

You can use DBMS=XLSX for files that end in .XLSX.

PROC IMPORT OUT= WORK.PULSE DATAFILE="PULSE.XLS" DBMS=XLS REPLACE;

 SHEET="pulse";

RUN;

5.1.4. Modify a Previously Created SAS Data Set

The following example shows how a new data set can be created from an existing one. When a data

statement is used followed by a set statement, the dataset included in the set statement is read

in and the dataset included in the data statement is the one that is output. Hence, an exact copy

of the class dataset is made, with no modifications.

data newclass;

 set class;

run;

The example below shows how a new data set called CLASS2 can be created from CLASS. Missing

values for the variable HEIGHT are set up, and two new variables, AGEGRP and LOGHT are

created. These changes will only be seen in the Class2 dataset; the class dataset is untouched.

data class2;

 set class;

 if height = 999 then height = .;

 if age >= 0 and age < 20 then agegrp = 1;

 if age >= 20 and age < 30 then agegrp = 2;

 if age >= 30 and age < 40 then agegrp = 3;

 if age >= 40 and age < 50 then agegrp = 4;

 if age >= 50 then agegrp = 5;

 loght=log(height);

run;

The example below adds new variables to the original data set, PULSE without creating a new

dataset. This method is risky, because if a problem occurs, the original data set may be corrupted.

 Introduction to SAS

18

data pulse;

 set pulse;

 pulsediff = pulse2-pulse1;

 pulseavg = mean(pulse1,pulse2);

run;

5.2. Proc Step

A proc step is used to carry out a SAS procedure. Proc steps start with a proc statement, which

begins with the keyword proc, and names the procedure to be run. The proc statement can have

options that control aspects of how the procedure is invoked. One of the most commonly used

options for a proc statement is the data= option, which names the SAS data set to be processed. If no

data set is specified, SAS will use the last data set that was created in the current session. Other

statements may follow the proc statement, depending on the analysis that is being run.

proc print data=class2;

run;

proc ttest data=class2;

 class sex;

 var height;

run;

5.3. Titles and Footnotes

Titles and footnotes can be used to help make output more readable. A title statement begins with

the keyword title (or title1 up to title10; title1 is equivalent to title). Titles may be up to 40

characters long, and must be enclosed in matched quotes (either single or double quotes). Be sure to

include a close-quote to match each open-quote.

 A footnote statement starts with the keyword, footnote. Once a given title or footnote statement has

been submitted, it is in effect until it is explicitly changed, by submitting another title or footnote

statement.

Note: Changing the value of a title will remove all ensuing titles. For example, you can change the

value of title2, without affecting title1, but all titles after title2 will be deleted by changing the value

of title2.

title "Descriptive Statistics for Numeric Variables";

title2 "Class2 Data Set";

footnote "Demo";

proc means data=class2;

run;

title2 "Pulse Data Set";

proc means data=pulse;

run;

 Introduction to SAS

19

5.3.1. Removing titles and footnotes

Titles and footnotes may be removed by submitting a title or footnote statement with no quoted

string following the title or footnote keyword:

title;

footnote;

5.4. SAS Names

SAS names are assigned to variables, data sets, arrays, and libraries, among other things. Names

must satisfy the following rules:

 SAS names are of different length, depending on their type:

o Variable names can be up to 32 characters

o Data set names can be up to 32 characters

o Library names, known as librefs, can only be up to 8 characters

o Array names can be up to 32 characters

o Numeric format names can be up to 32 characters

o Character format names can be up to 31 characters

 The first character of a SAS name must be a letter or underscore (_)

 Subsequent characters can only be letters, numbers, or underscores

 No blanks are allowed in SAS names

 Certain reserved names cannot be used (e.g., _all_, _numeric_, _character_, _n_).

5.5. Variable Labels

In addition to a name, a variable can be assigned a label of up to 256 characters. A variable label can

contain symbols that are not allowed in variable names, such as (, - % & > .), etc. A label statement

is used to assign labels to variables. It begins with the keyword label and can list the labels for any

number of variables, as long as the label for each variable is enclosed in quotes (double or single

quotes are allowed). You may include apostrophes in labels, as long as the label itself is enclosed in

double quotes. Be sure that each open-quote is matched by a close-quote. The label statement is

generall included in a data step (though it can be included in proc steps as well).

An example of assigning labels to SAS variables is shown below:

data class; set class;

 label lname = "Last Name"

 age = "Age in Years"

 height = "Height(in)"

 sbp = "Systolic Blood Pressure(mm Hg)";

run;

 Introduction to SAS

20

5.6. The Use of Quotes in SAS

You may use either double or single quotes in your SAS program. Double quotes are generally

recommended, because they will not be confused with apostrophes. It is essential that every open-

quote be matched by a close-quote (i.e. All quotes must be balanced). If SAS encounters an

unbalanced quote (e.g., an open-quote not balanced by a close-quote), it will give an error message,

or will simply not process the commands. Problems with unbalanced quotes may make SAS become

unresponsive. This problem may be difficult to diagnose, because often no notes will appear in the

log, and no output will be produced when expected.

NB: To fix unbalanced quotes, hit the break key, (exclamation point in the menu at the top of the

window, or control-break), fix the commands, and resubmit them. In some cases, you may need to

save your SAS commands, and restart SAS, if the problem with quotes cannot be solved by using the

Break key.

5.7. Lists of Variables

Lists of variables are often necessary in a data or proc step. A list of variables may be given by

simply naming each variable, separating the variable names by blanks, as in the example below:

var age sex height weight;

5.7.1. Numbered range list

Variables with numbers at the end of the variable names can be used in abbreviated lists. If the

variables in a list all have the same initial part (root) and the last part of the variable name is an

integer, you can use a numbered range variable list. The variable numbers must be consecutive and

ascending. Note that the variables do NOT have to be consecutive in the SAS data set.

x1-x5 is equivalent to x1 x2 x3 x4 x5

quest31-quest33 is equivalent to quest31 quest32 quest33

5.7.2. Name range list

A name range includes variables from the first to the last inclusive. The variables in the list must be

consecutive in the SAS data set (the order of variables in the SAS data set depends on the order in

which they were originally read).

age -- weight includes all variables from age through weight inclusive

age-numeric-weight includes all numeric variables from age through weight inclusive

age-character-weight includes all character variables from age through weight inclusive

 Introduction to SAS

21

5.7.3. Special SAS name lists

numeric all numeric variables in the dataset

character all character variables in the dataset

all all variables in the dataset

5.8. Comments in a SAS Program

A comment statement starts with an asterisk (*) and ends with a semicolon (;). Don’t forget the

semicolon at the end of the comment!

*this is a comment statement;

Blocks of code can be excluded by beginning the comment with /* and ending it with */ .

/*this is also a comment which may be inserted anywhere*/

The second type of comment can be used to comment out a whole block of text:

/*
proc means data=class;

run;

proc print data=class;

run;

*/

proc ttest data=class;

 class sex /*comments can be included*/;

 var height;

run;

 Introduction to SAS

22

Chapter 2

HOW TO ENTER DATA IN THE PROGRAM EDITOR

WINDOW
(commands=instream.sas)

1. Introduction
If you are planning to enter a very small amount of data, it will often be convenient to type the data

in the SAS program rather than reading it from another file. This is known as instream data. It is a

quick and easy way to enter data into SAS for an analysis.

You will need 4 basic types of statements to enter data in this fashion:

 Data

 Input

 Datalines (or cards)

 A semicolon on a line by itself to end the data

Note: You must have at least one blank between each data value. More than one blank is OK. It is

important to have something as a placeholder for each variable, even when the value is missing. A

period will serve to indicate a missing value for both numeric and character variables entered in this

way. The data do not need to be lined up exactly in columns. For example, if you wanted to enter

data from a medical exam for 5 people, you could do it as shown below.

data medexam;

input lname $ id sbp age;

datalines;

Smith 1028 135 .

Williams 1337 126 49

Brun 1829 148 56

Agassi 1553 118 65

Vernon 1626 129 60

 ;

proc print data=medexam;

run;

In the above syntax:

1. Data statement specifies the name of the output dataset to be medexam. This dataset will

automatically be stored in the Work library.

2. Input statement specifies the names of the variables in the order they exist in the instream data.

That is for every observation, SAS will expect lname followed by id followed by sbp followed by

 Introduction to SAS

23

age. These variables are expected to be numeric unless followed by a dollar sign, in which case they

are assumed to be character variables. Here, only lname is a character or string variable.

3. Datalines statement specifies that the actual data starts from the next line.

4. The next 5 lines represent the raw data, with one case per line. Every line has variables in the

order specified in the input statement. If a variable is missing (whether numeric or string), it is

specified by a period (like age for Smith).

5. After the last line of actual data, a semi-colon must be submitted in the next line to specify that

there is no more data.

TRY IT:

1. Run the same command, but make the following changes one at a time and see what

happens!

 a. Delete the period (.) from Smith’s line. That’s an example of what happens

when you forget to indicate a missing value.

 b. In William’s line, include something after 49 with a space in between. That’s

an example of what happens if you enter extra information for a specific case.

 c. Delete 118 for Agassi. That’s another example when a variable is missing,

but you do not realize or forget to specify a period in its place.

2. Entering data for more than 1 case on the same line

If you want to enter data on the same line for several cases, you can use the trailing @@ symbol:

data test;

 input x y group $ @@;

 datalines;

1 2 A 3 12 A 15 22 B 17 29 B 11 44 C 13 29 C

7 21 D 11 29 D 16 19 E 25 27 E 41 12 F 17 19 F

;

proc print data=test;

run;

 Introduction to SAS

24

THINK ABOUT IT:

1. How many cases were entered?

2. How many variables were entered?

3. Are there any string / character variables? If yes, which one(s)?

4. What is the name of the dataset being created? What library will it be saved in?

TRY IT:

1. Remove the “@@” sign from the code above and see what happens!

 Introduction to SAS

25

CHAPTER 3

HOW TO CREATE A SAS DATA SET FROM RAW

DATA FILES
(commands=readdata.sas)

1. Introduction

This handout discusses how to set up a SAS command file to create a temporary data set from a

number of different raw data file types. Because the data set that is being created is temporary, it will

be stored in the WORK library, and will be erased when the current SAS session is completed. The

commands that generate the data set must be resubmitted to SAS each time it is started to recreate

the data. However, all of the information on how to read the different types of raw data files is

equally applicable to both temporary and permanent SAS data sets.

Raw data files (sometimes called ascii files, flat files, text files or unformatted files) can come from

many different sources: from a database program, such as Access, from a spreadsheet program, such

as Excel, or from a raw data file on a CD from a government or private agency. The first step is to be

sure you know the characteristics of the raw data file. You can check the raw data by using a text

editor or word processing program. For small files you can use Windows Notepad, for larger files

you can use Microsoft Word (be sure if you open your raw data file with a word processing program,

that you save it as text only or unformatted text when you quit). To be able to read a raw data file,

you will need a codebook that gives information about the data contained in the file. The Appendix

contains codebooks for the raw data files used as examples in this chapter.

The types of raw data files discussed in this chapter are:

a) Blank separated values (.dat files)

b) Comma separated values (.csv files--these typically come from Excel)

c) Tab delimited values (.txt files--these can come from a number of different applications,

including Excel)

d) Fixed-column data (often the form of data from government agencies, or research groups, such

as ICPSR--the Inter University Consortium for Political and Social Research)

Once you have identified the type of raw data that is to be read, you can customize your command

file to read the data into SAS. The command files that read in these types of data can be very simple,

or very long and complex, depending on the number and types of variables to be read.

The part of SAS that creates a new data set is the data step. The data step for reading raw data from a

file has 3 essential statements:

 Introduction to SAS

26

 Data statement: names the data set to be created

 Infile statement: indicates the raw data file to be read

 Input statement: lists the variables to be read in the order in which they appear in the raw

data file. No variables can be skipped at the beginning of the variable list, but you may stop

reading variables before reaching the end of the list.

Other statements may be added to the data step to create new variables, carry out data

transformations, or recode variables.

2. Reading blank separated values (list or free form data)

Raw data that are separated by blanks are often called list or free form data. When this type of data is

used, each value is separated from the next by one or more blanks. If there are any missing values,

they must be indicated by a placeholder, such as a period (note that a period can be used to indicate a

missing value for either character or numeric variables). Missing values can also be denoted by a

missing value code, such as 99 or 999, or any other suitable missing data code. The data do not need

to be lined up in columns, so lines can be of unequal length, and can appear “ragged”.

Here is an excerpt of a raw data file that is separated by blanks. Notice that the values in the file are

not lined up in columns. The name of the raw data file is class.dat. Missing values are indicated by a

period (.), with a blank between periods for contiguous missing values.

Warren F 29 68 139

Kalbfleisch F 35 64 120

Pierce M . . 112

Walker F 22 56 133

Rogers M 45 68 145

Baldwin M 47 72 128

Mims F 48 67 152

Lambini F 36 . 120

Gossert M . 73 139

Here are the SAS commands that were used to read in this data:

data class;

 infile "class.dat";

 input lname $ sex $ age height sbp;

run;

Note that character variable names (lname and sex) are followed by a $. Without a $ after a variable

name, SAS assumes that the variable is numeric (the default).

 Introduction to SAS

27

THINK ABOUT IT:

If you browse through the class dataset created by the data step above, you will notice that

some of the longer names (Greenfield and Kalbfleisch) wasn’t read in completely. Do you

know why? How can you rectify this problem?

2.1 Length statement

Character variables can be from 1 to 32,767 characters long, but SAS will often assign the default

length of 8 characters, or decide on the length of a character variable based on the value in the first

case. A length statement to allows the user to specify any length that they wish for a character

variable. It is often useful to limit the lengths of character variables to 16 characters or fewer, if

possible, because many procedures in SAS will display a maximum of 16 characters in their output.

However, this rule need not apply to variables containing information such as names or addresses.

Note that the length statement comes before the input statement, so the length of the variable is

set up before the variable is read. Because LNAME is the first variable mentioned, it will be the first

variable in the data set.

data class;

 infile "class.dat";

 length lname $ 12;

 input lname $ sex $ age height sbp;

run;

3. Reading raw data separated by commas (.csv files)

Often raw data files will be in the form of CSV (Comma Separated Values) files. These files can be

created by Excel, and are very easy for SAS to read. An excerpt of a csv file called pulse.csv is

shown below. Note that the first line of data contains the variable names.

pulse1,pulse2,ran,smokes,sex,height,weight,activity

64,88,1,2,1,66,140,2

58,70,1,2,1,72,145,2

62,76,1,1,1,73,160,3

66,78,1,1,1,73,190,1

SAS commands to read in this raw data file are shown below.

data pulse;

 infile "pulse.csv" firstobs=2 delimiter = ",";

 input pulse1 pulse2 ran smokes sex height weight activity;

run;

There are several modifications to the infile statement in the previous example:

 Introduction to SAS

28

a) delimiter = "," tells SAS that commas are used to separate the values in the raw data file,

not the default, which is a blank.

b) firstobs = 2 tells SAS to begin reading the raw data file at the second row of the raw data

file, which is where the actual values begin.

Note: this data set may also be imported directly into SAS by using the SAS Import Wizard, and

selecting the file type as Comma Separated Values (*.csv). This can be done easily if your data are

in a format that SAS understands correctly. If you want to have more control over how the data are

read into SAS, use a data step to read it in.

4. Reading in raw data delimited by tabs (.txt files)

Raw data delimited by tabs may be created by Excel (saving a file with the text option) or by other

applications. You can determine if your data are separated by tabs by viewing the file in a word

processing program, such a Microsoft Word, and having the program display all formatting

characters. The example below shows how tab-separated data appear when viewed without the tabs

visible. This raw data file is called clinic.txt:

 Introduction to SAS

29

id group date sbp wt sideffct

131 1 04/02/1995 129 150 1

131 1 05/05/1995 118 154 1

131 1 06/01/1995 119 152 0

131 1 07/10/1995 116 151 1

131 1 08/14/1995 111 153 0

131 1 10/12/1995 109 148 1

105 2 07/15/1995 145 188 0

105 2 08/22/1995 147 185 1

105 2 11/28/1995 133 184 0

105 2 12/20/1995 129 185 0

222 1 03/14/1995 159 201 0

You can display the tabs in the data by clicking on the ¶ symbol to display formatting in the text:

The infile statement must be modified to tell SAS that the delimiters are tabs. Since there is no

character equivalent of tab, the hexadecimal equivalent of tab (09 in hex) is indicated in the

delimiter = option, as shown below:

data clinic;

 infile "clinic.txt" firstobs=2 delimiter="09"X;

 input id group date $ sbp wt sideffct;

run;

Note that DATE has been read as a character variable, which does not allow us to do date math using

this variable. The example below shows how to read in DATE using an informat, and display it as a

date, using a format statement.

data clinic;

 infile "clinic.txt" dsd missover firstobs=2 delimiter="09"X ;

 input id group date :mmddyy8. sbp wt sideffct;

 format date mmddyy10.;

run;

proc print data=clinic;

run;

 Introduction to SAS

30

Partial output from these commands is shown below:

 Obs id group date sbp wt sideffct

 1 131 1 04/02/1995 129 150 1

 2 131 1 05/05/1995 118 154 1

 3 131 1 06/01/1995 119 152 0

 4 131 1 07/10/1995 116 151 1

5. Reading raw data that are aligned in columns

Raw data may be aligned in columns, with each variable always in the same location. There may or

may not be blanks between the values for given variables. An example is shown below. This is an

excerpt from the raw data file: marflt.dat:

1........2.........3.........4........

123456789012345678901234567890123456789012345678 --- Column numbers

182030190 8:21LGAYYZ 366 458 390104 16 3123178

114030190 7:10LGALAX2,475 357 390172 18 6196210

20203019010:43LGAORD 740 369 244151 11 5157210

219030190 9:31LGALON3,442 412 334198 17 7222250

43903019012:16LGALAX2,475 422 267167 13 5185210

Because there are no blanks separating values in this raw data file, the data must be read into SAS in

a manner that identifies the column location of each variable.

5.1 Column-style input
To read data that are lined up in columns, the input statement is set up by listing each variable

followed by the column-range in which it can be found. Character variables should be followed by a

$, and then the column-range. It is possible when using this type of input to skip to any desired

columns, or to go to previous locations in a given row of data to read in values. To be sure which

columns should to be read for each variable, you will need to have a code sheet that gives the

column location of each of the variables. Many large data sets are documented in this manner.

Here is an example of a command file to read in raw data from marflt.dat. Notice that not all values

are read in this example. For example, columns 4 to 14 and then 21 to 33 are skipped. Proc print is

also used to print out the marflt data set.

data marflt;

 infile "marflt.dat" ;

 input flight 1-3 depart $ 15-17 dest $ 18-20 boarded 34-36;

run;

proc print data=marflt;

run;

 Introduction to SAS

31

6. Infile Options for SPECIAL SITUATIONS

Sometimes your data will require special options for it to be read correctly into SAS. The infile

statement allows a number of options to be specified. These infile options may appear in any order in

the infile statement, after the raw data file is specified.

6.1. The missover option

The missover option is used to prevent SAS from going to the next line to complete a case if it

did not find enough values on a given line of raw data. The missover option will often correct

problems in reading raw data that are separated by blanks, when the number of cases reported by

SAS to be in your data set is less than expected.

In the example below, the raw data file "huge.dat" has 400 lines in it, but SAS creates a dataset with

only 200 observations, as shown in the SAS NOTE from the SAS Log below.

data huge;

 infile "huge.dat";

 input v1-v100;

run;

The above commands result in the following note in the SAS log:

NOTE: 400 records were read from the infile "huge.dat".

 The minimum record length was 256.

 The maximum record length was 256.

 One or more lines were truncated.

NOTE: SAS went to a new line when INPUT statement reached past the end of a

 line.

NOTE: The data set WORK.HUGE has 200 observations and 100 variables.

The addition of the missover option on the infile line corrects this problem.

data huge;

 infile "huge.dat" missover;

 input v1-v100;

run;

NOTE: The infile "huge.dat" is:

 FILENAME=C:\kwelch\workshop\data\huge.dat,

 RECFM=V,LRECL=256

NOTE: 400 records were read from the infile "huge.dat".

 The minimum record length was 256.

 The maximum record length was 256.

 One or more lines were truncated.

NOTE: The data set WORK.HUGE has 400 observations and 100 variables.

NOTE: The DATA statement used 0.59 seconds.

 Introduction to SAS

32

However, there is still a problem in the data, as can be seen in the output from proc means (there are

zero cases for the variables v86 to v100.

Variable N Mean Std Dev Minimum Maximum

 V69 400 0.4850000 0.5004008 0 1.0000000

 V70 400 0.4775000 0.5001190 0 1.0000000

 V71 400 0.4825000 0.5003194 0 1.0000000

 V72 400 0.5125000 0.5004697 0 1.0000000

 V73 400 0.5050000 0.5006011 0 1.0000000

 V74 400 0.5025000 0.5006199 0 1.0000000

 V75 400 0.5150000 0.5004008 0 1.0000000

 V76 400 0.4850000 0.5004008 0 1.0000000

 V77 400 0.4600000 0.4990216 0 1.0000000

 V78 400 0.4925000 0.5005699 0 1.0000000

 V79 400 0.5175000 0.5003194 0 1.0000000

 V80 400 0.5450000 0.4985945 0 1.0000000

 V81 400 0.5000000 0.5006262 0 1.0000000

 V82 400 0.5275000 0.4998684 0 1.0000000

 V83 400 0.4925000 0.5005699 0 1.0000000

 V84 400 0.4800000 0.5002255 0 1.0000000

 V85 400 0.5050000 0.5006011 0 1.0000000

 V86 0

 V87 0

 V88 0

 V89 0

 V90 0

 V91 0

 V92 0

 V93 0

 V94 0

 V95 0

 V96 0

 V97 0

 V98 0

 V99 0

 V100 0

6.2. Using LRECL for very long lines of raw data

If your raw data file has very long lines (longer than the default of 256 characters in Windows), you

will need to use the lrecl option on the infile statement. The lrecl (logical record length) option tells

SAS the longest length (the longest number of characters) that any line in the raw data could have.

If your data file has more than 256 characters in Windows you will need to give an lrecl statement..

(Note: the default lrecl differs for different operating systems). To determine the lrecl you will

need, count characters by counting each letter, number, space, period or blank in your raw data line.

If you don't know the exact length, guess a value that is much larger than you need. You cannnot go

wrong by giving an lrecl value that is too large. Here is an example of reading in a raw data file that

has a logical record length that is set at 2000 (although the actual lrecl is only 300).

 Introduction to SAS

33

data huge;

 infile "huge.dat" missover lrecl=2000;

 input v1-v100;

run;

NOTE: The infile "huge.dat" is:

 FILENAME=C:\kwelch\workshop\data\huge.dat,

 RECFM=V,LRECL=2000

NOTE: 400 records were read from the infile "huge.dat".

 The minimum record length was 300.

 The maximum record length was 300.

NOTE: The data set WORK.HUGE has 400 observations and 100 variables.

NOTE: The DATA statement used 0.48 seconds.

Now, the data set now has the required 400 observations, and that all variables have values, as

shown in the output from proc means below:

 Variable N Mean Std Dev Minimum Maximum

 V81 400 0.5000000 0.5006262 0 1.0000000

 V82 400 0.5275000 0.4998684 0 1.0000000

 V83 400 0.4925000 0.5005699 0 1.0000000

 V84 400 0.4800000 0.5002255 0 1.0000000

 V85 400 0.5050000 0.5006011 0 1.0000000

 V86 400 0.5000000 0.5006262 0 1.0000000

 V87 400 0.5000000 0.5006262 0 1.0000000

 V88 400 0.5350000 0.4993981 0 1.0000000

 V89 400 0.4875000 0.5004697 0 1.0000000

 V90 400 0.5250000 0.5000000 0 1.0000000

 V91 400 0.4850000 0.5004008 0 1.0000000

 V92 400 0.4700000 0.4997242 0 1.0000000

 V93 400 0.4875000 0.5004697 0 1.0000000

 V94 400 0.5025000 0.5006199 0 1.0000000

 V95 400 0.5050000 0.5006011 0 1.0000000

 V96 400 0.4425000 0.4973048 0 1.0000000

 V97 400 0.4975000 0.5006199 0 1.0000000

 V98 400 0.5175000 0.5003194 0 1.0000000

 V99 400 0.4875000 0.5004697 0 1.0000000

7. Checking your data after it has been read into SAS

It is critically important to check the values in your SAS data set before proceeding with your

analysis! Just because the data were read into SAS does not guarantee that they were read correctly.

Data checking should be the first step before moving on to any statistical analyses.

7.1. Check the log

After reading raw data into SAS, check the log to verify that the number of cases that were read

matches what it should be, and that the data set has the number of cases that you expect. If you

have fewer cases than you expect, check your infile statement, you might want to add a missover

 Introduction to SAS

34

option. Check the input statement also, to be sure that it is correct. The log will also alert you to

any problems that SAS encountered in reading the data. SAS will print warnings (a limited

number of them) indicating if there are problems in the data that you have read in. Save the log

if you are having trouble reading your data. It is the best way to figure out how to remedy any

problems!

7.2. Run descriptive statistics using proc means to check the data
Simple descriptive statistics are very easy to produce using proc means. The output from this

procedure will give you several very important pieces of information. First, the minimum and

maximum can be checked to see if they conform to the values that make sense for the variables

that you are reading. Second, check the n (i.e., sample size) for each variable. The n will tell you

if there are many missing values for a particular variable and may alert you to possible problems

with the data that should be addressed.

7.3. Check the distributions of continuous variables with a

histogram or box and whiskers plot
This can be done using SAS Proc Univariate, proc SGplot. The histogram and box and whiskers

plot will give you an idea if there are outliers that should be checked and the general shape of the

distribution.

7.4. Check the values of categorical variables with proc freq

This is a useful way to check categorical variables that can have a limited number of values.

Knowing the values that occur can help to determine if there were any errors in reading the data,

and knowing the number of cases in each category can help to understand the data.

TRY IT:

Pick any file in the RawData folder and try importing it into SAS.

 Introduction to SAS

35

Chapter 3 Addendum:

How to Import an Excel File

Note: This works only for 32-bit windows having 32-bit Excel. If you have 64-bit windows and 32-

bit Excel, you will need to type the commands to import the data, as shown in Chapter 1.

Go to the File Menu and select Import Data…Select the type of data file that you would like to

import from the pull-down menu.

Click on the “Next>” button to proceed.

In the dialog box that opens, browse to the Excel file that you wish to open, and click on the “Open”

button.

 Introduction to SAS

36

The filename that you have chosen will appear in the browse dialog box.

Click on “OK”.

In the next dialog box, you will need to select the table/sheet that you want to import from the pull-

down list. In this example, we are selecting the table named “march”, which is in fact, the only sheet

in this workbook.

 Introduction to SAS

37

Click on “Next>” to proceed.

At this point, you will be taken to a dialog box that allows you to save the SAS data set to a library.

The default temporary library “WORK” will be automatically filled in for you, but you need to type

the data set name. In this case, we are saving the data set as WORK.MARCH.

 Introduction to SAS

38

At this point, you have two choices:

 If you click on “Finish”, the data set will be saved, and you can proceed to work with it.

 If you click on “Next>”, you will go to the following dialog box, where you will have a

chance to save SAS commands to be used to import the data set at a later time.

You can now click on “Finish” to complete importing the data set.

Check the SAS Log. You should see the following message:

NOTE: WORK.MARCH data set was successfully created.

If you saved your commands in the previous step, you can bring them into your SAS enhanced

editor, by going to File…Open Program… and browsing to the command file that you saved.

The command file is shown below:

PROC IMPORT OUT= WORK.March

 DATAFILE= "C:\TEMP\labdata\MARCH.XLS"

 DBMS=EXCEL REPLACE;

 SHEET="march";

 GETNAMES=YES;

 MIXED=NO;

 SCANTEXT=YES;

 USEDATE=YES;

 SCANTIME=YES;

RUN;

 Introduction to SAS

39

CHAPTER 4

SIMPLE DESCRIPTIVE STATISTICS USING SAS

PROCEDURES
 (commands=descript.sas)

1. Introduction

This chapter covers labeling variables/values and the use of SAS procedures to get simple

descriptive statistics and to carry out a few basic statistical tests. The procedures introduced are:

 Proc Print

 Proc Contents

 Proc Means

 Proc Freq

 Proc Univariate

2. Creating the Pulse Data Set

Commands to read the raw data file, PULSE.DAT, using a data step are shown below. The codebook

of this dataset can be found in the Appendix.

data pulse;

 infile "pulse.dat";

 input pulse1 pulse2 ran smokes sex height weight activity;

run;

Alternatively, you can import the Excel file, PULSE.XLS, by using the SAS Import Wizard.

Note: if you use the data step commands to read in the raw data, the variables will not have any

labels, but if you import the data from Excel, SAS will give each variable a label that corresponds to

the name of the variable on the first row of the Excel file.

3. Labeling the Variables and Values

Assigning variable labels and value labels can be done within a data step. We use a “set” statement

to open an existing SAS dataset.

Value labels are created as formats by using the proc format procedure. Assigning value labels does

not change the numeric value of the variable. However, when you print this variable or plot it, the

labels (e.g., “Male” or “Female” for sex variable) can be displayed instead of the numeric values

(“1” or “2”). In this example the formats are saved in the work library.

 Introduction to SAS

40

proc format;

 value sexfmt 1='Male' 2='Female';

 value smkfmt 1='Yes' 2 = 'No';

run;

data pulse;

set pulse;

 label pulse1 = "Resting pulse, rate per minute"

 pulse2 = "Second pulse, rate per minute";

format sex sexfmt. smokes smkfmt.;
run;

4. Proc Print

Proc Print can be used to view the contents of a SAS data set in the output window. Proc Print is

named somewhat deceptively, because it does not actually send data to a printer, but simply lists the

values of each variable in the output window. To get a listing of all cases and all variables in a data

set, use the following syntax:

proc print data = pulse;

run;

To list the first 6 observations in the data set, use the (obs=) data set option, immediately following

the data set name. This options is helpful when your dataset is huge and you only want to print out a

few cases.

proc print data = pulse(obs=6);

run;

The cases that are listed can be restricted by using combinations of the firstobs= and obs= data set

options. The firstobs= data set option tells SAS the first observation in the data set to process. The

obs= data set option tells SAS the last observation to process. To list observations 82 through 85, the

following commands could be used.

proc print data = pulse (firstobs=82 obs=85);

run;

Obs pulse1 pulse2 ran smokes sex height weight activity

 82 78 78 2 2 2 67 115 2

 83 68 68 2 2 2 69 150 2

 84 72 68 2 2 2 68 110 2

 85 82 80 2 2 2 63 116 1

The variables that are printed in proc print can be restricted by giving a variable list in a var

statement after the proc print statement. The var statement can use any method of listing variables

that SAS allows, including numbered range, name range, or special lists of variables (See Chapter 1

for more information on variable lists.) Variables will be printed in the order they are listed, and the

 Introduction to SAS

41

order need not follow the order of the variables in the data set. Some examples of listing variables

are shown below:

proc print data=pulse;

 var ran height pulse1;

run;

proc print data=pulse;

 var sex -- activity;

run;

To get a listing of the values in a data set with the variable labels (if any) displayed, use the label

option:

proc print data = pulse label;

 var pulse1 sex -- activity;

run;

5. Proc Contents

This procedure gives information (meta-data) on a SAS data set, including the name of the data set,

the number of observations, the names of variables, the type of each variable (numeric-num or

character-char), and any labels or formats that have been assigned to variables. By default, the

variables are listed in alphabetic order. The position of each variable in the data set is listed in the #

column of the output. If the data set has been sorted, information about the sorting variable(s) is also

displayed. A simple example of Proc Contents is shown in the example below.

proc contents data = pulse;

run;

 Introduction to SAS

42

 The CONTENTS Procedure

 Data Set Name WORK.PULSE Observations 92

 Member Type DATA Variables 8

 Engine V9 Indexes 0

 Created Thursday, August 03, 2006 11:03:38 AM Observation Length 64

 Last Modified Thursday, August 03, 2006 11:03:38 AM Deleted Observations 0

 Protection Compressed NO

 Data Set Type Sorted NO

 Label

 Data Representation WINDOWS_32

 Encoding wlatin1 Western (Windows)

 Engine/Host Dependent Information

 Data Set Page Size 8192

 Number of Data Set Pages 1

 First Data Page 1

 Max Obs per Page 127

 Obs in First Data Page 92

 Number of Data Set Repairs 0

 File Name C:\SAS Temporary Files_TD1284\pulse.sas7bdat

 Release Created 9.0101M3

 Host Created XP_PRO

 Alphabetic List of Variables and Attributes

 # Variable Type Len Label

 8 activity Num 8 activity

 6 height Num 8 height

 1 pulse1 Num 8 pulse1

 2 pulse2 Num 8 pulse2

 3 ran Num 8 ran

 5 sex Num 8 sex

 4 smokes Num 8 smokes

 7 weight Num 8 weight

If you wish to get a list of variables in numeric order i.e. in the order that they exist in the dataset,

use the varnum option:

proc contents data = pulse varnum;

run;

These commands list the variables in the format shown below:

 Variables in Creation Order

 # Variable Type Len Label

 1 pulse1 Num 8 pulse1

 2 pulse2 Num 8 pulse2

 3 ran Num 8 ran

 4 smokes Num 8 smokes

 5 sex Num 8 sex

 6 height Num 8 height

 7 weight Num 8 weight

 8 activity Num 8 activity

 Introduction to SAS

43

6. Proc Means

This procedure generates simple descriptive statistics for numeric variables in a SAS data set. The

following syntax is the simplest version of Proc Means. By default it produces descriptive statistics

for all numeric variables in the specified data set, in the order in which they were originally entered.

The default statistics produced are the n, mean, standard deviation, minimum, and maximum.

proc means data=pulse;

run;

6.1. Getting Descriptive Statistics for Selected Variables

SAS will give descriptive statistics for all numeric variables in the data set by default. To get

descriptive statistics for specific variables, list them, separated by blanks. SAS will display the

variables in the order that you specify.

proc means data = pulse;

 var height weight pulse1;

run;

You can also use lists of variables as described in Chapter 1. For example, to get a list of all

variables from RAN through ACTIVITY, inclusive, use the following commands:

proc means data = pulse;

 var ran -- activity;

run;

6.2. Getting Descriptive Statistics for Groups of Cases Using the

Class Statement

Proc Means can produce statistics for subgroups of cases by using a CLASS statement. The data do

not need to be sorted to have this method work. SAS will produce one output table with separate

statistics for each level of the class variable, RAN. Be sure that the class variable you specify is one

that has only a limited number of levels, so the output is not too huge.

proc means data = pulse;

 class ran;

run;

 Introduction to SAS

44

 The MEANS Procedure
 N

 ran Obs Variable Label N Mean Std Dev Minimum Maximum

 1 35 pulse1 pulse1 35 73.6000000 11.4357540 58.0000000 100.0000000

 pulse2 pulse2 35 92.5142857 18.9432146 58.0000000 140.0000000

 smokes smokes 35 1.6571429 0.4815940 1.0000000 2.0000000

 sex sex 35 1.3142857 0.4710082 1.0000000 2.0000000

 height height 35 69.7714286 3.3701607 61.0000000 75.0000000

 weight weight 35 151.7142857 22.6281597 112.0000000 195.0000000

 activity activity 35 2.1142857 0.5297851 1.0000000 3.0000000

 2 57 pulse1 pulse1 57 72.4210526 10.8165669 48.0000000 94.0000000

 pulse2 pulse2 57 72.3157895 9.9483629 50.0000000 94.0000000

 smokes smokes 57 1.7192982 0.4533363 1.0000000 2.0000000

 sex sex 57 1.4210526 0.4981168 1.0000000 2.0000000

 height height 57 68.1052632 3.7017574 62.0000000 75.0000000

 weight weight 57 141.1228070 23.6952905 95.0000000 215.0000000

 activity activity 57 2.1228070 0.5997075 1.0000000 3.0000000

You can use more than one variable in the class statement, as in the example below. In this case,

SAS will produce output statistics for each level of RAN, and for each level of ACTIVITY within

RAN.

proc means data = pulse;

 class ran activity;

run;

6.3. Getting Additional Statistics from Proc Means

Additional statistics can be requested by the use of keywords in the proc statement. The list below

shows the statistics that can be requested from Proc Means.

N: Number of nonmissing cases.

NMISS: Number of missing cases.

MEAN: Sample mean.

MEDIAN: 50
th

 percentile. Also available: P1, P5, P10, P25, P75, P90, P95,P99

MODE: Most frequent value

STD: Standard deviation

MIN: Minimum value.

MAX: Maximum value.

RANGE: Range of values.

SUM: Sum of all values.

VAR: Variance.

USS: Uncorrected Sum of Squares.

CSS: Corrected Sum of Squares.

CV: Coefficient of variation.

STDERR: Standard error of the mean.

 Introduction to SAS

45

T: student's t statistic for testing if the population mean is equal to zero.

PRT: The p-value of the t-statistic testing whether the population mean is zero.

SUMWGT: The sum of the weights.

SKEWNESS: Skewness.

KURTOSIS: Kurtosis.

CLM: Two-sided confidence limit for the mean. 95% CI is the default.

LCLM: Lower one-sided confidence limit for the mean. 95% one-sided CI is the default.

UCLM: Upper one-sided confidence limit for the mean. 95% one-sided CI is the default.

Any number of statistics can be requested. You must list all statistics that are desired, because the

defaults will no longer be in effect once you begin listing statistics to display. Here are some

examples of using Proc Means, with selected statistics being requested:

proc means data = pulse n nmiss mean std min max median;

 var pulse1 pulse2;

run;

The following commands will produce a 95% 2-sided confidence limit for the mean of the variables

PULSE1 and PULSE2.

proc means data = pulse n mean clm;

 var pulse1 pulse2;

run;
 N

Variable N Miss Mean Std Dev Minimum Maximum Median

pulse1 92 0 72.8695652 11.0087052 48.0000000 100.0000000 71.0000000

pulse2 92 0 80.0000000 17.0937943 50.0000000 140.0000000 76.0000000

7. Proc Freq

This procedure produces frequency tables for either character or numeric variables, and can also

produce cross-tabulations of two variables, as well as calculate many statistics for two-way tables.

Note: this procedure is most useful for categorical variables with not too many categories. In

general it is not recommended that this procedure be used for continuous variables that can have

many possible values, which may generate a great deal of output.

7.1. Oneway frequencies

The example below shows how to produce oneway frequency tables.

proc freq data = pulse;

 tables ran activity;

run;

 Introduction to SAS

46

 RAN

 Cumulative Cumulative

 RAN Frequency Percent Frequency Percent

 1 35 38.0 35 38.0

 2 57 62.0 92 100.0

 ACTIVITY

 Cumulative Cumulative

 ACTIVITY Frequency Percent Frequency Percent

 --

 1 10 10.9 10 10.9

 2 61 66.3 71 77.2

 3 21 22.8 92 100.0

You can perform a goodness of fit test on one-way tables. Specify the proportions you wish to test

by using the testp= option in the tables statement. This enables you to specify any proportions that

you wish for each level of the test variable. But the proportions have to add up to either 100 or 1.00.

proc freq data=pulse;

 tables activity /chisq testp=(.20, .50, .30);

run;
 The FREQ Procedure

 activity

 Test Cumulative Cumulative

 activity Frequency Percent Percent Frequency Percent

 1 10 10.87 20.00 10 10.87

 2 61 66.30 50.00 71 77.17

 3 21 22.83 30.00 92 100.00

 Chi-Square Test

 for Specified Proportions

 Chi-Square 10.3043

 DF 2

 Pr > ChiSq 0.0058

 Sample Size = 92

7.2. Two-Way Cross-Tabulations

Two-way frequency tables, or cross-tabulations, can also be generated by listing 2 variables with an

asterisk (*) between them. List the row variable first, followed by the column variable:

proc freq data = pulse;

 tables sex * activity;

run;

 Introduction to SAS

47

 Table of sex by activity

 sex activity

 Frequency|

 Percent |

 Row Pct |

 Col Pct | 1| 2| 3| Total

 ---------+--------+--------+--------+

 1 | 6 | 35 | 16 | 57

 | 6.52 | 38.04 | 17.39 | 61.96

 | 10.53 | 61.40 | 28.07 |

 | 60.00 | 57.38 | 76.19 |

 ---------+--------+--------+--------+

 2 | 4 | 26 | 5 | 35

 | 4.35 | 28.26 | 5.43 | 38.04

 | 11.43 | 74.29 | 14.29 |

 | 40.00 | 42.62 | 23.81 |

 ---------+--------+--------+--------+

 Total 10 61 21 92

 10.87 66.30 22.83 100.00

The count (Frequency) in each cell is displayed first, followed by the total percent (Percent, which

adds to 100% across all cells in the table), the row percent (Row Pct, which adds to 100% across a

given row), and column percent (Col Pct, which adds to 100% down a given column). To omit any

of these items, specify options in the tables statement, as shown below. To request a chi-square test

to examine the association between two categorical variables, add the “chisq” to the tables

statement. Expected values in each cell can be obtained by using the expected option.

proc freq data = pulse;

 tables sex * activity / nocol nopercent expected chisq;

run;
 Table of sex by activity

 sex activity

 Frequency|

 Expected |

 Row Pct | 1| 2| 3| Total

 ---------+--------+--------+--------+

 Male | 6 | 35 | 16 | 57

 | 6.1957 | 37.793 | 13.011 |

 | 10.53 | 61.40 | 28.07 |

 ---------+--------+--------+--------+

 Female | 4 | 26 | 5 | 35

 | 3.8043 | 23.207 | 7.9891 |

 | 11.43 | 74.29 | 14.29 |

 ---------+--------+--------+--------+

 Total 10 61 21 92

 Statistics for Table of sex by activity

 Statistic DF Value Prob

 --

 Chi-Square 2 2.3641 0.3067

 Likelihood Ratio Chi-Square 2 2.4827 0.2890

 Mantel-Haenszel Chi-Square 1 1.4339 0.2311

 Phi Coefficient 0.1603

 Contingency Coefficient 0.1583

 Cramer's V 0.1603

 Introduction to SAS

48

7.3. Cross-Tabulations for three or more Variables

To get a cross-tabulation of three variables (i.e., two variables stratified by a third variable), use

syntax similar to that shown below. This syntax will produce two separate tables of SEX by

ACTIVITY, one for each level of RAN. This type of syntax can be extended to produce higher-way

cross-tabulations. The table produced by SAS will always be formed by the last two variables

listed. All prior variables will be used to form the strata.

proc freq data = pulse;

 tables ran*sex*activity;

run;

8. Proc Univariate

This procedure is useful for getting in-depth numeric descriptions and graphical information on the

distribution of a continuous numeric variable. Proc Univariate, by default, generates simple

descriptive statistics, information on selected quantiles (e.g., the median, 5
th

, 25
th

 , 75
th

, and 95
th

percentiles), and one-sample tests of H0: =0, including a one-sample t-test, sign test and one-

sample Wilcoxon signed-rank test. Simple syntax to invoke Proc Univariate and the default output

are shown below:

proc univariate data = pulse;

 var pulse1;

run;

 The UNIVARIATE Procedure

 Variable: pulse1

 Moments

 N 92 Sum Weights 92

 Mean 72.8695652 Sum Observations 6704

 Std Deviation 11.0087052 Variance 121.191591

 Skewness 0.39738899 Kurtosis -0.4424433

 Uncorrected SS 499546 Corrected SS 11028.4348

 Coeff Variation 15.1074117 Std Error Mean 1.14773686

 Basic Statistical Measures

 Location Variability

 Mean 72.86957 Std Deviation 11.00871

 Median 71.00000 Variance 121.19159

 Mode 68.00000 Range 52.00000

 Interquartile Range 16.00000

 Tests for Location: Mu0=0

 Test -Statistic- -----p Value------

 Student's t t 63.48978 Pr > |t| <.0001

 Sign M 46 Pr >= |M| <.0001

 Signed Rank S 2139 Pr >= |S| <.0001

 Introduction to SAS

49

 Quantiles (Definition 5)

 Quantile Estimate

 100% Max 100

 99% 100

 95% 92

 90% 90

 75% Q3 80

 50% Median 71

 25% Q1 64

 10% 60

 5% 58

 1% 48

 0% Min 48

 Extreme Observations

 ----Lowest---- ----Highest---

 Value Obs Value Obs

 48 54 92 62

 54 51 94 72

 54 42 96 25

 58 75 96 31

 58 50 100 29

Proc Univariate displays the values of the five highest and five lowest cases by default. If you wish

these values to be identified by the value of a particular variable, use the ID statement.

proc univariate data = pulse;

 var pulse2;

 id ran;

run;
 Extreme Observations

 -------Lowest------- -------Highest------

 Value ran Obs Value ran Obs

 50 2 51 116 1 31

 54 2 54 118 1 10

 56 2 75 118 1 32

 56 2 42 128 1 35

 58 2 50 140 1 25

The histogram statement will cause SAS to produce a histogram in the graph window. The qqplot

statement will produce a normal qqplot that can be used to compare the distribution of PULSE1 to

that of a normal distribution with the same mean and standard deviation (mu=est sigma=est). These

commands will produce all the descriptive statistics shown above and the high-quality graphs in the

SAS/Graph window:

proc univariate data = pulse;

 histogram;

 qqplot / normal (mu=est sigma=est);

 var pulse1;

run;

 Introduction to SAS

50

A test for normality can be generated by using the normal option in the Proc Univariate statement:

proc univariate data = pulse plot normal;

 var pulse1;

run;
 Tests for Normality

 Test --Statistic--- -----p Value------

 Shapiro-Wilk W 0.972267 Pr < W 0.0469

 Kolmogorov-Smirnov D 0.10566 Pr > D 0.0125

 Cramer-von Mises W-Sq 0.166224 Pr > W-Sq 0.0154

 Anderson-Darling A-Sq 0.981315 Pr > A-Sq 0.0142

You can get information about a continuous variable, stratified by a categorical variable by using a

class statement.

proc univariate data=pulse;

 class ran;

 var pulse2;

 histogram;

run;

52 60 68 76 84 92 100

0

5

10

15

20

25

30

P
e
rc

e
n
t

Resting pulse, rate per minute

-3 -2 -1 0 1 2 3

40

50

60

70

80

90

100

R
e
s
ti
n
g
 p

u
ls

e
,

ra
te

 p
e
r

m
in

u
te

Normal Quantiles

 Introduction to SAS

51

CHAPTER 5

HOW TO USE A PERMANENT SAS DATA SET
(commands=useperm.sas)

1. Introduction

We have been working only with temporary SAS datasets so far. Temporary datasets are those that

get erased from the SAS memory (and from your computer) as soon as we close the current session.

The next time you open SAS, these temporaray datasets don’t exist anymore and have to be re-

created.

How did we assign a temporary status to these datasets? We did so by referring to them only by the

dataset name, say ‘clinic’ or ‘pulse’. When we specify a dataset only by its name, SAS automatically

saves it in the WORK library, which is a temporary library and is cleared when SAS is closed. If we

want to save a dataset in a permanent location, we should refer to the dataset with a two-level name:

libname.datasetname

For example, ‘mylib.clinic’ refers to a dataset called clinic that is saved in a permanent library called

mylib. Prior to using ‘mylib’ as the library name for a dataset, we must assign a library reference

(libref) to this library. That is, we must specify what physical folder on our computer is being

referred to as ‘mylib. That can be done through a libname statement like:

libname mylib "C:\Users\kwelch\Desktop\labdata";

OR:

libname sasdata2 "C:\Users\kwelch\Desktop\sasdata2";

Library:

A library is a location on your computer (e.g. a folder or directory) where you store SAS data sets.

The libname statement assigns an alias (called a libref) to the directory that you specify. The libref

must be 8 characters or less.

A library refers to the entire folder (not to an individual data set). One library can have several data

sets stored in it, and there can also be other file types stored in that folder.

Default library:

If you do not specify a library for a data set, the default is the WORK library. If you have no data

sets in WORK, and no library is specified, SAS will produce an error stating that there is no default

data set to use.

 Introduction to SAS

52

2. Instructions for Windows

Suppose you have a number of SAS data sets stored in the sasdata2 folder (e.g.

FITNESS.SAS7BDAT, EMPLOYEE.SAS7BDAT, BUSINESS.SAS7BDAT, etc.). You need to

submit a libname statement from the program editor window for SAS to be able to utilize these data

sets. The libref assigned in the statement below is sasdata. The folder containing the data sets is on

the desktop and is "C:\Users\kwelch\Desktop\sasdata2 ", but it could point to any pre-existing

folder.

libname sasdata2 "C:\Users\kwelch\Desktop\sasdata2";

SAS will not produce any output in the output window as a result of submitting these commands, but

you will see the note shown below in the SAS Log. Be sure to check the SAS log after submitting a

libname statement.

Once the libname statement has been submitted (no run statement is needed), you will be able to use

any of the SAS data sets in the folder. You will need to specify the data set to use with the data=

option for each procedure. The libname statement will be in effect for the entire SAS session, and so

it only needs to be submitted once.

To use a particular data set, you must use the data= option, and specify a two-level name for the

data set (e.g., sasdata.fitness). No spaces are allowed in the two-level data set name. The data set that

you specify with the data= option is only in effect for a given proc and must be repeated for each

proc, as shown in the example below. The file extension is not specified. SAS assumes that the file

extension will conform to the rules for file extensions that correspond to the engine you specified.

libname sasdata2 "C:\Users\kwelch\Desktop\sasdata2";

title "Using permanent datasets";

proc means data=sasdata2.cars;

run;

proc print data=sasdata2.cars;

run;

proc freq data=sasdata2.cars;

 tables origin;

run;

You can have an unlimited number of libname statements in a single SAS session, to allow you to

utilize SAS data sets from different locations.

libname sasdata2 "C:\Users\kwelch\Desktop\sasdata2";

libname mylib "C:\Users\kwelch\Desktop\labdata";

 Introduction to SAS

53

3. Assigning the Library by Using the New Library Icon

To make sure a library will still be assigned in a later session, you can set it up using the New

Library icon in the menus, and select “Enable at startup”.

4. How to create a temporary SAS data set from a

permanent one

Many SAS users simply create a temporary SAS data set to use in a given session. This way they

can avoid making any inadvertent errors to their permanent dataset:

libname sasdata2 "C:\Users\kwelch\Desktop\sasdata2";

data business;

 set sasdata2.business;

run;

title "Business data set";

proc means data=business;

run;

 Introduction to SAS

54

You can also create a temporary SAS data set by pointing to the folder and file location, as shown

below:

data iris;

 set "C:\Users\kwelch\Desktop\sasdata2\iris.sas7bdat";

run;

title "Iris data set";

proc means data=iris;

run;

proc print data=iris;

run;

If all your work in the current session runs properly and you have made changes to the dataset that

you wish to keep, you can save the changes to a permamnet dataset, just by over-writing the

permanent datset in the sasdata library with this temporary dataset:

data sasdata2.business;

 set business;

run;

5. How to de-assign a library

Use the libname statement with the option clear to de-assign a library. The library assignment will

be cleared, but the data sets in the library will not be affected. Do not specify an engine here.

libname mylib clear;

 Introduction to SAS

55

CHAPTER 6

HOW TO CREATE A PERMANENT SAS DATA SET
(commands=saveperm.sas)

1. Introduction

A permanent SAS data set is saved to a location where it can be retrieved and used later, without

having to recreate it each time you restart SAS. In addition, transformations, recodes and other data

manipulations are saved and do not need to be re-run every time the data set is used. Several people

can share the same permanent data set over a network.

There are two steps necessary to create a permanent SAS data set:

 Assign a library.

 Create the data. Use a two-level name when creating the data set, of the form:

libname.datasetname

A library is a location on your computer (e.g. a folder or directory) where SAS data sets and other

SAS files, such as formats catalogs, are stored. A library refers to the entire folder and not to

individual data sets. One library can have several data sets stored in it. The libname statement is

used to define a library.

2. Create a Permanent SAS data set using a Data Step

Suppose you wish to store your SAS data sets in the "C:\Users\kwelch\Desktop\sasdata2" directory.

First submit a libname statement from the program editor. The libname statement assigns a name

(called a libref) to the directory that you specify.

Note: the libname statement must point to a folder that already exists. Be sure to create the

folder if it does not already exist.

libname sasdata2 "C:\Users\kwelch\Desktop\sasdata2";

data sasdata2.pulse;

 infile "pulse.dat";

 input pulse1 pulse2 ran smokes sex height weight activity;

 pulsedif = pulse2 - pulse1;

 htm = (height * 2.54)/100;

 wtkg = weight * .39;

 bmi = wtkg / htm**2;

run;

 Introduction to SAS

56

This SAS data set will now be permanent, because it was saved with a two-level name

(sasdata2.pulse) that specified a library other than WORK. The data set, sasdata2.pulse, will contain

all variables originally read into SAS using the input statement, plus the new variables PULSEDIF,

HTCM, and WTKG. This data set will now be the default, because it was the most recent one

created in the current session, so it can be used without referring to its name in the current session.

title "SASDATA2.PULSE";

proc means;

run;

Of course, you can always specify the data set to use with the data= option, as shown in the

commands below. Note that you must use a two-level name for the data set, if you specify the data

set explicitly.

proc means data=sasdata2.pulse;

run;

3. Create a Permanent SAS data set using Proc Import

You can also import an Excel file using Proc Import syntax. Type the two-level name as the value

for the out= keyword, as shown below:

libname sasdata2 "C:\Users\kwelch\Desktop\sasdata2";

PROC IMPORT OUT= SASDATA2.PULSE

 DATAFILE= "C:\Users\kwelch\Desktop\labdata\PULSE.XLS"

 DBMS=xls REPLACE;

 SHEET="pulse";

RUN;

4. Create a Permanent SAS Data Set as Output from

Another Procedure

Many SAS procedures can output data sets to be used later. For example, when running Proc Reg, an

output data set can be created containing the predicted values and residuals from a regression

analysis. The commands below show how to create a permanent SAS data set, named

sasdata2.resids, as output from Proc Reg. Note that the libname statement must be submitted first:

libname sasdata2 "C:\Users\kwelch\Desktop\sasdata2";

proc reg data=sasdata2.pulse;

 model pulse2 = pulse1 ;

 output out = sasdata2.resids p=predict r=resid rstudent=rstudent;

run;

quit;

 Introduction to SAS

57

The following note is produced in the SAS Log:

180 proc reg data=sasdata2.pulse;

181 model pulse2 = pulse1 ran;

182 output out = sasdata2.resids p=predict r=resid rstudent=rstudent;

183 run;

183 quit;

NOTE: The data set SASDATA2.RESIDS has 92 observations and 15 variables.

NOTE: PROCEDURE REG used (Total process time):

 real time 0.06 seconds

 cpu time 0.06 seconds

The sasdata2.resids data set can now be used to check the distribution of the residuals, using Proc

Univariate, as shown below:

proc univariate data=sasdata2.resids;

 var resid;

 histogram;

 qqplot / normal (mu=est sigma=est);

run;

Note that the data set, sasdata2.resids will now be the default data set, because it was the most

recently created data set in the current session of SAS.

5. How to Use a Permanent SAS Data Set in Later Runs of

SAS

To use a permanent SAS data set in later runs of SAS, you must submit a libname statement, and

refer to the data set by its two-level name:

libname sasdata2 V9 "C:\Users\kwelch\Desktop\sasdata2";

proc means data=sasdata2.pulse;

run;

proc freq data=sasdata2.pulse;

 tables ran smokes;

run;

6. How to Delete a Permanent SAS Data Set

To delete a permanent SAS data set from within SAS, use Proc Datasets. Otherwise, you can go into

Windows and delete it by hand.

libname sasdata2 V9 "C:\Users\kwelch\Desktop\sasdata2";

proc datasets library=sasdata2;

 delete pulse;

 delete resids;

run;

quit;

 Introduction to SAS

58

CHAPTER 7

OVERVIEW OF DATA MANAGEMENT TASKS
(commands=overview.sas)

Many data management tasks in SAS are carried out as part of the data step. This chapter gives an

overview of some basic data management tasks, plus a sketch of the commands used.

1. Make a copy of a SAS data set

One way to make a copy of a SAS data set is to use the set statement. In the commands below, the

original data set PULSE is first created and then an exact copy, called NEWPULSE, is created.

Modifications can be made to the new data set without changing the original data set in any way.

data pulse;

 infile "pulse.dat" missover;

 input pulse1 pulse2 ran smokes sex height weight activity;

run;

data newpulse;

 set pulse;

run;

Similar commands could be used to make a copy of a permanent SAS data set, as illustrated below:

libname sasdata2 "c:\users\kwelch\desktop\sasdata2";

data sasdata2.pulse;

 infile "pulse.dat" missover;

 input pulse1 pulse2 ran smokes sex height weight activity;

run;

data sasdata2.newpulse;

 set sasdata2.pulse;

run;

2. Create a subset of data

You can easily create a subset of your data by using the set statement along with a subsetting if

statement. The subsetting if statement acts as a gateway for allowing observations to be written to a

data set. It can appear anywhere in the data step. In the examples below, the data set named

FEMALES will only contain those cases with the value of SEX = 2, while the data set named

MALES will only contain cases with the value of SEX=1.

data females;

 set pulse;

 if sex = 2;

run;

 Introduction to SAS

59

data males;

 set pulse;

 if sex = 1;

run;

These commands result in the following notes in the SAS Log.

250 data females;

251 set pulse;

252 if sex = 2;

253 run;

NOTE: There were 92 observations read from the data set WORK.PULSE.

NOTE: The data set WORK.FEMALES has 35 observations and 8 variables.

NOTE: DATA statement used (Total process time):

 real time 0.03 seconds

 cpu time 0.01 seconds

254

255 data males;

256 set pulse;

257 if sex = 1;

258 run;

NOTE: There were 92 observations read from the data set WORK.PULSE.

NOTE: The data set WORK.MALES has 57 observations and 8 variables.

NOTE: DATA statement used (Total process time):

 real time 0.00 seconds

 cpu time 0.01 seconds

3. Create more than one data set with a single data step

More than one data set can be created using a single data step, as shown in the example below. Note

that the output statement takes effect as soon as it is encountered in the data step. Any

transformations or recodes should be placed before the output statement(s).

data males females;

 set pulse;

 if sex = 1 then output males;

 if sex = 2 then output females;

run;

These commands result in the following notes in the SAS Log:

280 data males females;

281 set pulse;

282 if sex = 1 then output males;

283 if sex = 2 then output females;

284 run;

NOTE: There were 92 observations read from the data set WORK.PULSE.

NOTE: The data set WORK.MALES has 57 observations and 8 variables.

NOTE: The data set WORK.FEMALES has 35 observations and 8 variables.

 Introduction to SAS

60

4. Delete cases from a data set

You can delete cases from a data set by using a conditional IF statement. When the case is deleted, it

is permanently removed from the data set. This method can be useful when you wish to delete cases

that are known to be in error, or to exclude certain cases that are not of interest in your study

population. The delete statement takes effect immediately when it is specified, so deleted cases will

not be available for any later programming statements.

data fixpulse;

 set pulse;

 if pulse1 > 95 then delete;

run;

Executing these commands results in the following note in the SAS Log:

290 data fixpulse;

291 set pulse;

292 if pulse1 > 95 then delete;

293 run;

NOTE: There were 92 observations read from the data set WORK.PULSE.

NOTE: The data set WORK.FIXPULSE has 89 observations and 8 variables.

5. Using the ‘where’ statement to select cases

As an alternative to using an ‘if’ statement, you can also add a where statement to restrict the cases

that are used. Check the SAS log to see which cases have been processed. It is often helpful to use

titles to help remind you of the observations that are used, because there is no indication in the

output telling you which cases have been selected.

5.1. Selecting cases for analysis based on the value of a character

variable

To select the observations to be included in an analysis based on the value of a character variable use

quotes around the values of the character variable, and correctly specify upper and lower case.

The note below the syntax came from the SAS Log.

data marflt;

 infile "marflt.dat";

 input flight $ 1-4 @4 fltdate mmddyy6.

 dest $ 18-20 passngrs 34-36

 freight 43-45 capacity 46-48;

 format fltdate mmddyy8.;

 pctfull=(passngrs/capacity)*100;

run;

 Introduction to SAS

61

proc print data=marflt;

 where dest = "LAX";

 var flight dest passngrs;

 title "Flights to Los Angeles";

run;

NOTE: There were 123 observations read from the data set WORK.MARFLT.

 WHERE dest='LAX';

5.1.1. Selecting cases that have missing values for character variables

If you wish to select the observations to be included in an analysis based on a missing value for a

character variable, use quotes around a blank " ", because blank is missing for a character variable.

proc print data=marflt;

 where dest = " ";

 var flight dest passngrs;

 title "Missing Destination";

run;

5.2. Selecting cases for analysis based on the value of a numeric

variable

Cases used in an analysis may be selected based on the values of a numeric variable. The Boolean

operators (<, >, <=, >=, =, ~=) may be used to get the desired case selection, as shown below:

proc print data=marflt;

 where pctfull < 30;

 var flight dest passngrs capacity pctfull;

 title "Flights Less than 30 Percent Full";

run;

Notice that those with PCTFULL missing are also included in this output, because missing is

evaluated as being less than any numeric value.

 Flights Less than 30 Percent Full

 Obs flight dest passngrs capacity pctfull

 9 9820 DFW 49 180 27.2222

 91 2900 WAS 30 180 16.6667

 92 5230 ORD 47 210 22.3810

 96 4160 WAS 13 180 7.2222

 171 2900 WAS 38 180 21.1111

 234 2900 WAS 45 180 25.0000

 236 9820 DFW 31 180 17.2222

 239 4160 WAS 48 180 26.6667

 242 1830 WAS 48 180 26.6667

 245 3020 WAS 53 180 29.4444

 302 1830 WAS 50 180 27.7778

 377 2900 WAS 37 180 20.5556

 Introduction to SAS

62

 385 1830 WAS 34 180 18.8889

 417 9820 DFW 43 180 23.8889

 420 8720 LAX . 210 .

 445 1830 WAS 38 180 21.1111

 448 3020 WAS 25 180 13.8889

 484 4160 WAS 50 180 27.7778

 508 1830 WAS 21 180 11.6667

 520 2900 WAS 51 180 28.3333

 530 9210 DFW 49 180 27.2222

 544 4160 WAS 53 180 29.4444

 548 9210 DFW . 180 .

 623 9820 DFW 50 180 27.7778

 633 3020 WAS 14 180 7.7778

5.2.1. Using Where with Between to select cases for numeric variables

The where statement can also be used with “between” to restrict cases used in an analysis based on

the values of a numeric variable. The example below will print those cases with percent full from 25

to 30, inclusive:

proc print data=marflt;

 where pctfull between 25 and 30;

 title "Flights Between 25 and 30 Percent Full";

run;

Selection of cases using a where statement can become as specific as you want, by combining

subsetting criteria using Boolean logic in your where statement.

proc print data=marflt;

 where (pctfull between 25 and 30) and (dest="DFW") ;

 title "Flights to Dallas-Fort Worth Between 25 and 30 Percent Full";

run;

5.2.2. Selecting cases with missing values for numeric variables

If you wish to select observations based on a missing value for a numeric variable, use a period, as

shown in the example below. If you have special missing value codes (i.e. .A to .Z) check Chapter

13 for how to handle these.

proc print data=marflt;

 where passngrs = .;

 var flight dest passngrs;

 title "Number of Passengers is Missing";

run;

5.3. Selecting cases based on dates

You can select cases for a procedure based on dates, by using a SAS date constant. Note that the

date constant is specified in quotes with the day as a two-digit number, followed by a three-letter

abbreviation for the month, followed by a 2 or 4-digit number for the year. A letter D (either upper

or lower case) must appear after the quote to let SAS know that this is a date.

 Introduction to SAS

63

proc print data=marflt;

 where fltdate = "07MAR90"D;

 title "Flights on March 7th, 1990";

run;

You can also use "where … between" with dates to specify a range of dates for selection:

proc print data=marflt;

 where fltdate between "07MAR90"D and "09MAR90"D;

 title "Flights Between March 7th and March 9th, 1990";

run;

5.3.1. Selecting cases that have missing values for date variables

You can use the same method for selecting observations based on missing values for a date variable

as for a numeric variable, because dates are stored simply as numeric values in SAS.

proc print data=marflt;

 where fltdate = .;

 var flight dest fltdate;

 title "Missing Date";

run;

6. Keep or Drop Variables in a Data Set

You can control which variables are included in a SAS data set by using keep and drop statements

as part of the data step, or keep and drop data set options. These two methods have somewhat

different actions, and are explained below.

6.1. Keep and Drop Statements

Keep and drop statements can be used to restrict the variables that are included in a SAS data set.

The keep and drop statements affect the variables that are written to the SAS data set. They may be

given at any point in the data step, and only take effect at the time the data set is written. The

commands below create a data set called SBP, which has six variables in it.

data sbp;

 input id drug sbp1 sbp2 wt sideffct;

 cards;

131 1 154 129 150 1

135 2 149 118 154 1

136 1 137 119 152 0

137 1 142 116 151 1

138 1 156 111 153 0

139 2 163 109 148 1

105 2 141 145 188 0

 Introduction to SAS

64

106 1 139 147 185 1

107 2 170 133 184 0

108 2 148 129 185 0

;

title "Printout of SBP Data Set";

proc print data=sbp;

run;

 Printout of SBP Data Set

 Obs id drug sbp1 sbp2 wt sideffct

 1 131 1 154 129 150 1

 2 135 2 149 118 154 1

 3 136 1 137 119 152 0

 4 137 1 142 116 151 1

 5 138 1 156 111 153 0

 6 139 2 163 109 148 1

 7 105 2 141 145 188 0

 8 106 1 139 147 185 1

 9 107 2 170 133 184 0

10 108 2 148 129 185 0

6.2. Keep statement example

The following commands create a new data set called SBP2. Note that all variables are read initially

from SBP. The keep statement lists the variables that are to be written to the new data set SBP2; the

keep statement will not affect the variables in the original data set, SBP.

data sbp2;

 set sbp;

 sbpchg = sbp2-sbp1;

 keep id drug sbp1 sbp2 sbpchg;

run;

title "Printout of SBP2 Data";

proc print data=sbp2;

run;
 Printout of SBP2 Data

 Obs id drug sbp1 sbp2 sbpchg

 1 131 1 154 129 -25

 2 135 2 149 118 -31

 3 136 1 137 119 -18

 4 137 1 142 116 -26

 5 138 1 156 111 -45

 6 139 2 163 109 -54

 7 105 2 141 145 4

 8 106 1 139 147 8

 9 107 2 170 133 -37

 10 108 2 148 129 -19

 Introduction to SAS

65

6.3. Drop statement example

The drop statement works in the same way as the keep statement, but it lists the variables that you

want to exclude from the data set. The choice of whether to use a keep or drop statement is based on

your preference. Usually you would choose to use a drop statement if you only wish to drop a few

variables and a keep statement if you only wish to keep a few.

data sbp3;

 set sbp;

 drop wt sideffct;

run;

7. The KEEP= and DROP= data set options

The keep= and drop= data set options behave differently than keep and drop statements. These data

set options are given in parentheses right after the data set name, and control which variables will be

read from, or written to a SAS data set.

8.1 Keep= data set option examples

When the keep= data set option is used with the data set that is being read (i.e., the data specified in

the set statement), it will affect the variables that are read. This option can be very useful if the

original data set contains many variables that are not needed for processing. The keep= option will

not affect the variables in the original data set.

data sbp4;

 set sbp(keep=id drug sbp1 sbp2);

 avgsbp = mean(sbp1,sbp2);

run;

proc print data=sbp4;

 title "Printout of SBP4 Data";

run;

Printout of SBP4 Data

Obs id drug sbp1 sbp2 avgsbp

1 131 1 154 129 141.5

2 135 2 149 118 133.5

3 136 1 137 119 128.0

4 137 1 142 116 129.0

5 138 1 156 111 133.5

6 139 2 163 109 136.0

 Introduction to SAS

66

On the other hand, if you wish to bring in all the variables from the original data set, and keep only

certain ones in the output data set, you can use the keep= option for the new data set that you are

creating, as shown below:

data sbp5(keep=id drug avgsbp);

 set sbp;

 avgsbp = mean(sbp1,sbp2);

run;

proc print data=sbp5 (obs=5);

run;

 Printout of SBP5 Data

 Obs id drug avgsbp

 1 131 1 141.5

 2 135 2 133.5

 3 136 1 128.0

 4 137 1 129.0

 5 138 1 133.5

8.2. Using the Drop= data set option

The drop= data set option works in much the same way. To decide which you want to use, simply

use the method that is more convenient.

 Introduction to SAS

67

CHAPTER 8

PROCESSING DATA BY GROUPS USING PROC

SORT
(commands=sort.sas)

1. Introduction

One of the most useful ways to process data is to look at the results for different groups of cases

separately. This is accomplished in SAS through the use of the by statement. However, the data must

first be sorted by the variable used in the “by” statement as shown in the example below. Once a data

set is sorted it remains sorted, and any later analyses can be done either for the entire data set, or for

the "by" groups by including a by statement in a given procedure.

data pulse;

 infile "pulse.dat";

 input pulse1 pulse2 ran smokes sex height weight activity;

 run;
proc sort data=pulse;

 by sex;

run;

title "Separate regression model for males and females";

proc reg;

 by sex;

 model pulse2=pulse1 ran;

run;

A separate analysis will be done for each of the "by" groups. The regression output will include two

complete regression results, one for males and one for females.

 Separate regression model for males and females

-- sex=1 ---

 The REG Procedure

 Model: MODEL1

 Dependent Variable: pulse2 Pulse at Time 2

 Analysis of Variance

 Sum of Mean

 Source DF Squares Square F Value Pr > F

 Model 2 5855.11295 2927.55648 42.17 <.0001

 Error 54 3749.02740 69.42643

 Corrected Total 56 9604.14035

 Root MSE 8.33225 R-Square 0.6096

 Dependent Mean 75.87719 Adj R-Sq 0.5952

 Coeff Var 10.98123

 Introduction to SAS

68

 Parameter Estimates

 Parameter Standard

 Variable Label DF Estimate Error t Value Pr > |t|

 Intercept Intercept 1 39.27142 8.65989 4.53 <.0001

 pulse1 Pulse at Time 1 1 0.80909 0.11194 7.23 <.0001

 ran Ran in Place? 1 -12.90193 2.23555 -5.77 <.0001

 Separate regression model for males and females

-- sex=2 ---

 The REG Procedure

 Model: MODEL1

 Dependent Variable: pulse2 Pulse at Time 2

 Analysis of Variance

 Sum of Mean

 Source DF Squares Square F Value Pr > F

 Model 2 12891 6445.71866 133.27 <.0001

 Error 32 1547.70553 48.36580

 Corrected Total 34 14439

 Root MSE 6.95455 R-Square 0.8928

 Dependent Mean 86.71429 Adj R-Sq 0.8861

 Coeff Var 8.02008

 Parameter Estimates

 Parameter Standard

 Variable Label DF Estimate Error t Value Pr > |t|

 Intercept Intercept 1 92.43455 10.19285 9.07 <.0001

 pulse1 Pulse at Time 1 1 0.67327 0.10575 6.37 <.0001

 ran Ran in Place? 1 -34.08979 2.60818 -13.07 <.0001

2. Sorting by more than one variable

You can sort by several variables, as shown in the example below. Proc sort organizes the data so

that the first variable represents the slowest changing index (i.e., cases will be sorted first by SEX,

and then by levels of RAN within SEX). The Proc Means commands that follow produce descriptive

statistics for each combination of SEX and RAN. Notice that this output is organized somewhat

differently than when a class statement was used, as was illustrated in Chapter 4.

proc sort data=pulse;

 by sex ran;

run;

proc means data=pulse;

 by sex ran;

run;

 Introduction to SAS

69

--- sex=1 ran=1 ---

 The MEANS Procedure

 Variable N Mean Std Dev Minimum Maximum

 --

 pulse1 24 70.2500000 8.8918624 58.0000000 92.0000000

 pulse2 24 83.2083333 13.0915810 58.0000000 118.0000000

 smokes 24 1.6666667 0.4815434 1.0000000 2.0000000

 height 24 71.2083333 2.4668087 66.0000000 75.0000000

 weight 24 162.0000000 18.4107719 130.0000000 195.0000000

 activity 24 2.1666667 0.6370221 1.0000000 3.0000000

 --

--- sex=1 ran=2 ---

 Variable N Mean Std Dev Minimum Maximum

 --

 pulse1 33 70.5454545 10.7850907 48.0000000 92.0000000

 pulse2 33 70.5454545 10.3594489 50.0000000 94.0000000

 smokes 33 1.6363636 0.4885042 1.0000000 2.0000000

 height 33 70.4545455 2.6586052 66.0000000 75.0000000

 weight 33 155.5454545 18.6029079 123.0000000 215.0000000

 activity 33 2.1818182 0.5838742 1.0000000 3.0000000

 --

--- sex=2 ran=1 ---

 Variable N Mean Std Dev Minimum Maximum

 --

 pulse1 11 80.9090909 13.3075508 62.0000000 100.0000000

 pulse2 11 112.8181818 12.8282359 98.0000000 140.0000000

 smokes 11 1.6363636 0.5045250 1.0000000 2.0000000

 height 11 66.6363636 2.9756588 61.0000000 70.0000000

 weight 11 129.2727273 12.3862093 112.0000000 150.0000000

 activity 11 2.0000000 0 2.0000000 2.0000000

 --

--- sex=2 ran=2 ---

 The MEANS Procedure

 Variable N Mean Std Dev Minimum Maximum

 --

 pulse1 24 75.0000000 10.5377169 58.0000000 94.0000000

 pulse2 24 74.7500000 8.9987922 56.0000000 92.0000000

 smokes 24 1.8333333 0.3806935 1.0000000 2.0000000

 height 24 64.8750000 2.1732064 62.0000000 69.0000000

 weight 24 121.2916667 13.2942589 95.0000000 150.0000000

 activity 24 2.0416667 0.6240935 1.0000000 3.0000000

 --

 Introduction to SAS

70

3. Creating a New Sorted Data set Using Proc Sort

If you wish to create a new data set, and maintain the input data set in its original order, you can use

the out= option on the Proc Sort statement, as shown below:

data clinic;

 infile "clinic.txt" firstobs=2 delimiter="09"X ;

 input id group date mmddyy10. sbp wt sideffct;

 format date mmddyy8.;

run;

proc sort data=clinic out=sortclin;

 by group id date;

run;

proc print data=sortclin;

 title "Data Set Sorted by Group, ID and Date";

run;
 Data Set Sorted by Group, ID and Date

 Obs id group date sbp wt sideffct

 1 7 1 03/07/95 222 224 1

 2 7 1 04/18/95 201 201 0

 3 131 1 04/02/95 129 150 1

 4 131 1 04/02/95 129 150 1

 5 131 1 05/05/95 118 154 1

 6 131 1 06/01/95 119 152 0

 7 131 1 07/10/95 116 151 1

 8 131 1 08/14/95 111 153 0

 9 131 1 08/14/95 111 153 0

 10 222 1 03/14/95 159 201 0

 11 222 1 05/29/95 155 207 0

 12 222 1 07/19/95 158 218 1

 13 222 1 08/17/95 148 222 1

 14 222 1 10/13/95 145 215 1

 15 222 1 10/13/95 160 219 0

 16 5 2 07/24/95 118 190 0

 17 5 2 08/28/95 114 185 0

 18 105 2 07/15/95 145 188 0

 19 105 2 07/15/95 145 188 1

 20 105 2 08/22/95 147 185 1

 21 105 2 12/20/95 129 185 0

4. Getting Rid of Duplicate Cases for the Same ID

4.1. Using the Nodupkey Option

Proc Sort provides an easy way to get rid of duplicate cases having the same values of the key

variables. Use the nodupkey option on the Proc Sort statement, as shown below. Check the log to

see how many duplicates were deleted. The original data set will not be affected since we are

specifying an output data set. This method puts the first case of the ones with duplicates into the

sorted dataset.

proc sort data=clinic out=sortclin nodupkey;

 by id date;

run;

 Introduction to SAS

71

The SAS log shows that four cases with duplicate key values were removed, so the sorted dataset,

SORTCLIN has only 17 observations:

NOTE: There were 21 observations read from the data set WORK.CLINIC.

NOTE: 4 observations with duplicate key values were deleted.

NOTE: The data set WORK.SORTCLIN has 17 observations and 6 variables.

We now print the cases in the sorted dataset, with the duplicates removed.

title "Printout of Data with Duplicates Removed";

proc print data=sortclin;

run;
 Printout of Unique Cases, Plus the First Case of Duplicates

 Obs id group date sbp wt sideffct

 1 5 2 07/24/95 118 190 0

 2 5 2 08/28/95 114 185 0

 3 7 1 03/07/95 222 224 1

 4 7 1 04/18/95 201 201 0

 5 105 2 07/15/95 145 188 0

 6 105 2 08/22/95 147 185 1

 7 105 2 12/20/95 129 185 0

 8 131 1 04/02/95 129 150 1

 9 131 1 05/05/95 118 154 1

 10 131 1 06/01/95 119 152 0

 11 131 1 07/10/95 116 151 1

 12 131 1 08/14/95 111 153 0

 13 222 1 03/14/95 159 201 0

 14 222 1 05/29/95 155 207 0

 15 222 1 07/19/95 158 218 1

 16 222 1 08/17/95 148 222 1

 17 222 1 10/13/95 145 215 1

If you want to know which records had duplicate values of ID and DATE, you can capture the

duplicates in a dataset using the dupout option:

proc sort data=clinic out=sortclin nodupkey dupout=dupDAT;

 by id date;

run;

NOTE: There were 21 observations read from the data set WORK.CLINIC.

NOTE: 4 observations with duplicate key values were deleted.

NOTE: The data set WORK.SORTCLIN has 17 observations and 6 variables. <-(the first case is here)

NOTE: The data set WORK.DUPDAT has 4 observations and 6 variables. <-(subsequent cases are here)

If you want to capture the cases that originally had no duplicates in them use the uniequeout option

with nouniquekey. This requires running proc sort again, without the dupout option. The unique

cases (those that had no duplicates in the original dataset) will be saved in the UNIQUEDAT dataset.

All duplicates will be captured in SORTCLIN2.

proc sort data=clinic out=sortclin2 nouniquekey uniqueout=uniquedat;

 by id date;

run;

 Introduction to SAS

72

NOTE: There were 21 observations read from the data set WORK.CLINIC.

NOTE: 13 observations with unique key values were deleted.

NOTE: The data set WORK.SORTCLIN2 has 8 observations and 6 variables. <-(duplicates only)

NOTE: The data set WORK.UNIQUEDAT has 13 observations and 6 variables. <-(unique values only)

title "Cases with Unique Values Only";

title2 "These cases had no duplicates in the first place";

proc print data=uniqueDAT;

run;
 Cases with Unique Values Only

 These cases had no duplicates in the first place

 Obs id group date sbp wt sideffct

 1 5 2 07/24/95 118 190 0

 2 5 2 08/28/95 114 185 0

 3 7 1 03/07/95 222 224 1

 4 7 1 04/18/95 201 201 0

 5 105 2 08/22/95 147 185 1

 6 105 2 12/20/95 129 185 0

 7 131 1 05/05/95 118 154 1

 8 131 1 06/01/95 119 152 0

 9 131 1 07/10/95 116 151 1

 10 222 1 03/14/95 159 201 0

 11 222 1 05/29/95 155 207 0

 12 222 1 07/19/95 158 218 1

 13 222 1 08/17/95 148 222 1

title "Cases with Duplicate Values (none of thse are unique)";

title2 "These are the duplicates";

proc print data=sortclin2;

run;
 Cases with Duplicate Values (none of thse are unique)

 These are the duplicates

 Obs id group date sbp wt sideffct

 1 105 2 07/15/95 145 188 0

 2 105 2 07/15/95 145 188 1

 3 131 1 04/02/95 129 150 1

 4 131 1 04/02/95 129 150 1

 5 131 1 08/14/95 111 153 0

 6 131 1 08/14/95 111 153 0

 7 222 1 10/13/95 145 215 1

 8 222 1 10/13/95 160 219 0

4.2. Using the Noduprec Option

You can also ask SAS to eliminate any cases that are duplicates for all variables using the noduprec

option, as shown in the code below.

proc sort data=clinic out=sortclin2 noduprec;

 by id date;

run;

 Introduction to SAS

73

This produces the following note in the SAS Log, stating that 2 duplicate records were deleted.

36 proc sort data=clinic out=sortclin2 noduprec;

37 by id date;

38 run;

NOTE: There were 21 observations read from the data set WORK.CLINIC.

NOTE: 2 duplicate observations were deleted.

NOTE: The data set WORK.SORTCLIN2 has 19 observations and 6 variables.

 Introduction to SAS

74

CHAPTER 9

COMBINING SAS DATA SETS

(commands=combine.sas)

There are many ways that SAS data sets can be combined. This handout illustrates combining data

sets vertically by adding more cases (stacking or appending data sets) and combining data sets

horizontally by adding new variables (merging data sets).

1. Stack Data Sets Vertically (adds new cases)

You can use the set statement to combine data sets vertically. It is not necessary for the data sets

being combined to have their variables in the same order, or even for them to have the same

variables. However, it is critical that if the same variable does appear in both data sets, it should be

of the same type (either character or numeric) in both.

If a variable is present in one data set and not in the other, the values for that variable will be missing

for all cases for the data set that did not have it. The order of variables in the resulting data set will

reflect the order of the first data set listed.

In the example below, the data set BOYS has different variables, which are also in a different order,

than the variables in the data set GIRLS.

data boys;

 input name $ sex $ age height teacher $;

 cards;

Tom M 12 62 Smith

Bob M 13 57 Green

Joe M 11 59 Green

Harry M 12 53 Green

William M 13 60 Smith

John M 11 57 Smith

Richard M 11 55 Green

 ;

data girls;

 input name $ age sex $ teacher $;

 cards;

Sharice 13 F Smith

Mary 12 F Smith

Ellen 11 F Green

Carol 11 F Green

Chris 13 F Smith

Claire 12 F Green

Raye 13 F Smith

 ;

 Introduction to SAS

75

data allkids;

 set boys girls;

run;

proc print data = allkids;

 title "printout of allkids data set";

 title2 "with boys first in the data set";

run;

 printout of allkids data set
 with boys first in the data set

 OBS NAME SEX AGE HEIGHT TEACHER

 1 Tom M 12 62 Smith

 2 Bob M 13 57 Green

 3 Joe M 11 59 Green

 4 Harry M 12 53 Green

 5 William M 13 60 Smith

 6 John M 11 57 Smith

 7 Richard M 11 55 Green

 8 Sharice F 13 . Smith

 9 Mary F 12 . Smith

 10 Ellen F 11 . Green

 11 Carol F 11 . Green

 12 Chris F 13 . Smith

 13 Claire F 12 . Green

 14 Raye F 13 . Smith

data allkids2;

 set girls boys;

run;

proc print data = allkids2;

 title "printout of allkids data set";

 title2 "with girls first in the data set";

run;

 printout of allkids data set

 with girls first in the data set

 OBS NAME AGE SEX TEACHER HEIGHT

 1 Sharice 13 F Smith .

 2 Mary 12 F Smith .

 3 Ellen 11 F Green .

 4 Carol 11 F Green .

 5 Chris 13 F Smith .

 6 Claire 12 F Green .

 7 Raye 13 F Smith .

 8 Tom 12 M Smith 62

 9 Bob 13 M Green 57

 10 Joe 11 M Green 59

 11 Harry 12 M Green 53

 12 William 13 M Smith 60

 13 John 11 M Smith 57

 14 Richard 11 M Green 55

Notice that the order of the variables in the final data set is changed, depending on which data set

was listed first in the set statement, but the values in both data sets are the same.

 Introduction to SAS

76

2. Merge Data Sets Horizontally (adds new variables)

SAS data sets can be merged horizontally in a number of ways. This method of combining data sets

allows you to match based on some key variable(s) such as ID or household. You must first sort

the data sets that are being merged by the key variable(s), and then merge by the same key

variable(s).

The example below shows how to merge two data sets for the same people. The dataset, EXAM

contains data for a hypothetical group of people on a physical exam. The data set LAB contains

information for some of the same people on their laboratory results.

data exam;

 input id examdate mmddyy10. sex age height weight sbp dbp;

 format examdate mmddyy10.;

 cards;

1 10/18/2000 1 25 72 156 128 89

2 05/29/2000 1 33 68 168 145 96

3 02/21/2000 1 47 65 182 152 98

4 06/17/2000 1 29 69 190 139 91

5 01/11/2000 2 37 62 129 145 93

6 08/15/2000 2 42 64 156 133 94

;

data lab;

 input id hgb;

 cards;

1 13.2

4 12.1

3 14.5

6 12.8

12 13.0

;

proc sort data=exam;

 by id;

run;

proc sort data=lab;

 by id;

run;

data exam_lab;

 merge exam lab;

 by id;

run;

proc print;

 title "Printout of Exam_lab Data Set";

run;

 Introduction to SAS

77

 Printout of Exam_lab Data Set

 Obs id examdate sex age height weight sbp dbp hgb

 1 1 10/18/2000 1 25 72 156 128 89 13.2

 2 2 05/29/2000 1 33 68 168 145 96 .

 3 3 02/21/2000 1 47 65 182 152 98 14.5

 4 4 06/17/2000 1 29 69 190 139 91 12.1

 5 5 01/11/2000 2 37 62 129 145 93 .

 6 6 08/15/2000 2 42 64 156 133 94 12.8

 7 12 13.0

By default, SAS will include all observations from both data sets in the merged data. Notice in the

above example, ID numbers 2 and 5 are in the EXAM data set, but not in the lab data set, while ID

number 12 is in the LAB data set, but not in the EXAM data set. However all of these cases are in

the merged EXAM_LAB data set.

You can control the observations that get written to the final data set, using the in= data set option.

This creates a temporary variable that indicates whether a case is in a particular data set or not.

Then you can control which observations get written out, using subsetting if statements. The

examples below show three different ways this could be done.

/*How to include only cases that are in both data sets*/

data exam_lab2;

 merge exam(in=a) lab(in=b);

 by id;

 if a and b;

run;

proc print data=exam_lab2;

 title "Exam_lab2 Data Set Includes Only Those";

 title2 "In Both Data Sets";

run;

 Exam_lab2 Data Set Includes Only Those

 In Both Data Sets

 Obs id examdate sex age height weight sbp dbp hgb

 1 1 10/18/2000 1 25 72 156 128 89 13.2

 2 3 02/21/2000 1 47 65 182 152 98 14.5

 3 4 06/17/2000 1 29 69 190 139 91 12.1

 4 6 08/15/2000 2 42 64 156 133 94 12.8

/*How to include cases that are in EXAM, regardless of Lab Data*/

data exam_lab3;

 merge exam(in=a) lab(in=b);

 by id;

 if a;

run;

proc print data=exam_lab3;

 title "Exam_lab3 Data Set Includes Those";

 title2 "In Exam Data, Regardless of Lab Data";

run;

 Introduction to SAS

78

 Exam_lab3 Data Set Includes Those

 In Exam Data, Regardless of Lab Data

 Obs id examdate sex age height weight sbp dbp hgb

 1 1 10/18/2000 1 25 72 156 128 89 13.2

 2 2 05/29/2000 1 33 68 168 145 96 .

 3 3 02/21/2000 1 47 65 182 152 98 14.5

 4 4 06/17/2000 1 29 69 190 139 91 12.1

 5 5 01/11/2000 2 37 62 129 145 93 .

 6 6 08/15/2000 2 42 64 156 133 94 12.8

/*How to include cases that are in LAB, regardless of Exam Data*/

data exam_lab4;

 merge exam(in=a) lab(in=b);

 by id;

 if b;

run;

proc print data=exam_lab4;

 title "Exam_lab4 Data Set Includes Those";

 title2 "In Lab Data, Regardless of Exam Data";

run;

 Exam_lab4 Data Set Includes Those

 In Lab Data, Regardless of Exam Data

 Obs id examdate sex age height weight sbp dbp hgb

 1 1 10/18/2000 1 25 72 156 128 89 13.2

 2 3 02/21/2000 1 47 65 182 152 98 14.5

 3 4 06/17/2000 1 29 69 190 139 91 12.1

 4 6 08/15/2000 2 42 64 156 133 94 12.8

 5 12 13.0

2.1 How to merge data sets when the variable names are the same

If the two data sets that you wish to merge have the same variable names, this can be handled by

using the rename dataset option for either one or both of the datasets.

data oldsal;

 input name $ idnum sex $ age salary jobcat year;

 cards;

 Roger 518 M 45 7677 2 1989

 Martha 321 F 28 5000 1 1989

 Zeke 444 M 33 6075 1 1989

 Barb 1728 F 40 9023 2 1989

 Bill 993 M 36 7739 3 1989

 Sandy 1002 F 29 6161 3 1989

 ;

 Introduction to SAS

79

data newsal;

 input name $ idnum salary jobcat year;

 cards;

 Hank 108 11138 1 1995

 Fred 519 10035 2 1995

 Zeke 444 9697 1 1995

 Martha 321 7987 2 1995

 Sandy 1002 6995 2 1995

 Bill 993 12400 3 1995

 Roxy 773 10119 2 1995

 ;

/*merging by idnum*/

proc sort data=oldsal;

 by idnum;

run;

proc sort data=newsal;

 by idnum;

run;

data combine1;

 merge oldsal(rename=(salary=salary89 jobcat=jobcat89))

 newsal(rename=(salary=salary95 jobcat=jobcat95));

 by idnum;

 drop year;

run;

proc print data=combine1;

 title "printout of combine1 data set";

 title2 "matching by id number";

 title3 "all cases that were in either data set are included";

run;

 printout of combine1 data set

 matching by id number

 all cases that were in either data set are included

 Obs name idnum sex age salary89 jobcat89 salary95 jobcat95

 1 Hank 108 . . . 11138 1

 2 Martha 321 F 28 5000 1 7987 2

 3 Zeke 444 M 33 6075 1 9697 1

 4 Roger 518 M 45 7677 2 . .

 5 Fred 519 . . . 10035 2

 6 Roxy 773 . . . 10119 2

 7 Bill 993 M 36 7739 3 12400 3

 8 Sandy 1002 F 29 6161 3 6995 2

 9 Barb 1728 F 40 9023 2 . .

You can control the observations that are written to the final data set, using in= data set options for

this type of merge also.

 Introduction to SAS

80

/*merging by idnum, but keeping only cases that are in both datasets*/

data combine2;

 merge oldsal(in=a rename=(salary=salary89 jobcat=jobcat89))

 newsal(in=b rename=(salary=salary95 jobcat=jobcat95));

 by idnum;

 if a and b;

 totsal = sum (salary89,salary95);

 format salary89 salary95 totsal dollar12.;

 drop year;

run;

proc print data=combine2;

 title "printout of combine2 data set";

 title2 "matching by id number";

 title3 "and only including cases that are in both data sets";

run;

 printout of combine2 data set

 matching by id number

 and only including cases that are in both data sets

 Obs name idnum sex age salary jobcat salary95 jobcat95 totsal

 1 Martha 321 F 28 5000 1 7987 2 $12,987

 2 Zeke 444 M 33 6075 1 9697 1 $15,772

 3 Bill 993 M 36 7739 3 12400 3 $20,130

 4 Sandy 1002 F 29 6161 3 6995 2 $13,156

 Introduction to SAS

81

CHAPTER 10

CREATING NEW VARIABLES IN A SAS DATA STEP

(commands=newvars.sas)

1. Introduction

The SAS Data Step is a powerful and flexible programming tool that is used to create a new SAS

dataset, and to make modifications to existing data sets.

2. Adding new variables in a data step

A Data Step is required to create any new variables or modify existing variables in SAS. Unlike

Stata and SPSS, you cannot simply create a new variable or modify an existing variable in “open”

SAS code.

A single Data Step can be used to create an unlimited number of new variables. To be more

efficient in your SAS programming, it is better to use a single data step to create all of your new

variables at once.

The Data Step allows you to assign a particular value to all cases or to a subset of cases; to transform

a variable by using a mathematical function, such as the log function, or to create a sum, average, or

other summary statistic based on the values of several existing variables within an observation.

We will illustrate creating new variables using the employee dataset.

The Data Step starts with the Data statement and ends with Run. Each time you make any changes

to the Data Step commands, you must highlight and re-submit the entire block of code, starting with

"data" and ending with "run". This will re-create your dataset by over-writing the previous version.

data sasdata2.employee2;

 set sasdata2.employee;

 /* put commands to create new variables here*/

 /* be sure they go BEFORE the run statement*/

run;

The example below illustrates creating a number of new variables in our new dataset. We create a

new permanent SAS data set (called sasdata2.employee2) by using a SET statement to read in the

existing data set (sasdata2.employee). This process will not make any changes to sasdata2.employee.

NB: Make sure that you highlight and submit the ENTIRE data step all at once, starting at

DATA and ending with RUN. If you want to make any changes to this code, you will need to re-

 Introduction to SAS

82

submit these commands to SAS (once again being sure to highlight all of the code starting with

DATA and ending with RUN).

libname sasdata2 "c:\users\kwelch\desktop\sasdata2";

data sasdata2.employee2;

 set sasdata2.employee;

 currentyear=2005;

 alpha ="A";

 sept11 = "11SEP2001"D;

 format Sept11 mmddyy10.;

 saldiff = salary - salbegin;

 if (salary >= 0 and salary <= 25000) then salcat = "C";

 if (salary > 25000 & salary <= 50000) then salcat = "B";

 if (salary > 50000) then salcat = "A";

 if salary not=. and jobcat not=. then do;

 if (salary < 50000 & jobcat = 3) then manlowsal = 1;

 else manlowsal = 0;

 end;

 format bdate mmddyy10. salary salbegin dollar12.;

if gender="f" then female=1;

if gender="m" then female=0;

if jobcat not=. then do;

 jobdum1 = (jobcat=1);

 jobdum2 = (jobcat=2);

 jobdum3 = (jobcat=3);

end;

nmiss = nmiss(of educ--salbegin);

salmean = mean(salary, salbegin);

run;

3. Examples of functions and operators

The following list contains some of the more common SAS functions and operators:

Arithmetic Operators:

+ Addition

- Subtraction

* Multiplication

/ Division

** Exponentiation

Arithmetic Functions:

ABS Absolute value ROUND(arg,unit) Rounds argument

 to the nearest unit

INT Truncate MOD Modulus

 Introduction to SAS

83

 (remainder)

SQRT Square root EXP Exponential

LOG10 Log base 10 LOG Natural log

SIN Sine COS Cosine

Statistical Functions (Arguments can be numeric values or variables):

SUM(Arg1, Arg2,…,ArgN) Sum of non-missing arguments

MEAN(Arg1, Arg2,…,ArgN) Mean of non-missing arguments

STD(Arg1, Arg2,…,ArgN) Standard deviation of non-missing arguments

VAR(Arg1, Arg2,…,ArgN) Variance of non-missing arguments

CV(Arg1, Arg2,…,ArgN) Coefficient of variation of non-missing arguments

MIN(Arg1, Arg2,…,ArgN) Minimum of non-missing arguments

MAX(Arg1, Arg2,…,ArgN) Maximum of non-missing arguments

Missing Values Functions:
MISSING(Arg) = 1 if the value of Arg is missing

= 0 if not missing

NMISS(Var1, Var2,…,VarN) Number of missing values across variables within a

case

N(Var1, Var2,…,VarN) Number of non-missing values across variables within a

case

Across-case Functions:
LAG(Var) Value from previous case

LAGn(Var) Value from nth previous case

Date and Time Functions:

Datepart(datetimevalue) Extracts date portion from a datetime value

Month(datevalue) Extracts month from a date value

Day(datevalue) Extracts day from a date value

Year(datevalue) Extracts year form a date value

Intck(‘interval’,datestart,dateend) Finds the number of completed intervals between two

dates

Other Functions:
RANUNI(Seed) Uniform pseudo-random no. defined on the interval

(0,1)

RANNOR(Seed) Std. Normal pseudo-random no.

PROBNORM(x) Prob. a std. normal is <= x

PROBIT(p) p
th

 quantile from std. normal dist.

4. Numeric vs. character variables

There are only two types of variable in SAS: numeric and character. Numeric variables are the

default type and are used for numeric and date values.

Character variables can have alpha-numeric values, which may be any combination of letters,

numbers, or other characters. The length of a character variable can be up to 32767 characters.

 Introduction to SAS

84

Values of character variables are case-sensitive. For example, the value “Ann Arbor” is different

than the value “ANN ARBOR”.

5. Generating variables containing constants

In the example below we create a new numeric variable named “currentyear”, which has a constant

value of 2005 for all observations:

currentyear=2005;

The example below illustrates creating a new character variable named “alpha” which contains the

letter “A” for all observations in the dataset. Note that the value must be enclosed either in single or

double-quotes, because this is a character variable.

alpha ="A";

Dates can be generated in a number of different ways. For example, we can use the mdy function to

create a date value from a month, day, and year value, as shown below:

datevar = mdy(10,5,2012);

Or we can create a date by using a SAS date constant, as shown below:

datevar = "05OCT2012"D;

The D following the quoted date constant tells SAS that this is not a character variable, but a date

value, which is stored as a numeric value.

format datevar mmddyy10.;

The format statement tells SAS to display the date as 09/11/2001, rather than as the number of days

from January 1, 1960.

6. Generating variables using values from other variables

We can also generate new variables as a function of existing variables.

saldiff = salary – salbegin;

New variables can be labeled with a descriptive label up to 40 characters long:

label saldiff = "Current Salary – Beginning Salary";

We can use the mdy function to create a new date value, based on the values of three variables, in

this example the variables were called “Month”, “Day”, and “Year”, although they could have

different names:

 Introduction to SAS

85

date = mdy(month,day,year);

Values of the date variable would vary from observation to observation, because the mdy() function

is using different values of variables to create date. Remember to use a Format statement to format

the new variable DATE so it will look like a date.

format date mmddyy10.;

7. Generating variables conditionally

You can also create new variables in SAS conditional on the values of other variables. For example,

if we wanted to create a new character variable, SALCAT, that contains salary categories “A”, “B”,

and “C” we could use the following commands.

if (salary >= 0 and salary <= 25000) then salcat = "C";

if (salary > 25000 & salary <= 50000) then salcat = "B";

if (salary > 50000) then salcat = "A";

Note the use of an If…Then statement to identify the condition that a given case in the data set

must meet for the new variable to be given a value of “A”. In general, these types of conditional

commands have the form:

if (condition) then varname = value;

where the condition can be specified using a logical operator or a mnemonic (e.g., = (eq), & (and), |

(or), ~= (not=, ne), > (gt), >= (ge) < (lt) <= (le)). The parentheses are not necessary to specify a

condition in SAS, but can be used to clarify a statement or to group parts of a statement. A

semicolon is required at the end of the statement. For example, if one wants to create a variable that

identifies employees who are managers but have relatively low salaries, one could use a statement

like

if (salary < 50000 & jobcat = 3) then manlowsal = 1;

This will create a new character variable equal to 1 whenever an employee meets the specified

conditions on the two variables, salary and jobcat. However, this variable may be incorrectly coded,

due to the presence of missing values, as discussed in the note below.

Note on missing values when conditionally computing new variables in SAS:

SAS considers missing values for numeric variables to be smaller than the smallest possible

numeric value in a data set. Therefore, in the salary condition above, if an employee had missing

data on the salary variable, that employee would be coded into category 1 on the new

MANLOWSAL variable. A safer version of this conditional command would look like this:

if (salary not=. & salary < 50000 & jobcat = 3) then manlowsal = 1;

 Introduction to SAS

86

The condition now emphasizes that salary must be less than $50,000 and not equal to a missing

value.

The following statements could be used to set up a variable with a value of 1 or 0 on the new

variable MANLOWSAL. Note that the use of ‘else’ will put all values, including missing values on

either variable, into the 0 category (every other value, including missing, is captured by the ‘else’

condition). The final If statement will put anyone with a missing value on either of these variables

into the missing value of MANLOWSAL, which is

 . for a numeric variable.

if (salary not=. & salary < 50000 & jobcat = 3) then manlowsal =1;

else manlowsal = 0;

if salary = . or jobcat=. then manlowsal= . ;

Another way this could be done would be to use a Do Loop before creating the variable, as shown

below. If you use a do; statement, you must have an end; statement to close the do loop. In the

example below, the entire block of code will only be executed if salary is not missing and jobcat is

not missing.

if salary not=. and jobcat not=. then do;

 if (salary < 50000 & jobcat = 3) then manlowsal = 1;

 else manlowsal = 0;

end;

8. Generating Dummy Variables

Statistical analyses often require dummy variables, which are also known as indicator variables.

Dummy variables take on a value of 1 for certain cases, and 0 for all other cases. A common

example is the creation of a dummy variable to recode, where the value of 1 might identify females,

and 0 males.

if gender="f" then female=1;

if gender="m" then female=0;

If you have a variable with 3 or more categories, you can create a dummy variable for each category,

and later in a regression analysis, you would usually choose to include one less dummy variable than

there are categories in your model.

if jobcat not=. then do;

 jobdum1 = (jobcat=1);

 jobdum2 = (jobcat=2);

 jobdum3 = (jobcat=3);

end;

 Introduction to SAS

87

9. Using Statistical Functions to generate variables

You can also use SAS to determine how many missing values are present in a list of variables within

an observation, as shown in the example below:

nmiss = nmiss(of educ--salbegin);

The double dashes (--) indicate a variable list (with variables given in dataset order). Be sure to use

“of” when using a variable list like this.

The converse operation is to determine the number of non-missing values there are in a list of

variables,

npresent = n(of educ--salbegin);

Another common operation is to calculate the sum or the mean of the values for several variables

and store the results in a new variable. For example, to calculate a new variable, salmean,

representing the average of the current and beginning salary, use the following command. Note that

you can use a list of variables separated by commas, without including “of” before the list.

salmean = mean(salary, salbegin);

All missing values for the variables listed will be ignored when computing the mean in this way. The

min(), max(), and std() functions work in a similar way.

 Introduction to SAS

88

CHAPTER 11

MISSING VALUES
 (commands=missing.sas)

1. Introduction

Handling missing data is one of the most important tasks involved in creating and managing data.

Sometimes the missing values for numeric data are coded as numbers that are not possible as real

data values (e.g. 98 or 99 for variables whose valid codes can only be as large as 5). It is important

that these missing values be correctly identified as missing, so SAS will not use them in calculations.

If your data has missing value codes that are numeric, they need to be replaced by the SAS missing

value codes.

The SAS missing value code for numeric data is a period (.), and the missing value code for

character data is a blank (" "). If your raw data were entered with periods for missing data, they will

be correctly read by SAS as missing values for numeric data, and you will not need to do any

recoding of missing values.

2. Reading in Raw Data

The commands below are used to read in a raw data file and create a SAS data set called OWEN.

libname sasdata2 "C:\Users\kwelch\Desktop\sasdata2";

data owen;

 set sasdata2.owen;

run;

title "Owen Data. Missing Value Codes Have Not Been Fixed ";

proc means data=owen;

run;

The output from these commands is shown below. Notice that there are no missing values for any of

the variables (n=1006 for each variable) but by looking at the maximum values, it can be readily

seen that some of the values are impossible. To be sure that these are actually supposed to be

missing value codes, you need a code book or other documentation explaining the missing value

codes that are used. Check the Appendix for information on the missing value codes for the Owen

data.

 Introduction to SAS

89

 Owen Data. Missing Value Codes Have Not Been Fixed

 The MEANS Procedure

 Variable N Mean Std Dev Minimum Maximum

 --

 fam_num 1006 4525.11 1634.03 2000.00 7569.00

 childnum 1006 1.3359841 0.5716672 1.0000000 3.0000000

 age 1006 44.0248509 16.6610452 12.0000000 73.0000000

 sex 1006 1.4890656 0.5001291 1.0000000 2.0000000

 race 1006 1.2823062 0.4503454 1.0000000 2.0000000

 w_rank 1006 2.2127237 0.9024440 1.0000000 4.0000000

 income_c 1006 1581.31 974.2279710 80.0000000 6250.00

 height 1006 103.5159046 64.3384339 70.0000000 999.0000000

 weight 1006 21.4941153 75.8424096 8.2400000 999.0000000

 hemo 1006 12.4606362 1.1578850 6.2000000 24.1000000

 vit_c 1006 1.1302187 0.6599121 0.1000000 3.5000000

 vit_a 1006 51.2465209 28.0530567 15.0000000 99.0000000

 head_cir 1006 49.7216700 4.6155769 39.0000000 99.0000000

 fatfold 1006 5.6780318 10.8109068 2.6000000 99.0000000

 b_weight 1006 338.4502982 111.0447134 91.0000000 999.0000000

 mot_age 1006 30.9990060 12.4970444 17.0000000 99.0000000

 b_order 1006 5.4304175 15.4013836 1.0000000 99.0000000

 m_height 1006 185.3499006 132.7438368 122.0000000 999.0000000

 f_height 1006 203.5119284 142.1009149 152.0000000 999.0000000

 --

3. Setting up missing value codes in the Data Step

SAS missing data codes are set up in the data step. Once the missing value codes are set for a

variable, they will be recognized as missing in all later analyses. The following SAS code can be

used to set up the missing values in the Owen data set. Note that this can all be done by simply

altering the original data step, and does not require a second data step.

data owen;

set inclass.owen;

 /*set up missing value codes*/

 if vit_a = 99 then vit_a = .;

 if head_cir = 99 then head_cir = .;

 if fatfold = 99 then fatfold = .;

 if mot_age = 99 then mot_age = .;

 if b_order = 99 then b_order = .;

 if height = 999 then height = .;

 if weight = 999 then weight = .;

 if b_weight = 999 then b_weight = .;

 if m_height = 999 then m_height = .;

 if f_height = 999 then f_height = .;

 run;

title "Owen Data. Missing Value Codes Have Been Replaced by . ";

proc means data=owen n nmiss mean std min max;

run;

 Introduction to SAS

90

 Owen Data. Missing Value Codes Have Been Replaced by .

 The MEANS Procedure

 N

 Variable N Miss Mean Std Dev Minimum Maximum

 --

 FAM_NUM 1006 0 4525.11 1634.03 2000.00 7569.00

 CHILDNUM 1006 0 1.3359841 0.5716672 1.0000000 3.0000000

 AGE 1006 0 44.0248509 16.6610452 12.0000000 73.0000000

 SEX 1006 0 1.4890656 0.5001291 1.0000000 2.0000000

 RACE 1006 0 1.2823062 0.4503454 1.0000000 2.0000000

 W_RANK 1006 0 2.2127237 0.9024440 1.0000000 4.0000000

 INCOME_C 1006 0 1581.31 974.2279710 80.0000000 6250.00

 HEIGHT 1001 5 99.0429570 11.4300111 70.0000000 130.0000000

 WEIGHT 1000 6 15.6290800 3.6523446 8.2400000 41.0800000

 HEMO 1006 0 12.4606362 1.1578850 6.2000000 24.1000000

 VIT_C 1006 0 1.1302187 0.6599121 0.1000000 3.5000000

 VIT_A 763 243 36.0380079 8.8951237 15.0000000 78.0000000

 HEAD_CIR 999 7 49.3763764 2.0739057 39.0000000 56.0000000

 FATFOLD 993 13 4.4562941 1.6683194 2.6000000 42.0000000

 B_WEIGHT 986 20 325.0517241 59.5162936 91.0000000 544.0000000

 MOT_AGE 981 25 29.2660550 6.2603025 17.0000000 51.0000000

 B_ORDER 980 26 2.9479592 2.1939526 1.0000000 16.0000000

 M_HEIGHT 980 26 163.7632653 6.3663343 122.0000000 199.0000000

 F_HEIGHT 975 31 178.2194872 7.3821354 152.0000000 210.0000000

 --

Check the output above to see that the sample size (N) for many variables is now less than 1006,

Nmiss is now greater than 0 for several variables, and the maximum values are no longer the missing

value codes (99 or 999).

4. Special Missing Value codes

The default missing value code for numeric variables is a period (.). However, at times you may

wish to be able to distinguish between different types of missing value codes. For example, a code of

88 may mean "Not Applicable" and 99 may mean "Not Answered". You can use special missing

value codes to accomplish this.

Special missing value codes are indicated by a letter, preceded by a period (e.g. .A through .Z).

Any single letter may be used, and each letter will give distinct missing value codes. (Note,

uppercase and lowercase letters, e.g., .A and .a, are equivalent.) This method will set the values of

your variables to missing for any analysis that you would like to do (e.g. Proc Means or Proc Reg),

but if the data are listed, using Proc Print, these special missing values will show up as their letter

values. The variables retain their type as numeric.

data one ;

 input score1 score2 score3;

 if score1 = 9 then score1 = .M;

 if score1 = 8 then score1 = .X;

 if score2 = 9 then score2 = .M;

 if score2 = 8 then score2 = .X;

 Introduction to SAS

91

 if score3 = 9 then score3 = .M;

 if score3 = 8 then score3 = .X;

 cards;

 2 3 4

 2 9 8

 1 4 8

 2 3 9

 1 3 2

 2 2 3

 8 1 3

 9 2 1

 1 1 2

 1 2 4

 3 1 2

 2 3 3

 ;

title "PROC PRINT OUTPUT";

proc print data=one;

run;

title "PROC MEANS OUTPUT: NOTE N FOR EACH VARIABLE";

proc means data=one;

run;

title "PROC FREQ OUTPUT-DEFAULT";

proc freq data=one;

 tables score1-score3;

run;
 PROC PRINT OUTPUT
 OBS SCORE1 SCORE2 SCORE3

 1 2 3 4

 2 2 M X

 3 1 4 X

 4 2 3 M

 5 1 3 2

 6 2 2 3

 7 X 1 3

 8 M 2 1

 9 1 1 2

 10 1 2 4

 11 3 1 2

 12 2 3 3

 PROC MEANS OUTPUT: NOTE N FOR EACH VARIABLE

 Variable N Mean Std Dev Minimum Maximum

 --

 SCORE1 10 1.7000000 0.6749486 1.0000000 3.0000000

 SCORE2 11 2.2727273 1.0090500 1.0000000 4.0000000

 SCORE3 9 2.6666667 1.0000000 1.0000000 4.0000000

 --

 Introduction to SAS

92

 PROC FREQ OUTPUT-DEFAULT

 Cumulative Cumulative

 SCORE1 Frequency Percent Frequency Percent

 --

 1 4 40.0 4 40.0

 2 5 50.0 9 90.0

 3 1 10.0 10 100.0

 Frequency Missing = 2

 Cumulative Cumulative

 SCORE2 Frequency Percent Frequency Percent

 --

 1 3 27.3 3 27.3

 2 3 27.3 6 54.5

 3 4 36.4 10 90.9

 4 1 9.1 11 100.0

 Frequency Missing = 1

 Cumulative Cumulative

 SCORE3 Frequency Percent Frequency Percent

 --

 1 1 11.1 1 11.1

 2 3 33.3 4 44.4

 3 3 33.3 7 77.8

 4 2 22.2 9 100.0

 Frequency Missing = 3

5. Display missing values in Proc Freq output

5.1. The missprint option
When Proc Freq is used with the missprint option, it tabulates the missing values, without including

them in the table percentages as shown below:

title “Missing Values are displayed in the Output”;

title2 “But Percentages are not Calculated for Them”;

proc freq data=one ;

 tables score1-score3 / missprint ;

run;
 Missing Values are displayed in the Output

 But Percentages are not Calculated for Them

 Cumulative Cumulative

 SCORE1 Frequency Percent Frequency Percent

 --

 M 1 . . .

 X 1 . . .

 1 4 40.0 4 40.0

 2 5 50.0 9 90.0

 3 1 10.0 10 100.0

 Frequency Missing = 2

 Introduction to SAS

93

 Cumulative Cumulative

 SCORE2 Frequency Percent Frequency Percent

 --

 M 1 . . .

 1 3 27.3 3 27.3

 2 3 27.3 6 54.5

 3 4 36.4 10 90.9

 4 1 9.1 11 100.0

 Frequency Missing = 1

 Cumulative Cumulative

 SCORE3 Frequency Percent Frequency Percent

 --

 M 1 . . .

 X 2 . . .

 1 1 11.1 1 11.1

 2 3 33.3 4 44.4

 3 3 33.3 7 77.8

 4 2 22.2 9 100.0

 Frequency Missing = 3

5.2. The missing option

The missing option tabulates the missing value codes, along with the percentages for each missing

value.

title "Missing Values are displayed in the Output";

title2 "Percentages are calculated";

proc freq data=one ;

 tables score1-score3 / missing ;

run;

 Missing Values are displayed in the Output

 Percentages are calculated

 Cumulative Cumulative

 SCORE1 Frequency Percent Frequency Percent

 --

 M 1 8.3 1 8.3

 X 1 8.3 2 16.7

 1 4 33.3 6 50.0

 2 5 41.7 11 91.7

 3 1 8.3 12 100.0

 Cumulative Cumulative

 SCORE2 Frequency Percent Frequency Percent

 --

 M 1 8.3 1 8.3

 1 3 25.0 4 33.3

 2 3 25.0 7 58.3

 3 4 33.3 11 91.7

 4 1 8.3 12 100.0

 Introduction to SAS

94

 Cumulative Cumulative

 SCORE3 Frequency Percent Frequency Percent

 --

 M 1 8.3 1 8.3

 X 2 16.7 3 25.0

 1 1 8.3 4 33.3

 2 3 25.0 7 58.3

 3 3 25.0 10 83.3

 4 2 16.7 12 100.0

6. How to use missing values in your commands

SAS evaluates missing values for a numeric variable as less than any numeric value. There is also a

hierarchy among missing value codes. Period (.) is smaller than any letters, and the lower letters in

the alphabet are less than the higher letters, i.e., . is less than .A is less than .B, and so on. The

highest missing value code is .Z. You can utilize this hierarchy when selecting cases using Boolean

operators (e.g. > , < , or =) with a where statement.

title "Printout of Missing Cases for Score1";

proc print data=one;

 where score1 < 0;

run;

title "Select Cases with Score1 = .M";

proc print data=one;

 where Score1 = .M;

run;

title "Select Cases with No Missing Values for Score1";

proc print data=one;

 where Score1 > .Z;

run;

The results of these commands are shown below:

 Printout of Missing Cases for Score1

 Obs score1 score2 score3

 7 X 1 3

 8 M 2 1

 Select Cases with Score1 = .M

 Obs score1 score2 score3

 8 M 2 1

 Introduction to SAS

95

 Select Cases with No Missing Values for Score1

 Obs score1 score2 score3

 1 2 3 4

 2 2 M X

 3 1 4 X

 4 2 3 M

 5 1 3 2

 6 2 2 3

 9 1 1 2

 10 1 2 4

 11 3 1 2

 12 2 3 3

6.1. Create a subset of complete cases

You can also use the nmiss function to select complete cases as a subset of your data:

data complete;

 set one;

 if nmiss(score1, score2, score3)=0;

run;

title "Complete Data";

proc print data=complete;

run;
 Complete Data

 Obs score1 score2 score3

 1 2 3 4

 2 1 3 2

 3 2 2 3

 4 1 1 2

 5 1 2 4

 6 3 1 2

 7 2 3 3

7. How to set up SAS to recognize special missing values in

the raw data

You can tell SAS when it reads in data that it should interpret letter codes as missing and not as

character data. This only works for single letters, not for strings of letters.

data miss2;

 input id age weight;

 missing A B;

 cards;

 Introduction to SAS

96

1 22 145

2 25 122

3 28 A

4 26 B

5 20 103

6 29 .

7 A 118

8 32 182

9 A 203

10 21 B

 ;

proc print data=miss2;

run;

proc means data=miss2;

run;

 Obs id age weight

 1 1 22 145

 2 2 25 122

 3 3 28 A

 4 4 26 B

 5 5 20 103

 6 6 29 .

 7 7 A 118

 8 8 32 182

 9 9 A 203

 10 10 21 B

 The MEANS Procedure

 Variable N Mean Std Dev Minimum Maximum

 --

 id 10 5.5000000 3.0276504 1.0000000 10.0000000

 age 8 25.3750000 4.2067123 20.0000000 32.0000000

 weight 6 145.5000000 39.3789284 103.0000000 203.0000000

 --

8. Missing Values for Character Variables

If the value of a character variable is missing, it is stored by SAS as " " (quote-blank-quote). When

entering data for character variables in a free format, you need to put a placeholder for the missing

value—simply use a dot. This will be interpreted as missing when SAS reads it in. If you are reading

character data from a file with the values lined up in columns, simply leave missing values blank in

the raw data; this will also be interpreted as missing by SAS. When entering character data into an

Excel file, simply leave the cell blank (null) and skip to the next value. The values of character

variables must be enclosed in quotes, when using them in your SAS code. The example below

illustrates the use of missing values for character variables.

 Introduction to SAS

97

data test problems;

 input name $ sex $ age;

 if sex = " " then output problems;

 else output test;

 cards;

Gene M 62

Cyndi F 45

Alice . 51

Bob M 55

 ;

proc print data=test;

 title "Test Data Set";

run;

proc print data=problems;

 title "Cases with Sex Missing";

run;

 Test Data Set

 Obs name sex age

 1 Gene M 62

 2 Cyndi F 45

 3 Bob M 55

 Cases with Sex Missing

 Obs name sex age

 1 Alice 51

 Introduction to SAS

98

CHAPTER 12

RECODING VARIABLES AND DUMMY VARIABLES
 (commands=recode.sas)

1. Introduction

Recodes can be used to create new variables by cutting continuous variables into categories that are

convenient for analysis, or to collapse categorical variables into a smaller number of categories.

Dummy variables are set up by recoding categorical variables or numeric variables. Recodes can

also be used to set up missing value codes and to edit values of specific cases or groups of cases in a

data set.

Recodes are done in the SAS data step using conditional statements (if…then statements). It is

important that the recoded variables are comprised of categories that are mutually exclusive and

exhaustive (i.e., each value of the original variable is assigned to a category, and all values are

coded into a unique category). The new variables created by recodes are added onto the end of the

data set.

Because missing values in SAS are by definition less than any numeric value, care must be taken

when handling missing values in recodes. After creating new variables using recodes, the values of

the recoded variables should be checked using frequencies, and descriptive statistics.

1.1. Recode Example

In the example below, numeric codes for missing values are first recoded into the SAS missing data

codes for numeric values (.). Two new variables, AGEGRP and LOWBWT are also created from

MOT_AGE and B_WEIGHT. The definition for the two new variables is shown below:

AGEGRP: Mother’s age group (i.e., mother’s age group when this child was born):

1: under 20 years

2: 20-24 years

3: 25-29 years

4: 30-34 years

5: 35-39 years

6: 40 years or more

LOWBWT: Low birth weight (i.e. low birth weight for this child):

Yes = 1 (if birth weight < 2500 grams)

No = 0 (if birth weight >=2500 grams)

The commands below illustrate two ways of recoding mother's age. The first method of recoding

mother’s age results in a correct new variable called AGEGRP. The second method of recoding

mother’s age results in an incorrect new variable called WRONGAGE. The second method of

 Introduction to SAS

99

recoding age is incorrect because there is no lower bound for the lowest category of the new variable

WRONGAGE. Because SAS evaluates missing values as less than any numeric value,

WRONGAGE=1 will be assigned to all cases with missing values of mother’s age.

Notice the use of the symbols less than (<), less than or equal (<=) and greater or equal (>=). These

symbols must be used carefully to be sure all cases are included in the coding and that the cut-points

are correctly specified. This example also shows how to create a dummy variable (LOWBWT) for

low birth weight.

data owen;

set inclass.owen;

 if vit_a = 99 then vit_a = .;

 if head_cir = 99 then head_cir = .;

 if fatfold = 99 then fatfold = .;

 if mot_age = 99 then mot_age = .;

 if b_order = 99 then b_order = .;

 if height = 999 then height = .;

 if weight = 999 then weight = .;

 if b_weight = 999 then b_weight = .;

 if m_height = 999 then m_height = .;

 if f_height = 999 then f_height = .;

 /*Correct recode of mother's age into agegrp*/

 if mot_age >= 0 and mot_age < 20 then agegrp = 1;

 if mot_age >= 20 and mot_age < 25 then agegrp = 2;

 if mot_age >= 25 and mot_age < 30 then agegrp = 3;

 if mot_age >= 30 and mot_age < 35 then agegrp = 4;

 if mot_age >= 35 and mot_age < 40 then agegrp = 5;

 if mot_age >= 40 then agegrp = 6;

 /*Incorrect recode of mother's age*/

 if mot_age < 20 then wrongage = 1;

 if mot_age >= 20 and mot_age < 25 then wrongage = 2;

 if mot_age >= 25 and mot_age < 30 then wrongage = 3;

 if mot_age >= 30 and mot_age < 35 then wrongage = 4;

 if mot_age >= 35 and mot_age < 40 then wrongage = 5;

 if mot_age >= 40 then wrongage = 6;

/*Create dummy variable for birth weight < 2500 grams*/

 b_weight = 10*b_weight;

 if b_weight > 0 and b_weight < 2500 then lowbwt = 1;

 if b_weight >= 2500 then lowbwt = 0;

run;

 Introduction to SAS

100

2. Checking Recodes

It is important to check recodes to be sure the categories are defined as desired, and that missing

values are properly handled. The simplest check is to use Proc Means. Check to see that the sample

size (N) for the recoded variables is the same as the original variables from which they were created.

proc means data=owen;

run;

Output from these commands is shown below. Pay particular attention to the N of cases for the

variables, MOT_AGE, AGEGRP, and WRONGAGE.

 The MEANS Procedure

 Variable N Mean Std Dev Minimum Maximum

 --

 fam_num 1006 4525.11 1634.03 2000.00 7569.00

 childnum 1006 1.3359841 0.5716672 1.0000000 3.0000000

 age 1006 44.0248509 16.6610452 12.0000000 73.0000000

 sex 1006 1.4890656 0.5001291 1.0000000 2.0000000

 race 1006 1.2823062 0.4503454 1.0000000 2.0000000

 w_rank 1006 2.2127237 0.9024440 1.0000000 4.0000000

 income_c 1006 1581.31 974.2279710 80.0000000 6250.00

 height 1001 99.0429570 11.4300111 70.0000000 130.0000000

 weight 1000 15.6290800 3.6523446 8.2400000 41.0800000

 hemo 1006 12.4606362 1.1578850 6.2000000 24.1000000

 vit_c 1006 1.1302187 0.6599121 0.1000000 3.5000000

 vit_a 763 36.0380079 8.8951237 15.0000000 78.0000000

 head_cir 999 49.3763764 2.0739057 39.0000000 56.0000000

 fatfold 993 4.4562941 1.6683194 2.6000000 42.0000000

 b_weight 986 3250.52 595.1629357 910.0000000 5440.00

 mot_age 981 29.2660550 6.2603025 17.0000000 51.0000000

 b_order 980 2.9479592 2.1939526 1.0000000 16.0000000

 m_height 980 163.7632653 6.3663343 122.0000000 199.0000000

 f_height 975 178.2194872 7.3821354 152.0000000 210.0000000

 agegrp 981 3.4464832 1.2165694 1.0000000 6.0000000

 wrongage 1006 3.3856859 1.2603221 1.0000000 6.0000000

 lowbwt 986 0.1075051 0.3099115 0 1.0000000

 --

Another check can be to get descriptive statistics for the original variable (e.g.. MOT_AGE) for each

level of the new variable (AGEGRP) to be sure the cut-points for the categories were defined

correctly. Check the minimum and maximum of the original variable to see if the cut-points used in

the recodes are defined as desired.

proc means data=owen;

 class agegrp;

 var mot_age;

run;

 Introduction to SAS

101

 Analysis Variable : mot_age

 N

 agegrp Obs N Mean Std Dev Minimum Maximum

 --

 1 22 22 18.5454545 0.7385489 17.0000000 19.0000000

 2 187 187 22.4010695 1.3053236 20.0000000 24.0000000

 3 379 379 26.7836412 1.3842066 25.0000000 29.0000000

 4 192 192 31.7395833 1.3478297 30.0000000 34.0000000

 5 126 126 36.8333333 1.5323185 35.0000000 39.0000000

 6 75 75 43.0266667 2.4548536 40.0000000 51.0000000

 --

Proc Freq can also be used as a check. (Note especially the missing values it displays at the end of

each frequency table). The variable WRONGAGE has no missing values (which is incorrect), while

the variable AGEGRP has 25 missing values, which is the same number of missing values as in the

original variable MOT_AGE.

proc freq data=owen;

 tables wrongage agegrp;

run;

 The FREQ Procedure

 Cumulative Cumulative

 wrongage Frequency Percent Frequency Percent

 1 47 4.67 47 4.67

 2 187 18.59 234 23.26

 3 379 37.67 613 60.93

 4 192 19.09 805 80.02

 5 126 12.52 931 92.54

 6 75 7.46 1006 100.00

 Cumulative Cumulative

 agegrp Frequency Percent Frequency Percent

 1 22 2.24 22 2.24

 2 187 19.06 209 21.30

 3 379 38.63 588 59.94

 4 192 19.57 780 79.51

 5 126 12.84 906 92.35

 6 75 7.65 981 100.00

 Frequency Missing = 25

3. Alternative Ways to Do Recodes

One way to avoid mis-coding of MOT_AGE into age groups is to specify a lower and upper bound

for the first level of AGEGRP, as shown in the original coding of AGEGRP. Another way is to use

 Introduction to SAS

102

an if…then…do statement, as shown below. Note that an end statement must follow the do

statement. If the end statement is missing, SAS will give you a warning in the Log.

Of course, the recode commands shown below would have to be within a data step for them to

work. Indentations in the code are to aid in reading it and are not required.

if mot_age not =. then do;

 if mot_age < 20 then agegrp = 1;

 if mot_age >= 20 and mot_age < 25 then agegrp = 2;

 if mot_age >= 25 and mot_age < 30 then agegrp = 3;

 if mot_age >= 30 and mot_age < 35 then agegrp = 4;

 if mot_age >= 35 and mot_age < 40 then agegrp = 5;

 if mot_age >= 40 then agegrp = 6;

end;

Another way this could be coded would be to use SAS mnemonic equivalents of symbols, as shown

below. You can use both mnemonics and symbols in the same statement.

if mot_age ne . then do;

 if mot_age lt 20 then agegrp eq 1;

 if mot_age ge 20 and mot_age lt 25 then agegrp = 2;

 if mot_age ge 25 and mot_age lt 30 then agegrp = 3;

 if mot_age ge 30 and mot_age lt 35 then agegrp = 4;

 if mot_age ge 35 and mot_age lt 40 then agegrp = 5;

 if mot_age ge 40 then agegrp eq 6;

end;

Another way to be sure that missing values are properly coded for the new variable, would be to set

the value for AGEGRP to missing if MOT_AGE is missing after all the recoding has been done, as

shown below:

 if mot_age < 20 then agegrp = 1;

 if mot_age >= 20 and mot_age < 25 then agegrp = 2;

 if mot_age >= 25 and mot_age < 30 then agegrp = 3;

 if mot_age >= 30 and mot_age < 35 then agegrp = 4;

 if mot_age >= 35 and mot_age < 40 then agegrp = 5;

 if mot_age >= 40 then agegrp = 6;

 if mot_age = . then agegrp = .;

4. Dummy Variables

Dummy variables are often used in a statistical analysis to represent the levels of a categorical

variable (e.g., race, sex, or region). Dummy variables can also be created for the levels of an ordinal

variable, such as age group.

There are many ways to code dummy variables; in this chapter, we illustrate indicator variable

coding for dummy variables, because it is easy to program and easy to interpret. When indicator

dummies are created for a categorical variable, one dummy variable is usually created for each level

 Introduction to SAS

103

of the variable. The indicator dummy variable for a given level of a categorical variable takes on a

value of zero for cases not in that level, and a value of one for cases that are in that level. When

dummy variables are used in a model statement in SAS (e.g., in Proc Reg), one of the dummies is

excluded from the model statement, and its category becomes the reference category for the model.

4.1. Alternative coding methods for dummy variables

In the original code for the Owen data set, we set up a dummy variable for low birth weight (i.e.,

birth weight less than 2500 grams) called LOWBWT. It has a value of 0 for those children who were

not low birth weight, and a value of 1 for those children who were low birth weight. The original

coding for this variable is echoed below. (Note that we first multiply B_WEIGHT by 10 before

proceeding to calculate the dummy variable, because birth weight in the original raw data was

expressed in tens of grams, rather than in grams):

 b_weight = 10*b_weight;

 if b_weight > 0 and b_weight < 2500 then lowbwt = 1;

 if b_weight >= 2500 then lowbwt = 0;

Here is another way to set up the code for the dummy variable for low birth weight. This sets the

value for LOWBWT to zero for all cases initially. Then, those who are low birth weight are given a

code of 1. Finally, any case that is missing for B_WEIGHT is set to missing for LOWBWT.

 lowbwt = 0;

 if b_weight <2500 then lowbwt = 1;

 if b_weight = . then lowbwt =.;

Here is another method of creating the dummy variable for low birth weight. The expression in

parentheses is evaluated for whether it is true or not. Those cases for which it is true (i.e.

B_WEIGHT is less than 2500) will get a code of 1 for the variable LOWBWT. Those cases for

which it is false (i.e. everyone else) will get a code of 0 for the variable LOWBWT. The first part of

the expression assures that this code will be implemented only for those who have a non-missing

value of B_WEIGHT. For those cases with a missing value of B_WEIGHT, the variable LOWBWT

will be missing.

 if b_weight not=. then lowbwt = (b_weight<2500);

Another way to code a dummy variable is to set the missing values up after creating the dummy, as

shown below.

 lowbwt = (b_weight<2500);

 if b_weight =. then lowbwt=.;

 Introduction to SAS

104

4.2 More on Dummy Variables

The following example shows more on creating dummy variables. Here we wish to create a dummy

variable for each level of AGEGRP. It is not necessary to create a new data set to make these

dummies. The recodes could have been done within the first data step, just by putting this code

before the run statement in the original data step. Note that no special caution is needed to get

dummy variables correctly coded for sex and race, because these variables have no missing values.

data newowen;

 set owen;

 if agegrp ne . then do;

age1 = (agegrp=1);

 age2 = (agegrp=2);

 age3 = (agegrp=3);

 age4 = (agegrp=4);

 age5 = (agegrp=5);

 age6 = (agegrp=6);

 end;

 male = (sex=1);

 white = (race=1);

run;

proc print data=newowen(obs=15);

 var mot_age agegrp age1-age6 sex male race white;

 title "Checking on Dummy Variables";

run;

 Checking on Dummy Variables

 mot_age agegrp age1 age2 age3 age4 age5 age6 sex male race white

 28 3 0 0 1 0 0 0 2 0 1 1

 27 3 0 0 1 0 0 0 2 0 1 1

 29 3 0 0 1 0 0 0 2 0 1 1

 45 6 0 0 0 0 0 1 1 1 1 1

 39 5 0 0 0 0 1 0 2 0 1 1

 35 5 0 0 0 0 1 0 2 0 1 1

 40 6 0 0 0 0 0 1 2 0 1 1

 39 5 0 0 0 0 1 0 2 0 1 1

 1 1 2 0

 36 5 0 0 0 0 1 0 1 1 2 0

 36 5 0 0 0 0 1 0 2 0 2 0

 36 5 0 0 0 0 1 0 2 0 2 0

 21 2 0 1 0 0 0 0 1 1 1 1

 25 3 0 0 1 0 0 0 2 0 1 1

 29 3 0 0 1 0 0 0 1 1 1

To use the dummy variables for AGEGRP in a regression, you would need to leave one dummy

variable out of the regression model specification. The category represented by this dummy variable

becomes the reference category. The dummy variables, AGE2 through AGE6 are used in the model,

so the youngest mothers (represented by AGEGRP=1) are the reference category.

 Introduction to SAS

105

title "Regression Model Using Dummy Variables";

proc reg data=newowen;

 model b_weight = age2 age3 age4 age5 age6;

run; quit;

5. Correcting Values Using Recodes (Data Cleaning)

You can correct values for a given observation or group of observations by correcting the raw data

before reading it into SAS, or it can be done in the data step, as illustrated below:

data fixup;

 set owen;

 if fam_num=5911 and childnum=1 then do;

 b_weight=3025;

 m_height=162;

 end;

 if fatfold = 42 then fatfold=24;

run;

proc print;

 where fam_num=5911 and childnum=1;

 var fam_num childnum b_weight m_height;

 title "Printout of One Child's Data for Checking";

run;

 Printout of One Child's Data for Checking

 Obs fam_num childnum b_weight m_height

 784 5911 1 3025 162

 Introduction to SAS

106

CHAPTER 13

DATES IN SAS
(commands=date.sas)

1. Introduction

A date value is stored in SAS as the number of days from January 1, 1960 to the given date. If the

date is before January 1, 1960, it will have a negative value, if it is after this date, it will have a

positive value. SAS dates can be subtracted, to get the number of days between two dates, or

manipulated in any way that normal numeric values can be. Dates can be displayed using a SAS date

format, or simply as a numeric value (with no format). There are many SAS formats for dates, a few

of which are listed in the table below. Note that all SAS date formats end in a period, to distinguish

them from SAS variable names.

Selected SAS Date Formats

SAS Date Format Example

date7. 12SEP06

date9. 12SEP2006

datetime10. 12SEP06:03

datetime13. 12SEP06:03:19

datetime16. 12SEP06:03:19:42

ddmmyy10. 23/09/2006

mmddyy10. 09/23/2006

monyy7. JUN2006

yymmdd8. 06-06-15

2. Example of Reading in Raw Data Using a Date Format

Here is an example of reading in a date value from a raw data file using a SAS date format. Note that

the width of the date variable may not always be the same in the raw data file, due to different

number of integers in the month and day that are coded. This is not a problem for SAS, when the

colon format modifier is used in front of the mmddyy8. date format, as in the commands shown

below. A portion of the raw data is shown here:

 Introduction to SAS

107

Data Excerpt from SURVEY.DAT

1 10/4/93 1 1 1 1 2 2 . 1 1.5 1 . . .

2 10/13/93 2 1 3 2 3 3 2 2 3 3 3 3 3

3 10/13/93 1 1 1 1 1 1 3 2 1 1 1 1 1

4 10/21/93 1 1 1 1 1 2 . 2 1 1 1 . 1

5 10/21/93 1 2 1 1 2 3 3 2 2 2 1 4 3

6 11/19/93 1 4 1 1 4 4 3 1 4

7 11/29/93 1 2 2 1 1 1 1 1 1 2 2 1 1

The SAS commands to read in this raw data are shown below:

data survey;

 infile "survey.dat";

 input Pt_num DateRec :mmddyy8. Phone FstAppt ConvApp Staff Confer

 Txhelp AddSvc Tx_Loc FeelTx Wait ConTime RxExpl Confcare;

 lastdate="01FEB1997"D;

 today = date();

 days = lastdate - daterec;

 years = (lastdate - daterec)/365.25;

 format daterec today mmddyy10. lastdate date9.;

run;

title "Printout Showing Dates with Date Formats";

proc print data=survey(obs=10);

 var pt_num daterec lastdate today days years;

run;

title "Contents Showing Formats for Date Variables";

proc contents data=survey;

run;

Notice that the variable DATEREC is read in using the mmddyy8. informat, but it is displayed

using the mmdyy10. format.

The new variable LASTDATE is entered using a date constant. The date constant is listed in

quotes, and gives the value of the date as a two-digit day, followed the first three letters of the

month, followed by a two- or four-digit year, followed by a D to tell SAS that this is a date constant,

and should be treated as a date (which is numeric) and not a character value.

The variable TODAY is created using the DATE () function, which automatically returns today's

date, as set in your computer. The new variables DAYS, and YEARS are calculated using

mathematical functions to calculate the time between two dates.

 Introduction to SAS

108

The format statement tells SAS to display the two date variables, DATEREC and TODAY, using the

SAS date format mmddyy10., while the variable LASTDATE will be displayed using the DATE9.

format. Any other valid date format could have been chosen to display the values of these variables,

or they could have been left as the number of days from the reference date of January 1, 1960. You

do not need to display dates using the same format in which they were originally read into SAS.

The output from these commands is shown below:

 Printout Showing Dates with Date Formats

 Obs Pt_num DateRec lastdate today days years

 1 1 10/04/1993 01FEB1997 06/14/2013 1216 3.32923

 2 2 10/13/1993 01FEB1997 06/14/2013 1207 3.30459

 3 3 10/13/1993 01FEB1997 06/14/2013 1207 3.30459

 4 4 10/21/1993 01FEB1997 06/14/2013 1199 3.28268

 5 5 10/21/1993 01FEB1997 06/14/2013 1199 3.28268

 6 6 11/19/1993 01FEB1997 06/14/2013 1170 3.20329

 7 7 11/29/1993 01FEB1997 06/14/2013 1160 3.17591

 8 8 12/02/1993 01FEB1997 06/14/2013 1157 3.16769

 9 9 12/09/1993 01FEB1997 06/14/2013 1150 3.14853

 10 10 12/13/1993 01FEB1997 06/14/2013 1146 3.13758

 Contents Showing Formats for Date Variables

 Alphabetic List of Variables and Attributes

 # Variable Type Len Format

 9 AddSvc Num 8

 13 ConTime Num 8

 15 Confcare Num 8

 7 Confer Num 8

 5 ConvApp Num 8

 2 DateRec Num 8 MMDDYY10.

 11 FeelTx Num 8

 4 FstAppt Num 8

 3 Phone Num 8

 1 Pt_num Num 8

 14 RxExpl Num 8

 6 Staff Num 8

 10 Tx_Loc Num 8

 8 Txhelp Num 8

 12 Wait Num 8

 18 days Num 8

 16 lastdate Num 8 DATE9.

 17 today Num 8 MMDDYY10.

 19 years Num 8

3. Example of Using the MDY Function to Read a Date

Date values are sometimes entered as separate variables representing month, day and year. The

following example illustrates how these values can be used with the mdy function in SAS to create

date variables.

 Introduction to SAS

109

data dates;

 length name $12;

 input name $ bmon bday byr intmon intday intyr;

 if bday = . then bday = 15;

 if intday = . then intday = 15;

 birdate = mdy(bmon,bday,byr);

 intdate = mdy(intmon,intday,intyr);

 intage = int((intdate-birdate)/365);

 format birdate intdate date9.;

 cards;

 Roger 12 12 84 9 3 94

 Samantha 1 20 85 9 15 94

 Henry 10 6 83 10 2 94

 William 4 17 82 10 5 94

 Petra 6 . 83 9 14 94

 ;

proc print data=dates;

 title 'Printing Dates Using SAS Date Formats';

run;

The output from this program is shown below:

Printing Dates Using SAS Date Formats

 B I

 I I I N I

 N N I R T N

 N B B T T N D D T

O A M D B M D T A A A

B M O A Y O A Y T T G

S E N Y R N Y R E E E

1 Roger 12 12 84 9 3 94 12DEC1984 03SEP1994 9

2 Samantha 1 20 85 9 15 94 20JAN1985 15SEP1994 9

3 Henry 10 6 83 10 2 94 06OCT1983 02OCT1994 10

4 William 4 17 82 10 5 94 17APR1982 05OCT1994 12

5 Petra 6 15 83 9 14 94 15JUN1983 14SEP1994 11

You can temporarily remove date formats from SAS variables by using a format statement with Proc

Print. This does not change the formats that are saved in the SAS dataset, but simply changes the

way the variables are displayed for this Proc.

proc print data=dates;

 format birdate intdate;

 title "Printing Dates as Ordinary Numeric Values";

run;

 Introduction to SAS

110

The output from this program is shown below:

 Printing Dates as Ordinary Numeric Values

 OBS NAME BMON BDAY BYR INTMON INTDAY INTYR BIRDATE INTDATE INTAGE

 1 Roger 12 12 84 9 3 94 9112 12664 9

 2 Samantha 1 20 85 9 15 94 9151 12676 9

 3 Henry 10 6 83 10 2 94 8679 12693 10

 4 William 4 17 82 10 5 94 8142 12696 12

 5 Petra 6 15 83 9 14 94 8566 12675 11

4. How to Handle the Year 2000 Problem in SAS

You can use the yearcutoff option to set a 100-year window to determine how SAS will interpret

dates that are only 2 digits long. The default yearcutoff for SAS 9 is 1920, so a 2 - digit year that is

00 will be read as 2000. However, if you wish to change that, you can change the yearcutoff option

to be a different year, say 1900. Then, the year 00 will be read as 1900.

options yearcutoff = 1900;

data testdate;

 input chkdate :MMDDYY8.;

 format chkdate mmddyy10.;

 cards;

 01/01/50

 01/01/49

 01/01/01

 01/01/98

 01/01/00

 ;

proc print data=testdate;

 title "Printout of Dates with yearcutoff at 1900";

run;

The output from these commands is shown below:

 Printout of Dates with yearcutoff at 1900

 Obs chkdate

 1 01/01/1950

 2 01/01/1949

 3 01/01/1901

 4 01/01/1998

 5 01/01/1900

 Introduction to SAS

111

CHAPTER 14

SUMMARIZING DATA ACROSS OBSERVATIONS

(commands=summary.sas)

1. Introduction

SAS is a very powerful tool for summarizing data across observations. An output data set can be

created that contains summary information for each subgroup. The number of observations in the

new data set is equal to the number of subgroups. This could be useful for summarizing test scores

for students in individual schools, summarizing the weights of rats in each litter in an experimental

study, or summarizing sales figures for businesses across a number of years.

Proc Means can be used to summarize data across cases in SAS. The data set must be sorted by the

variable or variables that will form the subgroups before using Proc Means to summarize across

subgroups.

SAS allows you to calculate many different types of summary statistics using Proc Means. A list is

shown below:

N: Number of nonmissing cases.

NMISS: Number of missing cases.

MEAN: Sample mean.

STD: Standard deviation

MIN: Minimum value.

MAX: Maximum value.

RANGE: Range of values.

SUM: Sum of all values.

VAR: Variance.

USS: Uncorrected Sum of Squares.

CSS: Corrected Sum of Squares.

CV: Coefficient of variation.

STDERR: Standard error of the mean.

T: student's t statistic for testing if the population mean

is equal to zero.

PRT: The p-value of the t-statistic testing whether the

population mean is zero.

SUMWGT: The sum of the weights. If there are no sample weights,

then SUMWGT=N (the number of non-missing cases).

SKEWNESS: Skewness.

KURTOSIS: Kurtosis.

CLM: Two-sided confidence limit for the mean.

95% CI is the default.

LCLM: Lower one-sided confidence limit for the mean.

95% one-sided CI is the default.

UCLM: Upper one-sided confidence limit for the mean.

95% one-sided CI is the default.

 Introduction to SAS

112

2. Generating Summary Statistics

The example below shows how to calculate summary statistics for each school from the SAS data set

KIDS. Note that the data set must first be sorted by school. The NOPRINT option is used so that the

summary statistics will not be displayed in the output window.

data kids;

 input school $ name $ sex age mathscor engscor;

 cards;

Dicken Tom 1 12 62 128

Dicken Sarah 0 13 63 118

Dicken Bob 1 13 57 116

Dicken Joe 1 11 59 105

Dicken Molly 0 13 64 129

Dicken Sharice 0 11 53 109

Mack Harry 1 12 53 102

Mack Mary 0 12 49 97

Mack William 1 13 66 139

Mack Ellen 0 13 . 117

Bach John 1 11 57 119

Bach Carol 0 13 62 126

Bach Richard 1 11 55 115

Bach Chris 1 12 59 102

Bach Mark 1 13 65 .

Bach Steve 1 13 62 120

King Chris 0 12 59 102

King Claire 0 13 . 126

King Lynn 0 12 55 114

 ;

proc sort data=kids;

 by school;

run;

proc print data=kids;

 title "Printout of Original Data Set Sorted by School";

run;

proc means data=kids noprint;

 by school;

 output out=schooldat mean(mathscor)=meanmath mean(engscor)=meaneng

mean(age)=meanage n(mathscor)=nmath n(engscor)=neng n(age)=nage

sum(sex)=males;

run;

proc print data=schooldat;

 title "Printout of Summary Data Set";

run;

The output from these commands is shown below:

 Introduction to SAS

113

 Printout of Original Data Set Sorted by School

 Obs school name sex age mathscor engscor

 1 Bach John 1 11 57 119

 2 Bach Carol 0 13 62 126

 3 Bach Richard 1 11 55 115

 4 Bach Chris 1 12 59 102

 5 Bach Mark 1 13 65 .

 6 Bach Steve 1 13 62 120

 7 Dicken Tom 1 12 62 128

 8 Dicken Sarah 0 13 63 118

 9 Dicken Bob 1 13 57 116

 10 Dicken Joe 1 11 59 105

 11 Dicken Molly 0 13 64 129

 12 Dicken Sharice 0 11 53 109

 13 King Chris 0 12 59 102

 14 King Claire 0 13 . 126

 15 King Lynn 0 12 55 114

 16 Mack Harry 1 12 53 102

 17 Mack Mary 0 12 49 97

 18 Mack William 1 13 66 139

 19 Mack Ellen 0 13 . 117

 Printout of Summary Data Set

 Obs school _TYPE_ _FREQ_ meanmath meaneng meanage nmath neng nage males

 1 Bach 0 6 60.0000 116.40 12.1667 6 5 6 5

 2 Dicken 0 6 59.6667 117.50 12.1667 6 6 6 3

 3 King 0 3 57.0000 114.00 12.3333 2 3 3 0

 4 Mack 0 4 56.0000 113.75 12.5000 3 4 4 2

Note that the automatic variable, _TYPE_ , is not important for this example, and can be ignored.

The automatic variable _FREQ_ tells you how many observations were in each school and can be

useful for later calculations.

 data school2;
 set schooldat;

 females = _freq_ - males;

 pctmale = (males/_freq_)*100;

 pctfem = (females/_freq_)*100;

 totkids = _freq_;

 drop _freq_;

run;

proc print data=school2;

 title "Printout of Revised Summary Data Set";

run;

A printout of the results of the above commands is shown below:

 Introduction to SAS

114

 Printout of Revised Summary Data Set

OBS SCHOOL _TYPE_ MEANMATH MEANENG MEANAGE NMATH NENG NAGE MALES FEMALES PCTMALE PCTFEM TOTKIDS

 1 Bach 0 60.0000 116.40 12.1667 6 5 6 5 1 83.3333 16.667 6

 2 Dicken 0 59.6667 117.50 12.1667 6 6 6 3 3 50.0000 50.000 6

 3 King 0 57.0000 114.00 12.3333 2 3 3 0 3 0.0000 100.000 3

 4 Mack 0 56.0000 113.75 12.5000 3 4 4 2 2 50.0000 50.000 4

3. Summarizing Data for Subgroups Based on More than

One Variable

You can summarize values for subgroups defined by more than one variable using Proc Means. To

do this, you must first sort the data set by both variables that are going to form the subgroups, as

shown below. Note that the function sum(sex) was not included in this example, because the data are

already being summarized by sex.

proc sort data=kids;

 by school sex;

run;

proc means data=kids noprint ;

 by school sex;

 output out=schoolsex mean(mathscor)=meanmath mean(engscor)=meaneng

 mean(age)=meanage n(mathscor)=nmath n(engscor)=neng n(age)=nage;

run;

proc print data=schoolsex;

 title "Summary Data for Each School and Sex";

run;

This output is shown below. Notice that the output data set now has 7 observations, rather than 8,

since King School had no females.

 Summary Data for Each School and Sex

 OBS SCHOOL SEX _TYPE_ _FREQ_ MEANMATH MEANENG MEANAGE NMATH NENG NAGE

 1 Bach 0 0 1 62.0000 126.000 13.0000 1 1 1

 2 Bach 1 0 5 59.6000 114.000 12.0000 5 4 5

 3 Dicken 0 0 3 60.0000 118.667 12.3333 3 3 3

 4 Dicken 1 0 3 59.3333 116.333 12.0000 3 3 3

 5 King 0 0 3 57.0000 114.000 12.3333 2 3 3

 6 Mack 0 0 2 49.0000 107.000 12.5000 1 2 2

 7 Mack 1 0 2 59.5000 120.500 12.5000 2 2 2

 Introduction to SAS

115

4. Saving the Summary Data Set as a Permanent SAS Data

Set

To save the output data set created by Proc Means, use a libname statement and give the output data

set a two-level name, as shown below:

libname sasdata2 C:\Users\kwelch\Desktop\sasdata2";

proc sort data=kids;

 by school;

run;

proc means data=kids noprint;

 by school;

 output out=sasdata2.schooldat mean(mathscor)=meanmath

mean(engscor)=meaning mean(age)=meanage n(mathscor)=nmath n(engscor)=neng

n(age)=nage sum(sex)=males;

run;

data sasdata2.school2;

 set sasdata.schooldat;

 females = _freq_ - males;

 pctmale = (males/_freq_)*100;

 pctfem = (females/_freq_)*100;

 totkids = _freq_;

 drop _freq_;

run;

5. Merging Summary Statistics with the Original Data Set

You can merge the summary data with the original SAS data, which will produce a data set with all

of the original variables, plus the summary statistics.

data schoolkid;

 merge kids school2;

 by school;

run;

proc print data=schoolkid;

 title "Printout of Merged Data Set";

run;

The output from these commands is shown on the following page:

 Introduction to SAS

116

 Printout of Merged Data Set

 M M

 A E E M M F P T

 S T N _ A E E E C P O

 C H G T N A A N M M T C T

 H N S S Y M N N M N N A A M T K

 O O A S A C C P A E A A E A L L A F I

 B O M E G O O E T N G T N G E E L E D

 S L E X E R R _ H G E H G E S S E M S

 1 Bach Carol 0 13 62 126 0 60.0000 116.40 12.1667 6 5 6 5 1 83.3333 16.667 6

 2 Bach John 1 11 57 119 0 60.0000 116.40 12.1667 6 5 6 5 1 83.3333 16.667 6

 3 Bach Richard 1 11 55 115 0 60.0000 116.40 12.1667 6 5 6 5 1 83.3333 16.667 6

 4 Bach Chris 1 12 59 102 0 60.0000 116.40 12.1667 6 5 6 5 1 83.3333 16.667 6

 5 Bach Mark 1 13 65 . 0 60.0000 116.40 12.1667 6 5 6 5 1 83.3333 16.667 6

 6 Bach Steve 1 13 62 120 0 60.0000 116.40 12.1667 6 5 6 5 1 83.3333 16.667 6

 7 Dicken Sarah 0 13 63 118 0 59.6667 117.50 12.1667 6 6 6 3 3 50.0000 50.000 6

 8 Dicken Molly 0 13 64 129 0 59.6667 117.50 12.1667 6 6 6 3 3 50.0000 50.000 6

 9 Dicken Sharice 0 11 53 109 0 59.6667 117.50 12.1667 6 6 6 3 3 50.0000 50.000 6

 10 Dicken Tom 1 12 62 128 0 59.6667 117.50 12.1667 6 6 6 3 3 50.0000 50.000 6

 11 Dicken Bob 1 13 57 116 0 59.6667 117.50 12.1667 6 6 6 3 3 50.0000 50.000 6

 12 Dicken Joe 1 11 59 105 0 59.6667 117.50 12.1667 6 6 6 3 3 50.0000 50.000 6

 13 King Chris 0 12 59 102 0 57.0000 114.00 12.3333 2 3 3 0 3 0.0000 100.000 3

 14 King Claire 0 13 . 126 0 57.0000 114.00 12.3333 2 3 3 0 3 0.0000 100.000 3

 15 King Lynn 0 12 55 114 0 57.0000 114.00 12.3333 2 3 3 0 3 0.0000 100.000 3

 16 Mack Mary 0 12 49 97 0 56.0000 113.75 12.5000 3 4 4 2 2 50.0000 50.000 4

 17 Mack Ellen 0 13 . 117 0 56.0000 113.75 12.5000 3 4 4 2 2 50.0000 50.000 4

 18 Mack Harry 1 12 53 102 0 56.0000 113.75 12.5000 3 4 4 2 2 50.0000 50.000 4

 19 Mack William 1 13 66 139 0 56.0000 113.75 12.5000 3 4 4 2 2 50.0000 50.000 4

 Introduction to SAS

117

CHAPTER 15

WORKING WITH SAS FORMATS
(commands=formats.sas)

1. Introduction

SAS user-defined formats allow you to assign labels to the values of variables. Formats can be

assigned to character or numeric variables. They can be attached to specific values, or to ranges of

values. They can be permanent or temporary. There are also default SAS formats, such as formats

for date variables, that can be used at any time. This handout covers only some of the more basic

uses of SAS user-defined formats for numeric variables.

User-defined formats are not part of the SAS data set. They are stored in a separate file called a

formats catalog. The only thing that is present in the data set is a link to the format (actually, just

the format name). The structure of SAS formats catalogs is different than that of SAS data sets. This

allows flexibility, in that the same format can be applied to multiple variables within a data set, and

even to multiple data sets; but it also means that the formats must be linked to the variables in the

data set, and that these links must be maintained when moving data across platforms or between

versions of SAS. This can make working with SAS formats difficult and cumbersome at times.

2. What is a User-Defined Format?

User-defined formats allow you to attach labels to the values for a variable so that the output from

SAS procedures is more readable. For example, if sex is a numeric variable coded as 1 for males

and 2 for females, the user-defined format can be set up so that the values "male" and "female" are

printed in SAS output, rather than 1 and 2. The same variable can also be used in numeric

procedures, such as proc reg, or proc means, because the values of the underlying variable are still

numeric. The format does not change the underlying values of the variable, but simply how they are

displayed.

3. What Are the File Names for Formats Catalogs?

Windows SAS formats catalogs in release 9 of SAS are called “formats.sas7bcat”.

 Introduction to SAS

118

4. Saving User-Defined Formats in a SAS Formats Catalog

Here are the steps for creating and saving permanent user-defined SAS formats and assigning them

to variables in a permanent data set.

 Submit libname statements for the data set and for the formats catalog. Both libnames

may point to the same folder or they may point to different folders. The libname for your

formats has to be "library".

 Run proc format to create the user-defined formats. Proc format is used to set up the

formats definitions. Format names may be up to 32 characters long, and may not end

with a number. Creating the formats does not link them to variables in the data set.

 Create the permanent data set using a data step.

 Run Proc Datasets to link the formats to the variables in the data set. Be sure when

assigning formats to variables using Proc Datasets, that you follow the format name by a

period.

The example below illustrates how formats are created and saved in the special library called

"library". The data set is saved in the library called sasdata2. These may both point to the same

folder, or to different folders.

libname sasdata2 " C:\Users\kwelch\Desktop\sasdata2";
libname library " C:\Users\kwelch\Desktop\sasdata2";

proc format lib=library;

 value childfmt 1="oldest"

 2="next oldest"

 3="youngest";

 value sexfmt 1="male"

 2="female";

 value racefmt 1="white"

 2="black";

run;

data sasdata2.owen;

 infile "owen.dat";

 input fam_num childnum age sex race w_rank income_c height weight hemo

 vit_c vit_a head_cir fatfold b_weight mot_age b_order m_height

 f_height;

 label fam_num = "Family ID"

 childnum = "Child Number"

 age = "Age (Months)"

 w_rank = "Socioeconomic Status"

 income_c = "Income Per Capita"

 height = "Height (cm)"

 weight = "Weight (kg)"

 b_weight = "Birth Weight"

 mot_age = "Mothers Age at Birth";

run;

 Introduction to SAS

119

proc datasets lib=sasdata2;

 modify owen;

 format childnum childfmt. sex sexfmt. race racefmt.;

run;

proc contents data=sasdata2.owen;

 title "Contents of SASDATA2.OWEN Permanent SAS Data set";

 title2 "Notice that the formats have been assigned to the variables";

run;

proc freq data=sasdata2.owen;

 table sex*race;

 title "Tabulation Using Formatted Values";

run;

The output from the previous commands is shown below. Note that the format names are shown in

the contents of the SAS data set as one of the attributes of the variables.

 Contents of SASDATA2.OWEN Permanent SAS Data set

 Notice that the formats have been assigned to the variables

 The CONTENTS Procedure

 Data Set Name SASDATA2.OWEN Observations 1006

 Member Type DATA Variables 19

 Engine V9 Indexes 0

 Created Thursday, August 17, 2006 09:19:26 AM Observation Length 152

 Last Modified Thursday, August 17, 2006 09:19:28 AM Deleted Observations 0

 Protection Compressed NO

 Data Set Type Sorted NO

 Label

 Data Representation WINDOWS_32

 Encoding wlatin1 Western (Windows)

 Engine/Host Dependent Information

 Data Set Page Size 12288

 Number of Data Set Pages 14

 First Data Page 1

 Max Obs per Page 80

 Obs in First Data Page 61

 Number of Data Set Repairs 0

 File Name c:\temp\sasdata2\owen.sas7bdat

 Release Created 9.0101M3

 Host Created XP_HOME

 Alphabetic List of Variables and Attributes

 # Variable Type Len Format Label

 3 age Num 8 Age (Months)

 17 b_order Num 8

 15 b_weight Num 8 Birth Weight

 Introduction to SAS

120

 2 childnum Num 8 CHILDFMT. Child Number

 19 f_height Num 8

 1 fam_num Num 8 Family ID

 14 fatfold Num 8

 13 head_cir Num 8

 8 height Num 8 Height (cm)

 10 hemo Num 8

 7 income_c Num 8 Income Per Capita

 18 m_height Num 8

 16 mot_age Num 8 Mothers Age at Birth

 5 race Num 8 RACEFMT.

 4 sex Num 8 SEXFMT.

 12 vit_a Num 8

 11 vit_c Num 8

 6 w_rank Num 8 Socioeconomic Status

 9 weight Num 8 Weight (kg)

 Tabulation Using Formatted Values

 Table of sex by race

 sex race

 Frequency|

 Percent |

 Row Pct |

 Col Pct |white |black | Total

 ---------+--------+--------+

 male | 368 | 146 | 514

 | 36.58 | 14.51 | 51.09

 | 71.60 | 28.40 |

 | 50.97 | 51.41 |

 ---------+--------+--------+

 female | 354 | 138 | 492

 | 35.19 | 13.72 | 48.91

 | 71.95 | 28.05 |

 | 49.03 | 48.59 |

 ---------+--------+--------+

 Total 722 284 1006

 71.77 28.23 100.00

5. Note on sorting order of formats

The use of formats may affect the order in which variables are processed for some procedures. This

can be important when using class variables in such procedures as Proc GLM, Proc Mixed and Proc

Genmod, or in the tables statement of Proc Freq. Some procedures use the numeric order of the

values by default, while others use the alphabetic order of the formats as the default. You can

control the sorting order that you wish to use for these variables by specifying the order= option in

your proc statement.

 Introduction to SAS

121

Options necessary to specify the order of formatted values are shown below:

 Order=internal: Numeric order based on the unformatted values of the numeric variable.

 Order=formatted: Alphabetic sorting of the formats.

 Order=data: Sort in the order in which the data were entered.

The examples below show how this would work.

proc freq data=sasdata2.owen;

 tables sex;

 title "Default Order";

run;

proc freq data=sasdata2.owen order=formatted;

 tables sex;

 title "Order=Formatted";

run;

proc freq data=sasdata2.owen order=internal;

 tables sex;

 title "Order=Internal";

run;

 Default Order

 The FREQ Procedure

 Cumulative Cumulative

 sex Frequency Percent Frequency Percent

 male 514 51.09 514 51.09

 female 492 48.91 1006 100.00

 Order=Formatted

 The FREQ Procedure

 Cumulative Cumulative

 sex Frequency Percent Frequency Percent

 female 492 48.91 492 48.91

 male 514 51.09 1006 100.00

 Order=Internal

 The FREQ Procedure

 Cumulative Cumulative

 sex Frequency Percent Frequency Percent

 male 514 51.09 514 51.09

 female 492 48.91 1006 100.00

 Introduction to SAS

122

6. Using a Permanent SAS Dataset with Formats

After saving your permanent SAS data set and the user-defined formats that you have created, you

will want to use the data sets in later runs of SAS. The requirements for this are shown below:

 Give libname statements for the data set and for the formats library

 Refer to the SAS data set by its two-level name.

Here is an example of commands for using the OWEN permanent SAS data set, along with its

formats.

libname sasdata2 "C:\Users\kwelch\Desktop\sasdata2";

libname library "C:\Users\kwelch\Desktop\sasdata2";

proc freq data=sasdata2.owen;

 tables race sex ;

 title "Using Permanent Formats";

run;

7. Creating and Using Temporary User-Defined Formats

Temporary formats can be created to be used within a given SAS session. They will not be

remembered when SAS is started again, and will need to be re-submitted again in order to activate

them. Note: if you have defined temporary formats in a particular session, they will take precedence

over the formats that have been stored in your permanent formats catalog. It is wise to create and

run permanent formats in separate SAS runs than when you create temporary formats. The steps for

creating and using a temporary format are shown below:

 Run proc format to create the user-defined formats.

 Run whatever procedures you wish, and assign the formats to the variables using a format

statement as part of the procedure step. Formats must be listed separately each proc that

is run.

 Note: You do not need to specify a libname statement if the data set and formats being

created are temporary.

In the example below, the numeric value and the label have both been used as part of the format.

This causes the internal order and the formatted order to be the same, as long as the numeric values

are no larger than 9. Also notice that the format for the variable SEX was named GENDFMT, so it

would not conflict with SEXFMT that was created earlier.

proc format;

 value gendfmt 1="1: male"

 2="2: female";

 value actfmt 1="1: low"

 2="2: medium"

 3="3: high";

 Introduction to SAS

123

 value ranfmt 1="1: Yes"

 2="2: No";

run;

data pulse;

 infile "pulse.dat";

 input pulse1 pulse2 ran smokes sex height weight activity;

run;

proc freq data=pulse;

 tables sex activity ran;

 format sex gendfmt. activity actfmt. ran ranfmt.;

 title "Formats Are Assigned Temporarily";

run;

proc means data=pulse;

 class ran;

 var pulse1 pulse2;

 format ran ranfmt.;

run;

Output from these commands is shown below:

 Formats Are Assigned Temporarily

 The FREQ Procedure

 Cumulative Cumulative

 sex Frequency Percent Frequency Percent

 --

 1: male 57 61.96 57 61.96

 2: female 35 38.04 92 100.00

 Cumulative Cumulative

 activity Frequency Percent Frequency Percent

 --

 1: low 10 10.87 10 10.87

 2: medium 61 66.30 71 77.17

 3: high 21 22.83 92 100.00

 Cumulative Cumulative

 ran Frequency Percent Frequency Percent

 1: Yes 35 38.04 35 38.04

 2: No 57 61.96 92 100.00

 The MEANS Procedure

 N

ran Obs Variable N Mean Std Dev Minimum Maximum

1: Yes 35 pulse1 35 73.6000000 11.4357540 58.0000000 100.0000000

 pulse2 35 92.5142857 18.9432146 58.0000000 140.0000000

2: No 57 pulse1 57 72.4210526 10.8165669 48.0000000 94.0000000

 pulse2 57 72.3157895 9.9483629 50.0000000 94.0000000

 Introduction to SAS

124

8. Creating a data set from a formats catalog

SAS data sets and SAS catalogs are very different. You cannot browse a formats catalog, or open it

in SAS/INSIGHT. However, you can create a data set from a formats catalog. This allows you to

view the values of the formats, and also to move the formats across platforms (as a transport file).

Once the format is moved, it can be reconstituted into a formats catalog in whatever platform you

wish and with whatever version of SAS you wish. This is also required if you wish to move a SAS

formats catalog to SPSS.

The commands below show how to create a SAS dataset from a formats catalog.

/*CREATING A DATA SET FROM A FORMATS CATALOG*/

libname library "C:\Users\kwelch\Desktop\sasdata2";

proc format lib=library CNTLOUT=fmtdat;

run;

proc print data=fmtdat;

 title "So This is what is in a format!";

run;

 So This is what is in a format!

 D L

 F D D A A

 M E L P N D I T N

 T S L F E R O S E E G A G

 N T A A N F E M F E T E E C 3 T U

 O A A E B M M U G U F U I D Y X X H S S Y A

 b M R N E I A L T Z I L L I P C C L E E P G

 s E T D L N X T H Z X T L T E L L O P P E E

 1 CHILDFMT 1 1 oldest 1 40 11 11 1E-12 0 0 N N N

 2 CHILDFMT 2 2 next oldest 1 40 11 11 1E-12 0 0 N N N

 3 CHILDFMT 3 3 youngest 1 40 11 11 1E-12 0 0 N N N

 4 RACEFMT 1 1 white 1 40 5 5 1E-12 0 0 N N N

 5 RACEFMT 2 2 black 1 40 5 5 1E-12 0 0 N N N

 6 SEXFMT 1 1 male 1 40 6 6 1E-12 0 0 N N N

 7 SEXFMT 2 2 female 1 40 6 6 1E-12 0 0 N N N

It is obvious that the simple formats we have created do not use all of the possible options that exist

for formats!

To view the formats within SAS, first click on the explorer tab and then double-click on your library

(SASDATA2). Within the library, you will see that the formats catalog looks like a folder, with a red

dot at the bottom right corner, as whon below. Double-click on the formats catalog.

 Introduction to SAS

125

If you double-click on the formats catalog, and then double-click on the formats themselves, you

will get the information about the format.

 Introduction to SAS

126

If you double-click on a format in SAS 9.3, this is what will show up. In earlier versions of SAS,

nothing will happen when you click on the format.

 --

 | FORMAT NAME: CHILDFMT LENGTH: 11 NUMBER OF VALUES: 3 |

 | MIN LENGTH: 1 MAX LENGTH: 40 DEFAULT LENGTH: 11 FUZZ: STD |

 |--|

 |START |END |LABEL (VER. V7|V8 14JUN2013:11:59:03)|

 |----------------+----------------+--|

 | 1| 1|oldest |

 | 2| 2|next oldest |

 | 3| 3|youngest |

 --

The commands below show how to turn the formats catalog into a permanent SAS dataset:

/*MAKE A TRANSPORT FILE*/

libname trans1 xport "C:\Users\kwelch\Desktop\sasdata2\fmtdat.xpt";

proc copy in=work out=trans1;

 select fmtdat;

run;

Once the formats are in a transport file, that file can be moved via ftp (be sure you use binary), or

another method. After being moved, they can be imported to another version of SAS on another

platform, if desired, or by another program, such as Stata or SPSS. The commands below show how

to import the transport file back into SAS.

/*READ IN THE TRANSPORT FILE*/

libname trans1 xport "C:\Users\kwelch\Desktop\sasdata2\fmtdat.xpt";

proc copy in=TRANS1 out=WORK;

run;

Proc Format can now be used to write out the formats to the format catalog, as shown in the

commands below:

/*WRITE OUT FORMATS INTO THE FORMATS CATALOG*/

libname library "C:\Users\kwelch\Desktop\sasdata2";

proc format lib=library CNTLIN=fmtdat;

run;

Check the log to be sure that the commands that you have entered have worked properly.

9. Problem Solving

1. Sometimes a formats catalog that contains necessary user-defined formats for a particular SAS

data set will get separated from the data set, become lost or unusable. This will generate errors in

SAS when trying to open and use the data set, as shown below:

 Introduction to SAS

127

ERROR: Format RACEFMT not found or couldn't be loaded for variable race.

ERROR: Format SEXFMT not found or couldn't be loaded for variable sex.

NOTE: The SAS System stopped processing this step because of errors.

In order to avoid these problems, the following statement may be submitted at the beginning of your

program :

 options nofmterr;

This option causes SAS to ignore the fact that the necessary formats are not present when dealing

with a SAS data set, and it will proceed without errors.

2. To permanently delete user-defined formats from a SAS data set, you can use Proc Datasets.

This procedure allows you to modify many attributes of a SAS data set. In the following example,

all formats are removed from the permanent data set, SASDATA2.OWEN.

libname sasdata2 "C:\Users\kwelch\Desktop\sasdata2";

proc datasets lib=sasdata2;

 modify owen;

 format _all_ ;

run; quit;

title "Formats Have Been Removed From Data Set";

proc contents data=sasdata2.owen;

run;

3. A warning message or note like the following may sometimes be seen in your SAS log:

 WARNING: Format SEXFMT is already on the library.

Or
 NOTE: Format SEXFMT is already on the library.

This means that you have specified a format name called SEXFMT., which has already been saved

in the formats catalog. This will not create a problem unless the new values of SEXFMT conflict

with the previous values. If they do, SAS will only use the most recently defined values.

4. Several SAS data sets can use the same formats catalog. If they do, then you need to be careful to

use different names for the different formats that you create, so conflicts will not arise.

5. One way to avoid the potential problem of conflicting or repeated format names in a single

formats catalog, is to keep different SAS data sets and their accompanying formats catalogs in

separate folders. If you use this method, you will need to re-assign LIBRARY to different folders in

order to use the formats catalogs that are kept in those folders. To set a library to a new value, you

must first clear it, and then it can be reassigned. Note that the V8 engine is not specified in the clear

statement.

libname library clear;

libname library "c:\temp\";

 Introduction to SAS

128

CHAPTER 16

STATISTICAL PROCEDURES
(commands= statistics.sas)

1. The Afifi data

Afifi and Azen (1972) describe data collected at the Los Angeles Shock Unit, which are used for this

example. See the appendix for a description of the data set, along with variable names and column

locations.

2. SAS command to read the data and set up formats

The following SAS commands read in Afifi SAS data set and recode some variables for the

analysis.In addition, Proc Format is used to set up values for some of the variables. Proc Datasets is

used to assign the formats to the variables.

LIBNAME SASDATA2 "C:\Users\kwelch\Desktop\sasdata2";

DATA AFIFI;

 SET SASDATA2.AFIFI;

 IF SHOKTYPE=2 THEN SHOCK=1;

 IF SHOKTYPE IN (3,4,5,6,7) THEN SHOCK=2;

 IF SURVIVE=1 THEN DIED=0;

 IF SURVIVE=3 THEN DIED=1;

 SBPDIFF=SBP2-SBP1;

 LABEL SHOCK="Binary Shock";

RUN;

PROC FORMAT;

 VALUE SEXFMT 1="1: Male" 2="2: Female" ;

 VALUE SURVFMT 1="1: Lived" 3="3: Died" ;

 VALUE SHKTYFMT 2="2: Non-Shock"

 3="3: Hypovolemic"

 4="4: Cardiogenic"

 5="5: Bacterial"

 6="6: Neurogenic"

 7="7: Other";

 VALUE SHOCKFMT 1="1: No shock" 2="2: Shock" ;

RUN;

PROC DATASETS LIB=WORK;

 MODIFY AFIFI;

 FORMAT SEX SEXFMT. SURVIVE SURVFMT. SHOKTYPE SHKTYFMT. SHOCK

SHOCKFMT.;

RUN;

 Introduction to SAS

129

PROC CONTENTS DATA= AFIFI;

RUN;

3. SAS Commands for statistical analysis

We list all of the SAS commands used in this example here, and later show each command right

before its respective output. Notice that there are three titles given for most of the procedures. The

first two titles stay the same throughout the analysis, while the third title is specific for each

procedure. When Title3 is specified, it replaces the value of Title3, but does not change the value of

Title1 and Title2, which stay the same throughout the analysis.

TITLE1 "INTRO SAS WORKSHOP";

TITLE2 "AFIFI ANALYSIS";

TITLE3 "DESCRIPTIVE STATISTICS";

PROC MEANS DATA=AFIFI;

RUN;

TITLE3 "FREQUENCY TABLES FOR SELECTED VARIABLES" ;

PROC FREQ DATA=AFIFI;

 TABLES SEX SURVIVE SEX SHOKTYPE SHOCK ;

RUN;

TITLE3 "CROSS TABULATIONS FOR SURVIVAL AND SHOCK TYPE" ;

PROC FREQ DATA=AFIFI;

 TABLES SHOCK*SURVIVE/CHISQ EXPECTED RELRISK;

RUN;

TITLE3 "HISTOGRAMS, NORMAL Q-Q PLOTS" ;

PROC UNIVARIATE DATA=AFIFI;

 ID IDNUM;

 VAR SBP1 URINE1 ;

 HISTOGRAM;

 QQPLOT / NORMAL(MU=EST SIGMA=EST);

RUN;

TITLE3 "INDEPENDENT SAMPLES T-TEST FOR SELECTED VARIABLES";

PROC TTEST DATA=AFIFI;

 CLASS SURVIVE ;

 VAR SBP1 HEART1 CARDIAC1 MAP1;

RUN;

TITLE3 "PAIRED T-TEST FOR SBP1 VS. SBP2";

PROC TTEST DATA=AFIFI;

 PAIRED SBP2*SBP1;

FOOTNOTE "T-TEST IS FOR NULL HYPOTHESIS THAT MEAN OF THE

DIFFERENCES EQUALS ZERO";RUN;

 Introduction to SAS

130

PROC SORT DATA=AFIFI;

 BY SURVIVE ;

RUN;

TITLE4 "SEPARATELY FOR THOSE WHO SURVIVED AND THOSE WHO DIED";

PROC TTEST DATA=AFIFI;

 BY SURVIVE;

 PAIRED SBP2*SBP1;

RUN;

TITLE3 "CORRELATIONS" ;

PROC CORR DATA=AFIFI NOMISS;

 VAR SBP2 CARDIAC1 HEART1 HGB1 MAP1 ;

 FOOTNOTE ;

RUN;

ODS GRAPHICS ON;

TITLE3 "REGRESSION ANALYSIS WITH DIAGNOSTIC PLOTS";

TITLE4 "AND ANALYSIS OF RESIDUALS";

PROC REG DATA=AFIFI;

 ID IDNUM;

 MODEL SBP2= CARDIAC1 HEART1 HGB1 URINE1 MAP1 ;

RUN;

QUIT;

ODS GRAPHICS OFF;

TITLE3 "ONEWAY ANALYSIS OF VARIANCE";

TITLE4 "WITH TUKEY MULTIPLE COMPARISON TECHNIQUE";

PROC GLM DATA=AFIFI;

 CLASS SHOKTYPE;

 MODEL SBP1=SHOKTYPE;

 MEANS SHOKTYPE/ TUKEY NOSORT;

RUN; QUIT;

ods graphics on;

TITLE3 "LOGISTIC REGRESSION";

PROC LOGISTIC DATA=AFIFI;

 CLASS SHOKTYPE / PARAM=REF REF=FIRST;

 MODEL DIED(EVENT="1") = SHOKTYPE SBP1 CARDIAC1/ RL RSQUARE

LACKFIT;

 UNITS SBP1=1 10 CARDIAC1=1;

RUN;

ods graphics off;

The individual commands and output from them are shown on the following pages:

 Introduction to SAS

131

4. Proc Means

PROC MEANS DATA=AFIFI;

RUN; INTRO SAS WORKSHOP
 AFIFI ANALYSIS

 DESCRIPTIVE STATISTICS

 The MEANS Procedure

Variable Label N Mean Std Dev

IDNUM 113 635.6991150 82.9653418

AGE 113 54.6283186 16.5966836

SEX 113 1.4778761 0.5017353

SURVIVE 113 1.7610619 0.9753602

SHOKTYPE 113 3.9380531 1.6970730

SBP1 Systolic BP at time 1 111 105.8558559 30.7691838

MAP1 Mean arterial pressure at time 1 113 73.4247788 22.0039791

HEART1 Heart rate at time 1 113 104.4424779 29.6093428

CARDIAC1 Cardiac index at time 1 110 2.5704545 1.4828335

URINE1 Urinary output at time 1 113 54.4336283 112.3486185

HGB1 Hemoglobin at time 1 113 11.4362832 2.5388785

SBP2 Systolic BP at time 2 113 110.7876106 37.0102426

MAP2 Mean arterial pressure at time 2 113 73.2123894 27.0826946

HEART2 Heart rate at time 2 113 96.3893805 29.6480647

CARDIAC2 Cardiac index at time 2 113 2.9354867 1.3358103

URINE2 Urinary output at time 2 113 77.5221239 135.9852997

HGB2 Hemoglobin at time 2 113 10.5345133 2.0166171

SHOCK Binary Shock 113 1.6991150 0.4606857

DIED 113 0.3805310 0.4876801

SBPDIFF 111 4.4414414 35.6545763

 Variable Label Minimum Maximum

 --

 IDNUM 340.0000000 758.0000000

 AGE 16.0000000 90.0000000

 SEX 1.0000000 2.0000000

 SURVIVE 1.0000000 3.0000000

 SHOKTYPE 2.0000000 7.0000000

 SBP1 Systolic BP at time 1 26.0000000 171.0000000

 MAP1 Mean arterial pressure at time 1 15.0000000 124.0000000

 HEART1 Heart rate at time 1 25.0000000 217.0000000

 CARDIAC1 Cardiac index at time 1 0.1700000 7.6300000

 URINE1 Urinary output at time 1 0 510.0000000

 HGB1 Hemoglobin at time 1 6.6000000 18.0000000

 SBP2 Systolic BP at time 2 38.0000000 182.0000000

 MAP2 Mean arterial pressure at time 2 22.0000000 117.0000000

 HEART2 Heart rate at time 2 25.0000000 221.0000000

 CARDIAC2 Cardiac index at time 2 0.6600000 7.9400000

 URINE2 Urinary output at time 2 0 850.0000000

 HGB2 Hemoglobin at time 2 5.9000000 15.5000000

 SHOCK Binary Shock 1.0000000 2.0000000

 DIED 0 1.0000000

 SBPDIFF -67.0000000 94.0000000

 --

 Introduction to SAS

132

5. Proc Freq—Oneway Frequencies

PROC FREQ DATA=AFIFI;

 TABLES SEX SURVIVE SEX SHOKTYPE SHOCK ;

RUN;
 INTRO SAS WORKSHOP

 AFIFI ANALYSIS

 FREQUENCY TABLES FOR SELECTED VARIABLES

 The FREQ Procedure

 Cumulative Cumulative

 SEX Frequency Percent Frequency Percent

 --

 1: Male 59 52.21 59 52.21

 2: Female 54 47.79 113 100.00

 Cumulative Cumulative

 SURVIVE Frequency Percent Frequency Percent

 1: Lived 70 61.95 70 61.95

 3: Died 43 38.05 113 100.00

 Cumulative Cumulative

 SEX Frequency Percent Frequency Percent

 --

 1: Male 59 52.21 59 52.21

 2: Female 54 47.79 113 100.00

 Cumulative Cumulative

 SHOKTYPE Frequency Percent Frequency Percent

 2: Non-Shock 34 30.09 34 30.09

 3: Hypovolemic 17 15.04 51 45.13

 4: Cardiogenic 20 17.70 71 62.83

 5: Bacterial 16 14.16 87 76.99

 6: Neurogenic 16 14.16 103 91.15

 7: Other 10 8.85 113 100.00

 Binary Shock

 Cumulative Cumulative

 SHOCK Frequency Percent Frequency Percent

 --

 1: No shock 34 30.09 34 30.09

 2: Shock 79 69.91 113 100.00

 Introduction to SAS

133

6. Proc Freq—Crosstabs

PROC FREQ DATA=AFIFI;

 TABLES SHOCK*SURVIVE/CHISQ EXPECTED RELRISK;

RUN;
 Table of SHOCK by SURVIVE

 SHOCK(Binary Shock) SURVIVE

 Frequency |

 Expected |

 Percent |

 Row Pct |

 Col Pct |1: Lived|3: Died | Total

 ------------+--------+--------+

 1: No shock | 31 | 3 | 34

 | 21.062 | 12.938 |

 | 27.43 | 2.65 | 30.09

 | 91.18 | 8.82 |

 | 44.29 | 6.98 |

 ------------+--------+--------+

 2: Shock | 39 | 40 | 79

 | 48.938 | 30.062 |

 | 34.51 | 35.40 | 69.91

 | 49.37 | 50.63 |

 | 55.71 | 93.02 |

 ------------+--------+--------+

 Total 70 43 113

 61.95 38.05 100.00

 Statistics for Table of SHOCK by SURVIVE

 Statistic DF Value Prob

 --

 Chi-Square 1 17.6265 <.0001

 Likelihood Ratio Chi-Square 1 20.3389 <.0001

 Continuity Adj. Chi-Square 1 15.8975 <.0001

 Mantel-Haenszel Chi-Square 1 17.4705 <.0001

 Phi Coefficient 0.3950

 Contingency Coefficient 0.3673

 Cramer's V 0.3950

\

 Fisher's Exact Test

 Cell (1,1) Frequency (F) 31

 Left-sided Pr <= F 1.0000

 Right-sided Pr >= F 1.142E-05

 Table Probability (P) 1.043E-05

 Two-sided Pr <= P 1.569E-05

 Estimates of the Relative Risk (Row1/Row2)

 Type of Study Value 95% Confidence Limits

 Case-Control (Odds Ratio) 10.5983 2.9928 37.5317

 Cohort (Col1 Risk) 1.8469 1.4433 2.3634

 Cohort (Col2 Risk) 0.1743 0.0579 0.5247

 Introduction to SAS

134

7. Proc Univariate

PROC UNIVARIATE DATA=AFIFI;

 ID IDNUM;

 VAR SBP1 URINE1 ;

 HISTOGRAM;

 QQPLOT / NORMAL(MU=EST SIGMA=EST);

RUN;
 INTRO SAS WORKSHOP

 AFIFI ANALYSIS

 STEM AND LEAF PLOTS, NORMAL P-P PLOTS

 The UNIVARIATE Procedure

 Variable: SBP1 (Systolic BP at time 1)

 Moments

 N 111 Sum Weights 111

 Mean 105.855856 Sum Observations 11750

 Std Deviation 30.7691838 Variance 946.74267

 Skewness 0.01630721 Kurtosis -0.5876705

 Uncorrected SS 1347948 Corrected SS 104141.694

 Coeff Variation 29.0670587 Std Error Mean 2.92048168

 Basic Statistical Measures

 Location Variability

 Mean 105.8559 Std Deviation 30.76918

 Median 103.0000 Variance 946.74267

 Mode 80.0000 Range 145.00000

 Interquartile Range 48.00000

 NOTE: The mode displayed is the smallest of 8 modes with a count of 3.

 Tests for Location: Mu0=0

 Test -Statistic- -----p Value------

 Student's t t 36.24603 Pr > |t| <.0001

 Sign M 55.5 Pr >= |M| <.0001

 Signed Rank S 3108 Pr >= |S| <.0001

 Quantiles (Definition 5)

 Quantile Estimate

 100% Max 171

 99% 166

 95% 154

 90% 149

 75% Q3 131

 50% Median 103

 25% Q1 83

 10% 67

 5% 56

 1% 45

 0% Min 26

 Introduction to SAS

135

 Extreme Observations

 --------Lowest-------- --------Highest-------

 Value IDNUM Obs Value IDNUM Obs

 26 596 84 158 659 39

 45 662 94 158 691 97

 48 653 37 159 742 68

 52 730 109 166 679 44

 55 724 106 171 722 63

 Missing Values

 -----Percent Of-----

 Missing Missing

 Value Count All Obs Obs

 . 2 1.77 100.00

 The UNIVARIATE Procedure

 Variable: URINE1 (Urinary output at time 1)

 Moments

 N 113 Sum Weights 113

 Mean 54.4336283 Sum Observations 6151

 Std Deviation 112.348618 Variance 12622.2121

 Skewness 2.44944472 Kurtosis 5.2023573

 Uncorrected SS 1748509 Corrected SS 1413687.75

 Coeff Variation 206.395609 Std Error Mean 10.568869

 Basic Statistical Measures

 Location Variability

 Mean 54.43363 Std Deviation 112.34862

 Median 1.00000 Variance 12622

 Mode 0.00000 Range 510.00000

 Interquartile Range 41.00000

 Introduction to SAS

136

 Tests for Location: Mu0=0

 Test -Statistic- -----p Value------

 Student's t t 5.150374 Pr > |t| <.0001

 Sign M 32 Pr >= |M| <.0001

 Signed Rank S 1040 Pr >= |S| <.0001

 Quantiles (Definition 5)

 Quantile Estimate

 100% Max 510

 99% 450

 95% 375

 90% 200

 75% Q3 41

 50% Median 1

 25% Q1 0

 10% 0

 5% 0

 1% 0

 0% Min 0

 Extreme Observations

 --------Lowest-------- --------Highest-------

 Value IDNUM Obs Value IDNUM Obs

 0 691 97 377 665 41

 0 686 96 383 693 49

 0 662 94 405 648 34

 0 660 93 450 698 53

 0 658 92 510 667 42

 Introduction to SAS

137

8. Proc ttest

Independent samples t-test

PROC TTEST DATA=AFIFI;

 CLASS SURVIVE ;

 VAR SBP1 HEART1 CARDIAC1 MAP1;

RUN;
 INTRO SAS WORKSHOP

 AFIFI ANALYSIS

 INDEPENDENT SAMPLES T-TEST FOR SELECTED VARIABLES

 The TTEST Procedure

 Statistics

 Lower CL Upper CL Lower CL

 Variable SURVIVE N Mean Mean Mean Std Dev Std Dev

 SBP1 1: Lived 68 107.37 114.32 121.28 24.58 28.727

 SBP1 3: Died 43 83.422 92.465 101.51 24.228 29.384

 SBP1 Diff (1-2) 10.667 21.858 33.05 25.593 28.982

 HEART1 1: Lived 70 95.175 102.37 109.57 25.879 30.183

 HEART1 3: Died 43 98.988 107.81 116.64 23.647 28.679

 HEART1 Diff (1-2) -16.82 -5.443 5.9308 26.186 29.623

 CARDIAC1 1: Lived 67 2.3354 2.7148 3.0942 1.3294 1.5555

 CARDIAC1 3: Died 43 1.9305 2.3456 2.7607 1.1122 1.3489

 CARDIAC1 Diff (1-2) -0.203 0.3692 0.9419 1.3049 1.4785

 MAP1 1: Lived 70 75.059 79.729 84.399 16.793 19.586

 MAP1 3: Died 43 56.372 63.163 69.954 18.194 22.066

 MAP1 Diff (1-2) 8.6722 16.566 24.459 18.174 20.559

 Statistics

 Upper CL

 Variable SURVIVE Std Dev Std Err Minimum Maximum

 SBP1 1: Lived 34.572 3.4837 48 171

 SBP1 3: Died 37.347 4.481 26 158

 SBP1 Diff (1-2) 33.415 5.6468

 HEART1 1: Lived 36.216 3.6075 25 217

 HEART1 3: Died 36.451 4.3735 53 176

 HEART1 Diff (1-2) 34.106 5.7396

 CARDIAC1 1: Lived 1.8748 0.19 0.34 7.63

 CARDIAC1 3: Died 1.7144 0.2057 0.17 5.89

 CARDIAC1 Diff (1-2) 1.7059 0.2889

 MAP1 1: Lived 23.501 2.3409 32 124

 MAP1 3: Died 28.046 3.365 15 116

 MAP1 Diff (1-2) 23.671 3.9835

 T-Tests

 Variable Method Variances DF t Value Pr > |t|

 SBP1 Pooled Equal 109 3.87 0.0002

 SBP1 Satterthwaite Unequal 88 3.85 0.0002

 HEART1 Pooled Equal 111 -0.95 0.3451

 HEART1 Satterthwaite Unequal 92.5 -0.96 0.3396

 Introduction to SAS

138

 CARDIAC1 Pooled Equal 108 1.28 0.2040

 CARDIAC1 Satterthwaite Unequal 98.6 1.32 0.1904

 MAP1 Pooled Equal 111 4.16 <.0001

 MAP1 Satterthwaite Unequal 80.9 4.04 0.0001

 Equality of Variances

 Variable Method Num DF Den DF F Value Pr > F

 SBP1 Folded F 42 67 1.05 0.8547

 HEART1 Folded F 69 42 1.11 0.7313

 CARDIAC1 Folded F 66 42 1.33 0.3254

 MAP1 Folded F 42 69 1.27 0.3748

Paired t-test

PROC TTEST DATA=AFIFI;

 PAIRED SBP2*SBP1;

FOOTNOTE "T-TEST IS FOR NULL HYPOTHESIS THAT MEAN OF THE

DIFFERENCES EQUALS ZERO";

RUN;

 INTRO SAS WORKSHOP

 AFIFI ANALYSIS

 PAIRED T-TEST FOR SBP1 VS. SBP2

 The TTEST Procedure

 Statistics

 Lower CL Upper CL Lower CL Upper CL

 Difference N Mean Mean Mean Std Dev Std Dev Std Dev

 SBP2 - SBP1 111 -2.265 4.4414 11.148 31.501 35.655 41.079

 Statistics

 Difference Std Err Minimum Maximum

 SBP2 - SBP1 3.3842 -67 94

 T-Tests

 Difference DF t Value Pr > |t|

 SBP2 - SBP1 110 1.31 0.1921

T-TEST IS FOR NULL HYPOTHESIS THAT MEAN OF THE DIFFERENCES EQUALS ZERO

 Introduction to SAS

139

Paired t-test by groups

PROC SORT DATA=AFIFI;

 BY SURVIVE ;

RUN;

PROC TTEST DATA=AFIFI;

 BY SURVIVE;

 PAIRED SBP2*SBP1;

RUN;

 INTRO SAS WORKSHOP
 AFIFI ANALYSIS

 PAIRED T-TEST FOR SBP1 VS. SBP2

 SEPARATELY FOR THOSE WHO SURVIVED AND THOSE WHO DIED

------------------------------- SURVIVE=1: Lived -------------------------------

 The TTEST Procedure

 Statistics

 Lower CL Upper CL Lower CL Upper CL

 Difference N Mean Mean Mean Std Dev Std Dev Std Dev

 SBP2 - SBP1 68 8.9652 16.309 23.652 25.959 30.339 36.512

 Statistics

 Difference Std Err Minimum Maximum

 SBP2 - SBP1 3.6791 -67 94

 T-Tests

 Difference DF t Value Pr > |t|

 SBP2 - SBP1 67 4.43 <.0001

T-TEST IS FOR NULL HYPOTHESIS THAT MEAN OF THE DIFFERENCES EQUALS ZERO

 Introduction to SAS

140

 INTRO SAS WORKSHOP

 AFIFI ANALYSIS

 PAIRED T-TEST FOR SBP1 VS. SBP2

 SEPARATELY FOR THOSE WHO SURVIVED AND THOSE WHO DIED

------------------------------- SURVIVE=3: Died --------------------------------

 The TTEST Procedure

 Statistics

 Lower CL Upper CL Lower CL Upper CL

 Difference N Mean Mean Mean Std Dev Std Dev Std Dev

 SBP2 - SBP1 43 -25.3 -14.33 -3.347 29.413 35.672 45.34

 Statistics

 Difference Std Err Minimum Maximum

 SBP2 - SBP1 5.44 -64 67

 T-Tests

 Difference DF t Value Pr > |t|

 SBP2 - SBP1 42 -2.63 0.0118

 T-TEST IS FOR NULL HYPOTHESIS THAT MEAN OF THE DIFFERENCES EQUALS ZERO

 Introduction to SAS

141

9. Proc Corr

PROC CORR DATA=AFIFI NOMISS;

 VAR SBP2 CARDIAC1 HEART1 HGB1 MAP1 ;

 FOOTNOTE ;

RUN;
 INTRO SAS WORKSHOP

 AFIFI ANALYSIS

 CORRELATIONS

 The CORR Procedure

 5 Variables: SBP2 CARDIAC1 HEART1 HGB1 MAP1

 Simple Statistics

 Variable N Mean Std Dev Sum Minimum Maximum

 SBP2 110 110.79091 37.29183 12187 38.00000 182.00000

 CARDIAC1 110 2.57045 1.48283 282.75000 0.17000 7.63000

 HEART1 110 105.07273 29.74377 11558 25.00000 217.00000

 HGB1 110 11.38455 2.54400 1252 6.60000 18.00000

 MAP1 110 72.76364 21.80772 8004 15.00000 124.00000

 Pearson Correlation Coefficients, N = 110

 Prob > |r| under H0: Rho=0

 SBP2 CARDIAC1 HEART1 HGB1 MAP1

 SBP2 1.00000 0.06743 -0.06406 0.00495 0.41760

 0.4840 0.5061 0.9591 <.0001

 CARDIAC1 0.06743 1.00000 -0.03104 -0.47651 0.03840

 0.4840 0.7475 <.0001 0.6904

 HEART1 -0.06406 -0.03104 1.00000 0.12235 -0.04472

 0.5061 0.7475 0.2029 0.6427

 HGB1 0.00495 -0.47651 0.12235 1.00000 0.19136

 0.9591 <.0001 0.2029 0.0452

 MAP1 0.41760 0.03840 -0.04472 0.19136 1.00000

 <.0001 0.6904 0.6427 0.0452

 Introduction to SAS

142

10. Proc Reg

ODS GRAPHICS ON;

PROC REG DATA=AFIFI;

 MODEL SBP2= CARDIAC1 HEART1 HGB1 URINE1 MAP1 ;

RUN;

QUIT;

ODS GRAPHICS OFF;
 INTRO SAS WORKSHOP

 AFIFI ANALYSIS

 REGRESSION ANALYSIS WITH DIAGNOSTIC PLOTS

 AND ANALYSIS OF RESIDUALS

 The REG Procedure

 Model: MODEL1

 Dependent Variable: SBP2

 Number of Observations Read 113

 Number of Observations Used 110

 Number of Observations with Missing Values 3

 Analysis of Variance

 Sum of Mean

 Source DF Squares Square F Value Pr > F

 Model 5 27680 5535.90734 4.65 0.0007

 Error 104 123905 1191.39091

 Corrected Total 109 151584

 Root MSE 34.51653 R-Square 0.1826

 Dependent Mean 110.79091 Adj R-Sq 0.1433

 Coeff Var 31.15466

 Parameter Estimates

 Parameter Standard

 Variable DF Estimate Error t Value Pr > |t|

 Intercept 1 71.16101 24.12988 2.95 0.0039

 CARDIAC1 1 0.43401 2.57598 0.17 0.8665

 HEART1 1 -0.04167 0.11315 -0.37 0.7134

 HGB1 1 -0.89439 1.53879 -0.58 0.5623

 URINE1 1 0.00968 0.03002 0.32 0.7478

 MAP1 1 0.72203 0.15889 4.54 <.0001

 Introduction to SAS

143

 Introduction to SAS

144

 Introduction to SAS

145

11. Proc GLM

PROC GLM DATA=AFIFI;

 CLASS SHOKTYPE;

 MODEL SBP1=SHOKTYPE;

 MEANS SHOKTYPE/ TUKEY NOSORT;

RUN; QUIT;

 INTRO SAS WORKSHOP

 AFIFI ANALYSIS

 ONEWAY ANALYSIS OF VARIANCE

 WITH TUKEY MULTIPLE COMPARISON TECHNIQUE

 The GLM Procedure

 Class Level Information

Class Levels Values

SHOKTYPE 6 2: Non-Shock 3: Hypovolemic 4: Cardiogenic 5: Bacterial 6:

 Neurogenic 7: Other

Number of observations 113

NOTE: Due to missing values, only 111 observations can be used in this analysis.

Dependent Variable: SBP1 Systolic BP at time 1

 Sum of

 Source DF Squares Mean Square F Value Pr > F

Model 5 22642.7351 4528.5470 5.83 <.0001

Error 105 81498.9586 776.1806

Corrected Total 110 104141.6937

 R-Square Coeff Var Root MSE SBP1 Mean

 0.217422 26.31882 27.86002 105.8559

 Source DF Type I SS Mean Square F Value Pr > F

SHOKTYPE 5 22642.73509 4528.54702 5.83 <.0001

 Source DF Type III SS Mean Square F Value Pr > F

SHOKTYPE 5 22642.73509 4528.54702 5.83 <.0001

 Introduction to SAS

146

 INTRO SAS WORKSHOP

 AFIFI ANALYSIS

 ONEWAY ANALYSIS OF VARIANCE

 WITH TUKEY MULTIPLE COMPARISON TECHNIQUE

 The GLM Procedure

 Tukey's Studentized Range (HSD) Test for SBP1

 NOTE: This test controls the Type I experimentwise error rate.

 Alpha 0.05

 Error Degrees of Freedom 105

 Error Mean Square 776.1806

 Critical Value of Studentized Range 4.10550

 Comparisons significant at the 0.05 level are indicated by ***.

 Difference

 SHOKTYPE Between Simultaneous 95%

 Comparison Means Confidence Limits

 2: Non-Shock - 3: Hypovolemic 35.210 11.065 59.356 ***

 2: Non-Shock - 4: Cardiogenic 25.152 1.860 48.443 ***

 2: Non-Shock - 5: Bacterial 33.089 8.451 57.727 ***

 2: Non-Shock - 6: Neurogenic 31.714 7.076 56.352 ***

 2: Non-Shock - 7: Other 25.052 -4.144 54.247

 3: Hypovolemic - 2: Non-Shock -35.210 -59.356 -11.065 ***

 3: Hypovolemic - 4: Cardiogenic -10.059 -37.060 16.942

 3: Hypovolemic - 5: Bacterial -2.121 -30.293 26.050

 3: Hypovolemic - 6: Neurogenic -3.496 -31.668 24.675

 3: Hypovolemic - 7: Other -10.159 -42.391 22.073

 4: Cardiogenic - 2: Non-Shock -25.152 -48.443 -1.860 ***

 4: Cardiogenic - 3: Hypovolemic 10.059 -16.942 37.060

 4: Cardiogenic - 5: Bacterial 7.938 -19.505 35.380

 4: Cardiogenic - 6: Neurogenic 6.563 -20.880 34.005

 4: Cardiogenic - 7: Other -0.100 -31.698 31.498

 5: Bacterial - 2: Non-Shock -33.089 -57.727 -8.451 ***

 5: Bacterial - 3: Hypovolemic 2.121 -26.050 30.293

 5: Bacterial - 4: Cardiogenic -7.938 -35.380 19.505

 5: Bacterial - 6: Neurogenic -1.375 -29.970 27.220

 5: Bacterial - 7: Other -8.037 -40.641 24.566

 6: Neurogenic - 2: Non-Shock -31.714 -56.352 -7.076 ***

 6: Neurogenic - 3: Hypovolemic 3.496 -24.675 31.668

 6: Neurogenic - 4: Cardiogenic -6.563 -34.005 20.880

 6: Neurogenic - 5: Bacterial 1.375 -27.220 29.970

 6: Neurogenic - 7: Other -6.662 -39.266 25.941

 7: Other - 2: Non-Shock -25.052 -54.247 4.144

 7: Other - 3: Hypovolemic 10.159 -22.073 42.391

 7: Other - 4: Cardiogenic 0.100 -31.498 31.698

 7: Other - 5: Bacterial 8.037 -24.566 40.641

 7: Other - 6: Neurogenic 6.662 -25.941 39.266

 Introduction to SAS

147

12. Proc Logistic

ods graphics on;

PROC LOGISTIC DATA=AFIFI PLOTS=(ROC EFFECT);

 CLASS SHOKTYPE / PARAM=REF REF=FIRST;

 MODEL DIED(EVENT="1") = MAP1 SHOCK/ RL RSQUARE LACKFIT;

 UNITS MAP1=1 10;

RUN;

ods graphics off;

 INTRO SAS WORKSHOP

 AFIFI ANALYSIS

 LOGISTIC REGRESSION

 The LOGISTIC Procedure

 Model Information

 Data Set WORK.AFIFI

 Response Variable DIED

 Number of Response Levels 2

 Model binary logit

 Optimization Technique Fisher's scoring

 Number of Observations Read 113

 Number of Observations Used 113

 Response Profile

 Ordered Total

 Value DIED Frequency

 1 0 70

 2 1 43

 Probability modeled is DIED=1.

 Model Convergence Status

 Convergence criterion (GCONV=1E-8) satisfied.

 Model Fit Statistics

 Intercept

 Intercept and

 Criterion Only Covariates

 AIC 152.137 128.203

 SC 154.864 136.385

 -2 Log L 150.137 122.203

 R-Square 0.2190 Max-rescaled R-Square 0.2979

 Introduction to SAS

148

 Testing Global Null Hypothesis: BETA=0

 Test Chi-Square DF Pr > ChiSq

 Likelihood Ratio 27.9341 2 <.0001

 Score 24.1531 2 <.0001

 Wald 18.7345 2 <.0001

 Analysis of Maximum Likelihood Estimates

 Standard Wald

 Parameter DF Estimate Error Chi-Square Pr > ChiSq

 Intercept 1 0.0694 1.0755 0.0042 0.9486

 MAP1 1 -0.0294 0.0113 6.7637 0.0093

 SHOCK 1 1.9587 0.6649 8.6784 0.0032

 Association of Predicted Probabilities and Observed Responses

 Percent Concordant 77.8 Somers' D 0.563

 Percent Discordant 21.5 Gamma 0.567

 Percent Tied 0.7 Tau-a 0.268

 Pairs 3010 c 0.782

 Odds Ratio Estimates and Wald Confidence Intervals

 Effect Unit Estimate 95% Confidence Limits

 MAP1 1.0000 0.971 0.950 0.993

 MAP1 10.0000 0.745 0.597 0.930

 Partition for the Hosmer and Lemeshow Test

 DIED = 1 DIED = 0

 Group Total Observed Expected Observed Expected

 1 11 0 0.49 11 10.51

 2 11 1 0.90 10 10.10

 3 11 2 1.42 9 9.58

 4 12 5 3.10 7 8.90

 5 11 4 4.16 7 6.84

 6 13 4 5.87 9 7.13

 7 11 3 5.83 8 5.17

 Introduction to SAS

149

 INTRO SAS WORKSHOP 21

 AFIFI ANALYSIS

 LOGISTIC REGRESSION

 The LOGISTIC Procedure

 Partition for the Hosmer and Lemeshow Test

 DIED = 1 DIED = 0

 Group Total Observed Expected Observed Expected

 8 11 7 6.37 4 4.63

 9 11 8 6.96 3 4.04

 10 11 9 7.90 2 3.10

 Hosmer and Lemeshow Goodness-of-Fit Test

 Chi-Square DF Pr > ChiSq

 7.5164 8 0.4821

 Introduction to SAS

150

 Introduction to SAS

151

CHAPTER 17

STATISTICAL GRAPHICS
(commands=sgraphics.sas)

This chapter describes the use of ODS graphics procedures to create basic statistical graphs.

 Proc Sgplot

 Proc Sgpanel

 Proc Sgscatter

These procedures are available starting with SAS 9.2. To get help on these procedures go to Help >

SAS Help and Documentation > Contents > Base SAS > ODS Graphics > Procedures, then click on

the procedure you want to use.

To get started with these examples, use a libname statement to assign “mylib” to the directory where

the SAS datasets are saved. For example, if your datasets are stored in a folder on the desktop called

sasdata2, you could use syntax like that below:

libname mylib "c:\users\kwelch\desktop\sasdata2";

 Introduction to SAS

152

1. Boxplots

Simple Boxplot

title "Boxplot";

title2 "No Categories";

proc sgplot data=mylib.employee;

 vbox salary;

run;

Boxplots Across Levels of a Categorical Variable

title "Boxplot";

title2 "Category=Gender";

proc sgplot data=mylib.employee;

 vbox salary/ category=gender;

run;

 Introduction to SAS

153

Paneled Boxplots

title "Boxplot with Panels";

proc sgpanel data=mylib.employee;

 panelby jobcat / rows=1 columns=3 ;

 vbox salary / category= gender;

run;

2. Barcharts

Simple Barcharts

title "Vertical Bar Chart";

proc sgplot data=mylib.employee;

 vbar jobcat ;

run;

 Introduction to SAS

154

Clustered Bar Charts

title "Vertical Bar Chart";

title2 "Clustered by Gender";

proc sgplot data=mylib.employee;

 vbar jobcat /group=Gender groupdisplay=cluster ;

run;

3. Bar Charts with Mean and Error Bars

title "BarChart with Mean and Standard Deviation";

proc sgplot data=mylib.employee;

 vbar jobcat / response=salary limitstat = stddev

 limits = upper stat=mean;

run;

 Introduction to SAS

155

Paneled Bar Chart

title "BarChart Paneled by Gender";

proc sgpanel data=mylib.employee;

 panelby gender ;

 vbar jobcat / response=salary limitstat = stddev

 limits = upper stat=mean;

run;

4. Barcharts for Proportions

If you have a binary variable with values of 0 and 1, you may want to know the proportion of 1's in

categories of some variable. In this example, we have a binary variable called DIED that tells us

whether a person in the study died or not. We want to compare the proportion of people who died in

each category of the variable SHOCK. First, we set up the dataset with the appropriate variables,

then we create the formats to help label the plot.

/*data setup*/

data afifi;

 set mylib.afifi;

 if survive=1 then died=0;

 if survive=3 then died=1;

 if shoktype=2 then shock=0;

 if shoktype >2 then shock=1;

run;

proc format;

 value shokfmt 2="Non-Shock"

 3="Hypovolemic"

 4="Cardiogenic"

 5="Bacterial"

 6="Neurogenic"

 7="Other";

run;

 Introduction to SAS

156

title "Barchart of Proportion Died for each Shock Type";

proc sgplot data=afifi;

 vbar shoktype / response=died stat=mean;

 format shoktype shokfmt.;

run;

5. Histograms

Simple Histogram

title "Histogram";

proc sgplot data=mylib.employee;

 histogram salary ;

run;

 Introduction to SAS

157

Histogram with Density Overlaid

title "Histogram With Density Overlaid";

proc sgplot data=mylib.employee;

 histogram salary ;

 density salary;

 density salary / type=kernel;

 keylegend / location = inside position = topright;

run;

6. Scatterplots

Simple Scatterplots

title "Scatterplot";

proc sgplot data=mylib.employee;

 scatter x=salbegin y=salary;

run;

 Introduction to SAS

158

Scatterplot with Regression Line

title "Scatterplot with Regression Line";

title2 "Clerical Only";

proc sgplot data=mylib.employee;

 where jobcat=1;

 scatter x=prevexp y=salary / group=gender ;

 reg x=prevexp y=salary / cli clm nomarkers;

run;

Scatterplot with Separate Regression Lines for Subgroups

title "Scatterplot with Regression Line";

title2 "Separate Lines for Females and Males";

proc sgplot data=mylib.employee;

 where jobcat=1;

 reg x=prevexp y=salary / group=gender;

run;

 Introduction to SAS

159

7. Scatterplot Matrix

title "Scatterplot Matrix";

title2 "Clerical Employees";

proc sgscatter data=mylib.employee;

 where jobcat=1;

 matrix salbegin salary jobtime prevexp / group=gender

 diagonal=(histogram kernel);

run;

 Introduction to SAS

160

8. Spaghetti Plots for Longitudinal Data

/*Series Plots*/

PROC IMPORT OUT= WORK.autism

 DATAFILE= "autism.csv"

 DBMS=CSV REPLACE;

 GETNAMES=YES;

 DATAROW=2;

RUN;

title "Spaghetti Plots for Each Child";

proc sgpanel data=autism;

 panelby sicdegp /columns=3;

 series x=age y=vsae / group=Childid

 markers legendlabel=" " lineattrs=(pattern=1 color=black);

run;

 Introduction to SAS

161

9. Using formats to make graphs more readable

proc format;

 value jobcat 1="Clerical"

 2="Custodial"

 3="Manager";

 value $Gender "f"="Female"

 "m"="Male";

run;

title "Boxplot with Panels";

proc sgpanel data=mylib.employee;

 panelby jobcat / rows=1 columns=3 novarname;

 vbox salary / category= gender ;

 format gender $gender.;

 format jobcat jobcat.;

run;

 Introduction to SAS

162

10. Saving Graphs from Sgplot, Sgscatter, and Sgpanel

Be sure the current folder is set in SAS before you run the graphs.

You do not need to export graphs created using Statistical Graphics procedures. They will

automatically be saved to your Current Folder in Windows as .png files. You can double-click on the

.png files to view them, or you can view them as thumbnails in Windows. They will be given names

such as SGPlot.png, or SGPlot1.png, etc.

Within SAS, graphs created using ODS Graphics procedures will show up in the Results Window.

You can navigate to them by using the Results Pane in the left-most portion of your SAS desktop, or

you can simply see them in the Results Window as they are generated.

To navigate to any graph in the Results Window, Double-Click on the Results Pane, Double-click on

the procedure name and then double-click on the individual graphs. They will also be placed in the

Results You can browse forward and backward through the graphs once you have created them.

Set the current folder by double-

clicking here. Graphs created by

Statistical Graphics procedures will

automatically be saved here.

Double-click

here in the

Results pane to

view the graph.

 Introduction to SAS

163

11. Editing ODS Graphs

The SAS ODS Graphics Editor is an interactive tool for modifying plots, using a GUI interface.

There is a great summary document (“ODS Graphics Editor” by Sanjay Matnage) showing features

of this editor, which is available at http://www.nesug.org/proceedings/nesug08/po/po24.pdf

You can enable editing of graphs by going to the command dialog box and typing sgedit on.

Alternatively, you can toggle the sgedit facility by typing simply sgedit. You can only edit graphs

that were produced after the sgedit facility has been turned on. When the sgedit facility is turned on,

you will get two outputs for each graph. The first will be a non-editable.png file, and the second will

be an .sge file, which you can edit. (Note: the editable .sge file may show up as the third version of

the graph in your output depending on the output settings you have selected).

In SAS 9.3, you have the option of turning on ODS graphics editing by typing the following SAS

command in the SAS Program Editor Window:

ods listing sge = on;

When you double-click on an .sge file in your Results window, it will open up in the SAS ODS

Graphics Editor Window, as shown below (if you don’t have the ODS Graphics Editor installed with

your version of SAS, you can download a stand-alone version at the SAS support download site).

Using this editor, you can add titles, footnotes, text boxes, arrows, and other shapes. You can also

modify the axis labels. The edited graph can then be resaved as a .png file, which can be used in

other applications, such as Word documents or Power Point slides.

This is the editable

(.sge) file.

This is the

non-editable (.png)

file.

http://www.nesug.org/proceedings/nesug08/po/po24.pdf
http://www.sas.com/apps/demosdownloads/92_SDL_sysdep.jsp?packageID=000618&jmpflag=N

 Introduction to SAS

164

12. Traditional Graphics Examples

The following instructions show how to create traditional graphics in the SAS/Graph window using

Proc Univariate and Proc Gplot. These graphs can be produced using SAS 9.2 or 9.3..

Creating a Histogram Using Proc Univariate

title "Distribution of Salary";

proc univariate data=mylib.employee noprint;

 var salary;

 histogram;

run;

Distribution of Salary

15000 35000 55000 75000 95000 115000 135000

0

10

20

30

40

50

P
e
rc

e
n
t

Current Salary

 Introduction to SAS

165

Creating a Regression Plot Using Proc Gplot

symbol1 value=dot height=.5 interpol=rl ;

title "Regression Plot for Salary";

proc gplot data=mylib.employee;

 plot salary * prevexp ;

run; quit;

13. Saving Traditional graphs from the Graph Window

Graphs generated using Proc Gplot or Proc Univariate will appear in the SAS/Graph window. You

can Export these graphs to a file format that can be read by any windows applications that can read

graphics files. You can save SAS graphs from the graphics window using any of the commonly used

formats for graphs supported by SAS (.bmp, .gif, .tif). You can also save graphics files from the

SAS/Graph window using a .png (portable network graphics) format.

Go to the SAS/Graph window. With the appropriate graph open in the Graph Window, Go to

File...Export as Image....Select the File type you want (e.g. .png), Browse to the location where you

wish to save the graphics file, and type the file name, e.g.

 histogram_salary.png

Current Salary

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

140000

Previous Experience (months)

0 100 200 300 400 500

Regression Plot for Salary

 Introduction to SAS

166

14. Bringing graphics files into a Word document

You can simply drag and drop a graphics file into word, or you can import it using the steps shown

below:

Make sure you are not at the beginning or end of a document, or it will be difficult to work with the

graph. Place your mouse somewhere in the middle of several blank lines in the document. Go to

Insert…Picture from file… Browse until you get to your graph (e.g., histogram_salary.png).

You can resize the graph by clicking your mouse anywhere in the graph to get the outline. Then grab

the lower right corner with your mouse (you should see an arrow going northwest to southeast) and

move it up and to the left to make it smaller, or down and to the right to make it larger. You can't

easily edit the graph in Word. If you're using a .png file, you can simply drag and drop it into Word.

 Introduction to SAS

167

Managing Output in SAS 9.3

Source: http://www.ssc.wisc.edu/sscc/pubs/sasoutput.htm

SAS makes it possible to save your statistical tables and graphs in many different forms, including

text (ASCII) files, rich text (RTF or Word) files, PDF files, Excel tables, LaTeX files, HTML (web

page) files, and for graphics a variety of graphics file formats. You can save your results to some of

these output destinations using the SAS Display Manager, the standard graphical user interface. All

of these output destinations can be reached via SAS commands as well.

If you are primarily interested in saving your tables and graphs in a Word file, skip ahead to the

“RTF Output” section.

 New Default Output Settings

 How do I get my old defaults back?

 HTML Output Style

 HTML (& Graphics) File Locations

 RTF Output

 Combining Log and Listing Output

New Default Output Settings

In version 9.3 of SAS, the default form of output changed from text (“Listing” output in SAS jargon)

to HTML. Additionally, ODS graphics is now on by default, where previously it was off.

There are two main advantages to HTML output. First, you get statistical tables and graphs all

integrated into one output stream. (This is also an advantage of RTF or PDF output.) Second, it

makes it easy to cut-and-paste selected tables from SAS to Word without having to worry as much

about formatting and using SAS monospace fonts in Word (also an advantage of RTF output). An

advantage of using ODS graphics is that a good graphic can help you more quickly understand your

data.

A disadvantage of ODS graphics is that creating all those graphics may slow down the execution of

your SAS job. If your job creates large amounts of output, even HTML output can slow the job

significantly.

How do I get my old defaults back?

There are two good ways to get Listing output and turn off HTML output and ODS graphics. One is

to change your SAS registry settings (i.e. the things you get by clicking Tools, Options), the other is

to put several commands in an autoexec file. Both will work every time you start a new SAS

session, so you only need to make this change once.

http://www.ssc.wisc.edu/sscc/pubs/sasoutput.htm

 Introduction to SAS

168

Registry settings have the advantage that they are set through SAS’s menus and dialog boxes, so you

don’t need to learn any new code. Autoexec files have the advantage that they are capable of

executing any type of SAS command, and they are more likely to successfully carry over to a new

version of SAS.

SAS Registry Settings

To change your registry settings to the old defaults, click on Tools, Options, Preferences, and then

the Results tab.

Check Create listing, and uncheck both Create HTML and Use ODS Graphics. Click OK.

You will notice that it is possible to have both Listing and HTML output at the same time, although

it is hard to image how that would be useful most of the time. There are a couple of other, useful

settings that are discussed below.

If you use both 64-bit and 32-bit versions of SAS, you will need to make these changes once for

each version. (Your settings for 32-bit SAS are saved in your U:\SAS folder. For 64-bit SAS they

are in your U:\SAS64 folder.)

Autoexec.sas commands

You can put commands you want to run at the beginning of every SAS session in a file named

autoexec.sas in the root folder of your U:\ drive or in the SAS startup folder. For 32-bit SAS the

SAS startup folder is U:\SAS, for 64-bit SAS it is U:\SAS64. These are otherwise just ordinary SAS

 Introduction to SAS

169

command files. (If you use the appropriate startup folders you may have a different autoexec.sas for

each version.)

A set of three commands will return you to the old output defaults:

ods listing;

ods html close;

ods graphics off;

(As with SAS registry settings, there are a number of other configurations you could consider here.)

HTML Output Style

If you are using HTML output, there are at least two reasons you might consider changing the

default style of HTML output from htmlblue to something else. First, if you are simply cutting-and-

pasting a few tables from your results to a Word document, you lose all the internal table lines, the

cell borders. (The color scheme shouldn't concern you too much if you cut-and-paste, because the

color does not paste into Word.) Second, if you are saving complete files of HTML output and

editing them in some other software like Word, the blue color scheme will then carry over into your

final document.

You can change the output style either via the registry (Click Tools, Options, Preferences, Results)

or your autoexec.sas file. Two styles you might consider are minimal and journal.

ods html style=minimal;

HTML (& Graphics) File Locations

By default your HTML and ODS graphics files are saved in your temporary WORK library, and are

deleted when you close your SAS session. As with Listing output, the Log, and the Program Editor,

you can save your HTML results through the menus: File, Save As. You can save your HTML

output either as an archive (a single file) or as regular HTML (which may be a collection of files if

you have any graphics).

You can also automatically save your HTML output to a permanent location, either through registry

settings or through autoexec code:

ods html path='u:\' body='sashtml.htm' style=journal;

Note, however, that the settings or code above will overwrite any existing file(s) with the same

name(s) when you start a new SAS session: using File, Save As is a safer practice for most of us.

 Introduction to SAS

170

RTF Output

If you are interested in using your results in a Word document, why not just save them in a Word-

friendly format to begin with?

As you would expect by now, there are two ways to get your results into an RTF document: via the

display manager interface, or via ods commands. However, in the case of RTF output these produce

quite different documents, and most people will prefer the RTF documents produced by ods

commands.

To save an RTF file using the menus, first note that you can only save Listing output (from the

Output window). You cannot save HTML output or graphics this way. With the Output window

active, select File, Save As, then change the file type to RTF, and save your file.

The resulting document is essentially a text file that has been formatted with SAS monospace

fonts. Tables are not really tables, they are drawn with font characters, and if you try to use this

document on a computer that does not have SAS installed, the document will look awful.

The better way to save RTF files is through the pair of ODS commands:

ods rtf file='u:\example.rtf' style=journal;

/* your SAS PROCs go here */

ods rtf close;

The resulting document has tables that can be edited as tables in Word (so changing font face, size,

or spacing does not misalign your table), and uses a Times Roman font.

Combining Log and Listing Output

When you are trying to debug a lengthy SAS command file, sometimes it is useful to have both the

SAS code and the results it produces in one output stream (like in Stata or SPSS), so that you can see

which output table matches just which PROC.

To do this, you must have Listing output turned on, and redirect your output as well as your log to a

file.

ods listing;

proc printto print='u:\singlefile.txt’ log=’u:\singlefile.txt';

run;

/* your SAS PROCs go here */

 Introduction to SAS

171

proc printto; /*Send your output and log back to their default windows */

run;

Last Revised: 12/8/2011

©2012 UW Board of Regents, University of Wisconsin - Madison

http://www.wisc.edu/

 Introduction to SAS

172

A Short Annotated List of SAS Manuals and Books

There is a very large library of SAS manuals that can be ordered directly from SAS Institute. A full

listing is available in the SAS Publications Catalog. You can also find an online list of publications

at the SAS publications web site http://www.sas.com/apps/pubscat/welcome.jsp. SAS online

documentation for SAS release 8 and release 9 are available free online at:

http://support.sas.com/documentation/onlinedoc/index.html

Items included in bold in the list below are either published in the SAS Books by Users series, or are

available from other publishers. I have found these books to be especially useful to me. If you come

upon a good book that you think should be added to this short list, let me know.

BASICS:

The Little SAS Book: A Primer, Third Edition by Lora D. Delwiche and Susan J. Slaughter. Part of

the SAS Books by Users Series. Great introductory book. Covers basic SAS principles and some

SAS/Stat. Covers many of the same topics included in this workbook. Highly recommended.

STATISTICS:

Applied Statistics and the SAS Programming Language, Fifth Edition, by Ron Cody and Jeffrey

K. Smith. Part of the SAS Books by Users Series. This book details the use of SAS for some of

the more common statistical techniques. User-friendly.

SAS System for Elementary Statistical Analysis, 2
nd

 Edition, Sandra D. Schlotzhauer and Ramon

C. Littell. Part of the SAS Books by Users series. A more basic introductory guide to using

statistics with SAS. Clear and simple illustrations of basic statistical techniques, including

regression, t-tests, simple histograms, and plots.

SAS/INSIGHT 9.1 User's Guide. This very clear and simple book shows you how to get the most

out of using SAS/INSIGHT, both for exploring your data graphically, and for doing statistical

analyses, such as regression, analysis of variance and other techniques. Great illustrations. (Also

available on the SAS OnlineDoc).

Categorical Data Analysis Using the SAS System, 2
nd

 Edition, Maura E. Stokes, Charles S. Davis,

and Gary G. Koch . Part of the SAS Books by Users Series. This is a wonderful book that

explains the different statistics calculated by SAS for cross-tabulated data in Proc Freq and Proc

Catmod. Highly recommended.

Linear Mixed Models for Longitudinal Data, Geert Verbeke and Geert Molenberghs, 2000,

Springer-Verlag, 568 pp. This is a very helpful book that describes how to use SAS for Linear

Mixed Models. Recommended for those with a strong statistical background.

http://www.sas.com/apps/pubscat/welcome.jsp
http://support.sas.com/documentation/onlinedoc/index.html

 Introduction to SAS

173

Logistic Regression Using the SAS System: Theory and Application, Paul D. Allison. Part of the

SAS books by Users series. This excellent book gives a clear discussion of logistic regression

using SAS, including special topics, such as analyzing matched data, Poisson Regression, and

many more topics.

SAS System for Mixed Models, Ramon C. Littell, George A. Milliken, Walter W. Stroup, and

Russell D. Wolfinger. Part of the SAS Books by Users series. Basics on using Proc Mixed to

estimate linear mixed models.

Survival Analysis Using the SAS System: A Practical Guide, Paul D. Allison . Part of the SAS

Books by Users series. This wonderful book gives great explanations and clear examples of

using SAS to do survival analysis, including all kinds of special circumstances (such as time-

varying covariates).

Linear Mixed Models: A Practical Guide Using Statistical Software, Brady T. West, Kathleen B.

Welch, Andrzej T. Galecki, Chapman & Hall, CRC Press, Nov, 2006. This book includes

examples of fitting linear mixed models for several different problems using SAS, SPSS, Stata,

R, and HLM. It is a useful introduction to these models.

 Introduction to SAS

174

SAS Resources

at the University of Michigan

Web Pages:

SAS: Technical support. Contains macros and other resources.

http://www.sas.com

SAS: FastStats. Quick reference for which SAS procedures to use for different statistical analyses.

A through J:

http://support.sas.com/techsup/faq/stat_key/a_j.html

K through Z:

http://support.sas.com/techsup/faq/stat_key/k_z.html

SAS Publications:

http://www.sas.com/apps/pubscat/welcome.jsp

SAS Online Documentation:

http://support.sas.com/documentation/onlinedoc/index.html

CSCAR: Information on Workshops, SAS tips, Importing Excel to SAS

www.umich.edu/~cscar

ITD: Information on obtaining a site license for SAS

 email: lic.itd@umich.edu

 http://www.itd.umich.edu/sw-info/stats/sas-windows.html

Biostat 510: SAS examples for Biostat 510 class

 www.umich.edu/~kwelch

Other Online Resources:

SAS help at U.M.: basic software questions and help with research (not for course-related

questions)

 email: sas.help@umich.edu

http://www.sas.com/
http://support.sas.com/techsup/faq/stat_key/a_j.html
http://support.sas.com/techsup/faq/stat_key/k_z.html
http://www.sas.com/apps/pubscat/welcome.jsp
http://support.sas.com/documentation/onlinedoc/index.html
http://www.umich.edu/~cscar
mailto:licenses.itd@umich.edu
http://www.itd.umich.edu/sw-info/stats/sas-windows.html
http://www.umich.edu/~kwelch
mailto:Email-online.stat@umich.edu

 Introduction to SAS

175

Appendix: Descriptions of Data Sets

Labdata.zip

There are many datasets that are available to read into SAS for use in this workshop.

 Raw data files (files ending with .dat)

 Excel files (files ending with .xls or .xlsx)

 SPSS files (portable files ending in .por, and regular SPSS datasets ending in .sav)

 Stata files (ending in .dta)

 Comma separated files (files ending with .csv)

 Tab delimited files (files ending with .txt).

Individual data sets may be included in several formats. For example, the AFIFI data set is included

as a raw data file, AFIFI.DAT, and as an Excel file, AFIFI.XLS. To view the extensions (e.g. .dat

or .xls) on these files, go to My Computer…"Folder and Search Options" and select the View tab.

From there be sure the “Hide file extensions for known file types” button is not not selected.

These files are all available in the labdata.zip archive. Not all of these files will be used in class.

To make these files available, download the labdata.zip archive to your desktop and unzip it to

a folder called labdata.

Sasdata2.zip

There are also a number of SAS datasets that have already been read into SAS previously and are

available for use in class. These files all end in .sas7bdat.

To make these files available, download the sasdata2.zip archive to your desktop and unzip it

to a folder called sasdata2.

 Introduction to SAS

176

Afifi Data (in labdata and sasdata2)

 AFIFI.DAT (Raw data file)

 AFIFI.XLS (Excel file)

 Afifi.sas7bdat (SAS dataset)

afifi.sas7bdat

Afifi and Azen (1972) describe data collected for 113 patients at the Los Angeles County Hospital

Shock Unit. For each patient, data were taken on admission and either shortly before death or before

discharge. The patient’s survival status was also noted. The variables and their formats are described

in the table below. Variables 1-21 refer to data at the initial examination and variables 22-42 refer to

the same variables at the final examination.

There are two lines of data for each person in the study. The codebook for the data layout is shown

below:

Variables Columns Format Description

1,22 1-4 4.0 Id number

2,23 5-8 4.0 Age (years)

3,24 9-12 4.0 Height (cm)

4,25 13-15 3.0 Sex (1=male, 2=female)

5,26 16 1.0 Survival (1=lived, 3=died)

6,27 17-20 4.0 Shock type (2=non-shock,

 3=hypovolemic shock,

 4=cardiogenic shock,

 5=bacterial shock,

 6=neurogenic shock,

 7=other)

7,28 21-24 4.0 Systolic Blood Pressure (mm Hg)

8,29 25-28 4.0 Mean Arterial Pressure (mm Hg)

9,30 29-32 4.0 Heartrate (beats per minute)

10,31 33-36 4.0 Diastolic blood pressure (mm Hg)

11,32 37-40 4.1 Mean central venous BP (mm Hg)

12,33 41-44 4.2 Body surface area (m sq)

13,34 45-48 4.2 Cardiac index (1/min/min squared)

14,35 49-52 4.1 Appearance time (sec)

15,36 53-56 4.1 Mean circulation time (sec)

16,37 57-60 4.0 Urinary Output (ml/hr)

17,38 61-64 4.1 Plasma volume index (ml/kg)

18,39 65-68 4.1 Red cell index (ml/kg)

19,40 69-72 4.1 Hemoglobin (gm)

 Introduction to SAS

177

20,41 73-76 4.1 Hematocrit (%)

21,42 80 1.0 Card (1=initial, 2=final)

A listing of the first 6 lines of the raw data file, afifi.dat, is shown below:

 340 70 160 23 4 62 38 53 29 100 187 90 190 390 0 394 241 131 400 1

 340 70 160 23 4 129 74 72 53 190 187 120 130 300 15 394 241 112 365 2

 412 56 173 11 4 83 66 110 60 10 182 126 221 407 110 362 240 166 500 1

 412 56 173 11 4 102 75 108 63 90 182 281 100 206 50 564 266 154 330 2

 426 47 176 11 4 80 64 84 55 10 180 110 120 280 80 373 272 146 490 1

 426 47 176 11 4 87 68 77 52 40 180 410 100 170 75 508 217 99 320 2

SAS commands to read in selected variables from afifi.dat are shown below. These commands read

in two lines of data for each case. Note: these commands must be modified if you wish to read in all

the variables from the raw data.

DATA AFIFI;

 INFILE "AFIFI.DAT";

 INPUT

 #1 IDNUM 1-4 AGE 5-8 SEX 13-15 SURVIVE 16 SHOKTYPE 17-20 SBP1 21-24

 MAP1 25-28 HEART1 29-32 CARDIAC1 45-48 2 URINE1 57-60 HGB1 69-72 1

 #2 SBP2 21-24 MAP2 25-28 HEART2 29-32 CARDIAC2 45-48 2 URINE2 57-60

 HGB2 69-72 1;

RUN;

 Introduction to SAS

178

Bank Data (in labdata)

 Bank.sav (SPSS data set)

 Bank.xls (Excel file)

 Bank.xpt (SAS transport file)

This data set originally came from SPSS. There is information on 474 bank employees:

Variable Description Type Codes

ID Employee Code Num

SALBEG Salary when hired Num

SEX Sex of employee Num
0=Male

1=Female

TIME Year hired Num Ranges from 1964 to 1998

AGE Current age in years Num

SALNOW Current salary Num

EDLEVEL Education level Num Number of years of education

WORK Number of years on the job Num Ranges from 0 to about 40 years

JOBCAT Job classification Num

1= Clerical

2= Office trainee

3= Security officer

4= College trainee

5= Exempt employee

6= MBA trainee

7= Technical

MINORITY Minority status Num
0=Non-minority

1=Minority

SEXRACE Combination of Sex & Race categories Num

1=White male

2=Minority male

3=White female

4=Minority female

 Introduction to SAS

179

Baseball Data (in sasdata2)

 Baseball.sas7bdat (SAS dataset)

baseball.sas7bdat

This data set is provided as one of the sample SAS data sets. It contains information on the 1986

statistics of major league baseball players in 1986 and their salaries in 1987, from the 1987 Collier

Baseball Encyclopedia.

Variable Name Description Type Codes

NAME Player’s name Char

NO_ATBAT Times at bat in

1986

Num

NO_HITS Hits in 1986 Num

NO_HOME Home runs in

1986

Num

NO_RUNS Runs in 1986 Num

NO_RBI RBIs in 1986 Num

NO_BB Walks in 1986 Num

YR_MAJOR Years in the

Major Leagues

Num

CR_ATBAT Career times at

bat

Num

CR_HITS Career Hits Num

CR_HOME Career Home

Runs

Num

CR_RUNS Career Runs Num

CR_RBI Career RBIs Num

CR_BB Career Walks Num

LEAGUE League at the

end of 1986

Char

DIVISION Division at end

of 1986

Char

TEAM Team at the end

of 1986

Char

POSITION Position(s) in

1986

Char 13 = first base, third base

1B = first base

1O = first base, outfield 23 =

second base, third base

2B = second base

2S = second base, shortstop

32 = third base, second base 3B = third

 Introduction to SAS

180

Variable Name Description Type Codes

base

3O = third base, outfield

3S = third base, shortstop

C = catcher

CD = center field, designated hitter

CF =center field

CS = center field, shortstop

DH = designated hitter

DO = designated hitter, outfield

LF = left field

O1 = outfield, first base

OD = outfield, designated hitter

OF = outfield

OS = outfield, shortstop RF = right

field

S3 = shortstop, third base

SS = shortstop

UT = utility

NO_OUTS Put-Outs in 1986 Num

NO_ASSTS Assists in 1986 Num

NO_ERROR Errors in 1986 Num

SALARY Salary in 1987 Num In thousands of dollars

 Introduction to SAS

181

BMI Data (in labdata)

 bmi1.xls

 bmi2.xls

 bm3.xls

The data from these Excel files were obtained from the Tecumseh Community Health Study, carried

out in Tecumseh, Michigan by researchers at the University of Michigan, School of Public Health. It

was designed to measure the health status of community members over a period of time.

Bmi1.xls contains data from Round I of the study (CV I) collected from 1959-1960. Bmi2.xls

contains data from Round II of the study (CV II) collected from 1962-1965. Bmi3.xls contains data

from Round III of the study (CV III) collected from 1967-1969.

There were 8637 participants in CV I, 6563 participants in CV II and 4621 in CV III. The ages of

participants at CV I ranged from 0 to 92 years. These data sets are restricted to participants who

were age 20 or older at CV I. The data for this example are available via ICPSR in study number

8969, in the form of an Osiris data set that can be transformed into SAS. A more complete version of

the data from the Tecumseh data is included in the Tecumseh data set, which is also described in this

document. All three Excel files have the same variables in them.

Variable Description Type Codes

ID Case Number Num

SEX Sex of participant Num 1=Male

2=Female

AGE

Age at interview

Num Age in years

EDUC

Education level Num 1=Less than high school

2=High school

3=More than high school

CIG

Cigarette smoking status

Num 0=Not currently smoker

1=Current smoker

WEIGHT Weight in kilograms Num

HEIGHT Height in centimeters Num

TIME Time of Study Num 1=Round 1

2=Round 2

3=Round 3

 Introduction to SAS

182

Biodiesel Data (in Labdata)

 Biodiesel.xlsx (Excel Spreadsheet)

This Excel file contains multiple worksheets from the EPA testing labs that can be imported

separately into SAS and merged to form one dataset. The sheets in this Excel file are

 Fuels (9 fuels, identified by FBATCH_ID)

 Engines (11 engines, identified by EQUIP_ID)

 Emissions (data from 61 emissions tests on different engines with different fuels. Can be

matched to Fuels data, using FBATCH_ID and to Engines using EQUIP_ID).

Fuels:

Engines:

 Introduction to SAS

183

Emissions:

 Introduction to SAS

184

Breast Cancer Data (in Labdata)

 Brca.dat (raw data file)

 Brca.xls (Excel file)

This data is part of a larger data set that was collected on 370 women from “A study of preventive

lifestyles and women’s health” conducted by a group of students at the University of School of

Public Health during the 1997 winter term. The data were originally entered using the EpiInfo

program. Variables included are shown in the following table.

Breast Cancer Data: Variable Description

Variable Description Columns Variable type

IDNUM Identification number 1-4 numeric

STOPMENS Stopped menstruation?

1=Yes, 2=No, 9=Missing

5 numeric

AGESTOP1 Age Stopped Menstruation

88=NotApp, 99=Missing

6-7 numeric

NUMPREG1 Number of Pregnancies

99=Missing

8-9 numeric

AGEBIRTH Age at Birth of First Child

88=NotApp, 99=Missing

10-11 numeric

MAMFREQ4 Mammogram Frequency

1=Every 6 months

2=Every year

3=Every 2 years

4=Every 5 years

5=Never

9=Missing

12 numeric

DOB Month of Birth

Day of Birth

Year of Birth, in form: mmddyy8.

09/09/99=Missing

13-20 date

EDUC Education

1=No formal school

2=Grade school

3=Some high school

4=High school graduate/diploma equivalent

5=Some college education/Associate degree

6=College graduate

7=Some graduate school

8=Graduate school or professional degree

9=Other

99=Missing

21-22 numeric

TOTINCOM Total Income

1=Less than $10,000

2=$10,000 to 24,999

23 numeric

 Introduction to SAS

185

Variable Description Columns Variable type

3=$25,000 to 39,999

4=$40,000 to 54,999

5=More than $55,000

8=Don’t know

9=Missing

SMOKER 1=Yes

2=No, 9=Missing

24 numeric

WEIGHT1 Weight 999=Missing 25-27 numeric

Business Data (in sasdata2)

 Business.sas7bdat (SAS dataset)

business.sas7bdat

This data set comes as a sample data set with SAS. It includes publicly available information on

employees, sales and profits figures for 127 major businesses in 1993.

Variable Description Type Codes

COMPANY Company name Char

NATION Nationality of the

company

Char

INDUSTRY

Type of Industry

Char Includes such items as Automobiles, Electronics,

Food, and Oil

EMPLOYS Number of Employees Num In thousands of employees

SALES Annual sales Num In millions of dollars

PROFITS Annual profits Num In millions of dollars

 Introduction to SAS

186

Cars Data Set (in Labdata)

 cars.sav (SPSS data set)

 cars.dta (Stata data set)

The Cars data set is provided as an example data set with SPSS. It contains data on specifications of

406 vehicles from 1970 to 1982. This data set contains categorical variables (such as ORIGIN),

numerical discrete variables (such as CYLINDER), and continuous variables (such as WEIGHT, and

ACCEL).

Variable Description Type Codes

MPG Miles per gallon Num

ENGINE Engine displacement (cu in) Num

HORSE

Horsepower

Num

WEIGHT Vehicle weight (lbs.) Num

ACCEL Time to accelerate from 0 to 60 mph (sec) Num

YEAR Model year (modulo 100) Num 0 (Missing)

70 = 1970

71 = 1971

…

82 = 1982

ORIGIN Country of origin Num 1 = American

2 = European

3 = Japanese

CYLINDER Number of cylinders Num 3 = 3 cylinders

4 = 4 cylinders

5 = 5 cylinders

6 = 6 cylinders

8 = 8 cylinders

 Introduction to SAS

187

Class Data (in Labdata)

 CLASS.DAT (raw data)

 CLASS.CSV (comma delimited file)

 CLASS.TXT (tab delimited file)

This is a hypothetical data set containing information on 14 students in a class.

Variable Name Variable Description Variable Type

LNAME Last Name Character

SEX Student’s Sex Character

AGE Age in years Numeric

HEIGHT Height in inches Numeric

SBP Systolic Blood Pressure Numeric

CLASS.DAT
Gregorio M 28 67 129

Miles M 33 69 135

Jenosh F 37 62 140

Boggins M 36 72 145

Greenfield M 39 70 137

Warren F 29 68 139

Kalbfleisch F 35 64 120

Pierce M . . 112

Walker F 22 56 133

Rogers M 45 68 145

Baldwin M 47 72 128

Mims F 48 67 152

Lambini F 36 . 120

Gossert M . 73 139

CLASS.CSV (excerpt)
Gregorio,M,28,67,129

Miles,M,33,69,135

Jenosh,F,37,62,140

Boggins,M,36,72,145

CLASS.TXT (excerpt)
Gregorio M 28 67 129

Miles M 33 69 135

Jenosh F 37 62 140

Boggins M 36 72 145

 Introduction to SAS

188

Clinic Data (in Labdata)

 CLINIC.TXT (tab delimited)

 CLINIC.XLS (Excel file)

This hypothetical data set contains information from 20 clinic visits for 6 patients. Patients had from

two to six clinic visits.

Variable Name Variable Description Variable Type

ID Patient Identifier Numeric

GROUP Study Group: Numeric

 1=Treatment

 2=Control

DATE Date of Clinic Visit Date

SBP Systolic Blood Pressure Numeric

WT Weight in pounds Numeric

SIDEFFCT Presences of side effects Numeric

 or not 1=Yes

 0=No

CLINIC.TXT (excerpt)
id group date sbp wt sideffct

131 1 4/2/95 129 150 1

131 1 5/5/95 118 154 1

131 1 6/1/95 119 152 0

131 1 7/10/95 116 151 1

131 1 8/14/95 111 153 0

131 1 10/12/95 109 148 1

105 2 7/15/95 145 188 0

105 2 8/22/95 147 185 1

105 2 11/28/95 133 184 0

105 2 12/20/95 129 185 0

Clinic.xls (excerpt)

 Introduction to SAS

189

Employee Data (in Labdata and Sasdata2)

 EMPLOYEE.SAV (SPSS data file)

 EMPLOYEE.SAS7BDAT (SAS dataset)

employee.sas7bdat

This data set originally came as an example data set from SPSS, with information on 474

(hypothetical) bank employees. The information in this data set is similar to that in the Bank data set,

but contains some slightly different versions of the variables.

Variable Description Type Codes

ID Employee Code Num

GENDER Gender Character
f = Female

m = Male

BDATE Date of Birth Num In mmddyy10. format

EDUC Education Level (years) Num

 8 = 8
th

 grade

12 = 12
th

 grade

 …

21 = 21 years

JOBCAT Job classification Num

1 = Clerical

2 = Custodial

3 = Manager

SALARY Current salary Num

SALBEGIN Salary when hired Num

JOBTIME Months since hire Num

PREVEXP Previous experience (months) Num

MINORITY Minority classification Num
0=Non-minority

1=Minority

 Introduction to SAS

190

Fitness Data (in sasdata2)

 Fitness.sas7bdat (SAS dataset)

fitness.sas7bdat

This data set contains hypothetical information on aerobic fitness from 45 people.

Variable Description Type Codes

TEACHER Teacher’s name Char

AGE Age in years Num

SEX Char
F=Female

M=Male

HEART Heart rate Num

EXER Exercise level Num

1=Low

2=Medium

3=High

4=Very High

AERO Aerobic capacity Num

GPA Data (in sasdata2)

 GPA.sas7bdat (SAS data set)

gpa.sas7bdat

This data set contains information on college GPA, and predictors based on high school grades in

different subject areas, plus SAT Math and verbal scores for 224 students. It is available as a sample

SAS data set, and was originally taken from the textbook by Moore and McCabe, Introduction to the

Practice of Statistics.

Variable Description Type

GPA College grade point average Num

HSM High school math average Num

HSS High school social studies average Num

HSE High school English average Num

SATM SAT math score Num

SATV SAT verbal score Num

SEX Sex of student Char

 Introduction to SAS

191

Huge Data set (in Labdata)

 Huge.dat (raw data file)

This artificial data set contains 400 rows of raw data, with each row being 300 columns wide.

Because the width of the input file is longer than the default of 256 columns used by SAS for

Windows, the lrecl option must be used to read the raw data correctly.

data huge;

 infile "huge.dat" missover lrecl=300;

 input v1-v100;

run;

Iris Data (in Labdata and sasdata2)

 Iris.dat (raw data)

 Iris.sas7bdat (SAS dataset)

iris.sas7bdat

This data set contains information on measurements of characteristics of the flowers from three

species of iris, for 50 plants. It is available as a sample SAS data set, and was originally published R.

A. Fisher in 1936. This data set is included as a version 9 SAS data set, iris.sas7bdat, in the

sasdata2.zip archive, and is included as a raw data file (iris.dat) and as a tab-delimited file (iris.txt) in

the intro_data.zip archive.

Description of variables in Iris data set.

Variable Description Type Codes

SEPALLEN Sepal length Num

SEPALWID Sepal width Num

PETALLEN Petal length Num

PETALWID Petal width Num

SPECIES Species Char

Setosa

Versicolor

Virginica

 Introduction to SAS

192

Junkfood Data (in Labdata)

 Junkfood.sav (SPSS dataset)

 Junkfood.xls (Excel file)

This data set contains nutritional information on 29 different fast food items. It originally came from

SPSS, and is available in the labdata archive in two different formats. It contains the following

variables:

Variable Description Type Codes

PRICE Item price Num

WEIGHT Weight in ounces Num

CALORIES Total calories Num

PROTEIN Num

FAT Total fat Num

SATFAT
Saturated fat

content
Num

SODIUM Sodium content Num

CALCIUM Calcium content Num

IRON Iron content Num

VIT_A Vitamin A Num

VIT_C Vitamin C Num

FOOD Item name Char

TYPE Food Type Char
Includes Burgers, Shakes, Fries, Roast Beef, Chicken,

etc.

 Introduction to SAS

193

March Flight Data (in Labdata)

 MARFLT.DAT (raw data)

 MARCH.XLS (Excel file)

This data set contains information on 635 flights during the month of March for a hypothetical

airline. The data are originally from SAS.

Variable Description Type Columns Format

FLIGHT Flight Number Num 1-3

DATE Departure Date Date 4-9 Mmddyy6.

TIME Departure Time Time 10-14 Time5.

ORIG Originating City Abbreviation Char 15-17

DEST Destination City Abbreviation Char 18-20

MILES Distance of flight in miles Num 21-25 Comma5.

MAIL Mail carried Num 26-29

FREIGHT Freight carried Num 30-33

BOARDED Number of passengers boarded Num 34-36

TRANSFER Number of passengers transferred Num 37-39

NONREV Number of non-revenue passengers Num 40-42

DEPLANE Number of passengers deplaned Num 43-45

CAPACITY Number of passengers capacity Num 46-48

MARFLT.DAT (excerpt)

182030190 8:21LGAYYZ 366 458 390104 16 3123178

114030190 7:10LGALAX2,475 357 390172 18 6196210

20203019010:43LGAORD 740 369 244151 11 5157210

SAS commands to read in marflt.dat:

data marflt2;

 infile "marflt.dat";

 input flight 1-3

 @4 date mmddyy6.

 @10 time time5.

 orig $ 15-17

 dest $ 18-20

 @21 miles comma5.

 mail 26-29

 freight 30-33

 boarded 34-36

 transfer 37-39

 nonrev 40-42

 deplane 43-45

 capacity 46-48;

format date mmddyy10. time time5. miles comma5.;

run;

 Introduction to SAS

194

Owen Data (in Labdata)

 OWEN.DAT (raw data file)

 OWEN.CSV (csv file)

 OWEN.XLS (Excel file)

 OWEN.XPT (SAS transport file)

This study of the nutritional status of 1006 preschool children was conducted at the University of

Michigan by Owen and others in the 1970s. Information was collected about the family and the

children.

Variable Name Missing Value Code Description

FAM_NUM Family ID number

CHILDNUM Child ID number

 1=oldest

 2=next oldest

 3=youngest

AGE Age (months)

SEX 1=male

 2=female

RACE 1=white

 2=black

W_RANK Socio-Economic Status

INCOME_C Income Per Capita

HEIGHT 999 Height (cm)

WEIGHT 999 Weight (kg)

HEMO Hemoglobin (gm/ml)

VIT_C Vitamin C (mg/ml)

VIT_A 99 Vitamin A (mg/ml)

HEAD_CIR 99 Head Circumference (cm)

FATFOLD 99 Triceps Fatfold (mm)

B_Weight 999 Birth Weight (in tens of grams)

MOT_AGE 99 Mother’s Age When Child Was Born

B_ORDER 99 Birth Order of Child

M_HEIGHT 999 Height of Mother (cm)

F_HEIGHT 999 Height of Father (cm)

OWEN.DAT (excerpt)

2000 1 47 2 1 3 1125 102 15.65 13.7 1.3 55 50 4.6 277 28 1 164 178

2002 1 64 2 1 3 1875 108 19.05 12.4 1.2 99 47 3.6 363 27 2 154 175

2004 2 37 2 1 3 1300 93 12.7 12 1.4 99 48 3.6 318 29 4 158 180

 Introduction to SAS

195

Pulse Data (in Labdata)

 PULSE.DAT (raw data file)

 PULSE.CSV (csv file)

 PULSE.XLS (Excel file)

The Pulse data set contains information on the pulse rates of 92 students in a statistics class. Students

were asked first to take their resting pulse and then half the students were assigned to run in place for

one minute. The other half did not run in place. Then everyone took his/her pulse again. The

variables in the data set are listed below. There are no column numbers given, because the data are

not column-aligned.

Variable Name Variable Description

Pulse1 Resting pulse, rate per minute

Pulse2 Second pulse, rate per minute

Ran 1=Yes, 2=No

Smokes 1=Yes, 2=No

Sex 1=Male, 2=Female

Height Height in inches

Weight Weight in pounds

Activity Activity Level

1=Low, 2=Medium, 3=High

PULSE.DAT (excerpt)

64 88 1 2 1 66 140 2

58 70 1 2 1 72 145 2

62 76 1 1 1 73 160 3

66 78 1 1 1 73 190 1

64 80 1 2 1 69 155 2

74 84 1 2 1 73 165 1

84 84 1 2 1 72 150 3

68 72 1 2 1 74 190 2

62 75 1 2 1 72 195 2

76 118 1 2 1 71 138 2

PULSE.CSV (excerpt)

pulse1,pulse2,ran,smokes,sex,height,weight,activity

64,88,1,2,1,66,140,2

58,70,1,2,1,72,145,2

62,76,1,1,1,73,160,3

 Introduction to SAS

196

Ship Data (in sasdata2)

 Ship.sas7bdat (SAS dataset)

ship.sas7bdat

This data set is included as a sample SAS data set. It comes from McCullagh and Nelder, 1983. The

data aggregates information on damage incidents to ships over the period from 1960 to 1979. This

data set is appropriate to use for a Poisson regression.

Variable Name Variable Description Type Codes

TYPE Type of ship Char a

b

c

d

e

YEAR Year of construction Char 1960-64

1965-69

1970-74

1975-79

PERIOD Period of operation Char 1960-75

1975-79

MONTHS Aggregate months of

operation

Num

Y Count of number of

damage incidents

Num Values all

>=0

 Introduction to SAS

197

Survey of Patients Data (in Labdata)

 SURVEY.CSV (csv file)

 SURVEY.DAT (raw data file)

This is an excerpt of a data set that contains information from 17 patients in a clinic setting. The

following variables were collected.

Variable Name Variable Description

PT_NUM Patient id number

DATEREC Date survey received

PHONE Whether patient was contacted by phone

FSTAPPT Whether this was the first appointment

CONVAPP How convenient was the appointment?

STAFF What type of staff saw the patient

CONFID How much confidence the patient had in the treatment received.

TXHELP How helpful the treatment was.

ADDSVC Which services should be added.

TX_LOC What was the treatment location?

WAIT How long the patient had to wait.

CONTIME Was there time for a conference?

RXEXPL Were drugs explained?

CONFCARE Was patient confident in care received?

SURVEY.DAT (excerpt)

1 10/4/93 1 1 1 1 2 2 . 1 1.5 1 . . .

2 10/13/93 2 1 3 2 3 3 2 2 3 3 3 3 3

3 10/13/93 1 1 1 1 1 1 3 2 1 1 1 1 1

4 10/21/93 1 1 1 1 1 2 . 2 1 1 1 . 1

5 10/21/93 1 2 1 1 2 3 3 2 2 2 1 4 3

6 11/19/93 1 4 1 1 4 4 3 1 4

SURVEY.CSV (excerpt)

1,10/4/93,1,1,1,1,2,2,.,1,1.5,1,.,.,.

2,10/13/93,2,1,3,2,3,3,2,2,3,3,3,3,3

3,10/13/93,1,1,1,1,1,1,3,2,1,1,1,1,1

4,10/21/93,1,1,1,1,1,2,.,2,1,1,1,.,1

5,10/21/93,1,2,1,1,2,3,3,2,2,2,1,4,3

6,11/19/93,1,4,1,1,4,4,3,1,4,.,.,.,.

 Introduction to SAS

198

Tecumseh Community Health Study (in sasdata2)

 Tecumseh.sas7bdat (SAS data set)

tecumseh.sas7bdat

This study, carried out in Tecumseh, Michigan by researchers at the University of Michigan School

of Public Health, was designed to measure the health status of community members over a period of

time. Data for Round I of the study (CV I) were collected from 1959-1960. Round II data (CV II)

were collected from 1962-1965 and Round III data (CV III) were collected from 1967-1969. There

were 8637 participants in CV I, 6563 participants in CV II and 4621 in CV III. The ages of

participants at CV I ranged from 0 to 92 years. The current data set is restricted to the 4685

participants who were 20 or more years old at CV I, with attrition occurring for the number of

participants in the later rounds. The complete data for the Tecumseh study are available via ICPSR

as study number 8969, in the form of an Osiris data set that can be transformed into SAS.

Variable Description Type Codes
ID Case Number Num

SEX SEX Num 1=Male

2=Female

AGE1

AGE2

AGE3

Age at CVI

Age at CVII

Age at CVIII

Num Age in Years

AGEGRP1

AGEGRP2

AGEGRP3

Age Group at CVI

Age Group at CVII

Age Group at CVIII

Num 1=20 to 29 years

2=30 to 39 years

3=40 to 49 years

4=50 to 59 years

5=60 to 69 years

6=70 to 79 years

7=80 or more years

MARITAL1

MARITAL2

MARITAL3

Marital Status at CVI

Marital Status at CVII

Marital Status at CVIII

Num 1=Married

2=Never Married

3=Widowed

4=Divorced

5=Separated

ED1

ED2

ED3

Education CV I

Education CV II

Education CV III

Num 1=Less than high school

2=High school

3=More than high school

EXAMSTAT Exam Status I, II, III Num 1=CV I, II and III

2=CV I and II only

4=CVI and III only

5=CVI only

CIG1

CIG2

CIG3

Cigarette Smoking CVI

Cigarette Smoking CVII

Cigarette Smoking CVIII

Num 0=Not Currently Smoker

1=Current Smoker

 Introduction to SAS

199

Variable Description Type Codes
CIGDAY1

CIGDAY2

CIGDAY3

Cigarettes Per Day CVI

Cigarettes Per Day CVII

Cigarettes Per Day CVIII

Num 0=None

1=Less than 1 Cig

2=1-9 Cig

3=10-19 Cig

4=20 Cig

5=21-29 Cig

6=30-39 Cig

7=40-59 Cig

8=60+ Cig

BEER1

BEER3

Glasses Beer CVI

Glasses Beer CVIII

Num Number of glasses of beer per day

on days when drink beer

SBP1

SBP2

SBP3

Systolic Blood Pressure CV I *

Systolic Blood Pressure CV II*

Systolic Blood Pressure CV III *

Num

DBP1

DBP2

DBP3

Diastolic Blood Pressure CV I *

Diastolic Blood Pressure CV II *

Diastolic Blood Pressure CV III *

Num

WTKG1

WTKG2

WTKG3

Weight kg CV I

Weight kg CV II

Weight kg CV III

Num

HTCM1

HTCM2

HTCM3

Height cm CV I

Height cm CV I

Height cm CV I

Num

BALD1

BALD2

BALD3

Baldness CVI

Baldness CVII

Baldness CVIII

Num 0=Under 10%

1=10-20%

2=30-50%

3=60-80%

4=90-100%

V4500 Mortality Status at CV III Num 1=Alive

2=Deceased

*These variables have been used in cross-sectional studies, but have been identified as having potentially

serious comparability problems across rounds.

 Introduction to SAS

200

Werner Birth Control Data (in Labdata)

 Werner2.dat (raw data file)

Data for this study were collected from 188 women, 94 of whom were taking birth control pills, and

their 94 matched controls (matched on age) who were not taking birth control pills. The information

collected was:

Variable Missing

Value

Column

Location

Format Description

ID 1-4 4.0 ID number

AGE 5-8 4.0 Age in years. The same for the case and

control within a matched pair.

HT 999 9-12 4.0 Height in inches

WT 999 13-16 4.0 Weight in pounds

PILL 17-20 4.0 1=NO, 2=YES

CHOL 21-24 4.0 Serum cholesterol level

ALB 99 25-28 4.1 Albumin level

CALC 99 29-32 4.1 Calcium level

URIC 99 33-36 4.1 Uric acid level

PAIR 37-39 3.0 Pair number

WERNER2.DAT (excerpt)

2381 22 67 144 1 200 4.3 9.8 5.4 1

1946 22 64 160 2 600 3.599.0 7.2 1

1610 25 62 128 1 243 4.110.4 3.3 2

1797 25 68 150 2 50 3.8 9.6 3.0 2

 561 19 64 125 1 158 4.1 9.9 4.7 3

2519 19 67 130 2 255 4.510.5 8.3 3

 225 20 64 118 1 210 3.9 9.5 4.0 4

2420 20 65 119 2 192 3.8 9.3 5.0 4

