Reading Raw Data into SAS

(commands=readdata.sas)

Instream Data:

If you are planning to enter a very small amount of data, it will often be convenient to type the data in the SAS program rather than reading it from another file. This is known as instream data. It is a quick and easy way to enter data into SAS for an analysis.

You will need 4 basic types of statements to enter data in this fashion:

· Data

· Input

· Cards or datalines

· A semicolon on a line by itself to end the data

Note: You must have at least one blank between each data value. More than one blank is OK. It is important to have something as a placeholder for each variable, even when the value is missing. A period will serve to indicate a missing value for both numeric and character variables entered in this way. The data do not need to be lined up exactly in columns.

data salary;

input lname $ id sex $ salary age;

cards;

Smith 1028 M . .

Williams 1337 F 3500 49

Brun 1829 . 14800 56

Agassi 1553 F 11800 65

Vernon 1626 M 129000 60

 ;

proc print data=salary;

run;

Entering Data for More than 1 case on the same line:

If you want to enter data on the same line for several cases, you can use the @@ symbol:
data test;

 input x y group @@;

 cards;

1 2 A 3 12 A 15 22 B 17 29 B 11 44 C 13 29 C

7 21 D 11 29 D 16 19 E 25 27 E 41 12 F 17 19 F

;

proc print data=test;

run;

This results in the following output, which shows that data have been entered for 12 cases:

 OBS X Y GROUP

 1 1 2 A

 2 3 12 A

 3 15 22 B

 4 17 29 B

 5 11 44 C

 6 13 29 C

 7 7 21 D

 8 11 29 D

 9 16 19 E

 10 25 27 E

 11 41 12 F

 12 17 19 F

Entering Data for a Table:

This is a very handy way to enter data from a table that you wish to analyze. Because weights are used in this analysis, it is not necessary to enter the values for each respondent individually. For example, if the following information were reported in a newspaper article in which the same respondents were asked to rate President Bush’s job performance before and after September 11, and you wished to carry out a brief analysis, you could use the SAS commands below to create the table.

Is President Bush doing a good job in office?

	
	AFTER SEPT 11

	BEFORE SEPT 11
	NO
	YES

	NO
	5
	80

	YES
	3
	82

The following commands could be used to enter the data and carry out a simple analysis:

data opinion;

 input BEFORE $ AFTER $ count;

 cards;

No No 5

No Yes 80

Yes No 3

Yes Yes 82

;

proc freq;

 weight count;

 tables BEFORE * AFTER;

run;

The output from these commands is shown below:

 Obs BEFORE AFTER count

 1 No No 5

 2 No Yes 80

 3 Yes No 3

 4 Yes Yes 82
 The FREQ Procedure

 Table of BEFORE by AFTER

 BEFORE AFTER

 Frequency|

 Percent |

 Row Pct |

 Col Pct |No |Yes | Total

 ---------+--------+--------+

 No | 5 | 80 | 85

 | 2.94 | 47.06 | 50.00

 | 5.88 | 94.12 |

 | 62.50 | 49.38 |

 ---------+--------+--------+

 Yes | 3 | 82 | 85

 | 1.76 | 48.24 | 50.00

 | 3.53 | 96.47 |

 | 37.50 | 50.62 |

 ---------+--------+--------+

 Total 8 162 170

 4.71 95.29 100.0000

Reading Data from External Files:

Raw data files (sometimes called ascii files, flat files, text files or unformatted files) can come from many different sources: when exported from a database program, such as Access, from a spreadsheet program, such as Excel, or from a raw data file on a CD from a government or private agency.

The first step is to be sure you know the characteristics of the raw data file. You can check the raw data by using a text editor or word processing program. For small files you can use Windows Notepad, for larger files you can use Microsoft Word or Word Perfect (be sure if you open your raw data file with a word processing program, that you save it as text only or unformatted text when you quit).

To be able to read a raw data file, you will need a codebook that gives information about the data contained in the file. Some commonly used raw data file types are:

a) Blank separated values (with data in list form)
b) Comma separated values (.csv files--these typically come from Excel)
c) Tab separated values (.txt files--these may come from a number of different applications, including Excel)
d) Fixed-column data (often the form of data from government agencies, or research groups, such as ICPSR--the Inter University Consortium for Political and Social Research)
Once you have identified the type of raw data that is to be read, you can customize your command file to read the data into SAS. The command files that read in these types of data can be very simple, or very long and complex, depending on the number and types of variables to be read.

The part of SAS that creates a new data set is the data step. The data step for reading raw data from a file has 3 essential statements:

· Data

· Infile

· Input
Other statements may be added to the data step to create new variables, carry out data transformations, or recode variables.

Reading blank separated values (list or free form data):
Raw data values separated by blanks are often called list or free form data. Each value is separated from the next by one or more blanks. If there are any missing values, they must be indicated by a placeholder, such as a period. Note that a period can be used to indicate a missing value for either character or numeric variables. Missing values can also be denoted by a missing value code, such as 99 or 999. The data do not need to be lined up in columns, so lines can be of unequal length, and can appear “ragged”.

Here is an excerpt of a raw data file that is separated by blanks. Notice that the values in the file are not lined up in columns. The name of the raw data file is class.dat. Missing values are indicated by a period (.), with a blank between periods for contiguous missing values.

Warren F 29 68 139

Kalbfleisch F 35 64 120

Pierce M . . 112

Walker F 22 56 133

Rogers M 45 68 145

Baldwin M 47 72 128

Mims F 48 67 152

Lambini F 36 . 120

Gossert M . 73 139

The SAS data step to read this type of raw data is very simple. The data statement names the data set to be created, and the infile statement indicates the raw data file to be read. The input statement lists the variables to be read in the order in which they appear in the raw data file. No variables can be skipped at the beginning of the variable list, but you may stop reading variables before reaching the end of the list. Here are the SAS commands that were used to read in this data:

data class;

infile "class.dat";

input lname $ sex $ age height sbp;

run;

Note that character variable names are followed by a $. Without a $ after a variable name, SAS assumes that the variable is numeric (the default).

Length statement:

Sometimes it is necessary to include a length statement to allow character variables to be longer than the default length of 8 characters. Character variables can be from 1 to 32,767 characters long. We recommend limiting the lengths of character variables to 16 characters or less, if possible, because many procedures in SAS will display a maximum of 16 characters in their output. However, this rule need not apply to variables containing information such as names or addresses. Note that the length statement comes before the input statement, so the length of the variable is set up before the variable is read. Because LNAME is the first variable mentioned, it will be the first variable in the data set.

data class;

infile "class.dat";

 length lname $ 12;

input lname $ sex $ age height sbp;

run;

Reading raw data separated by commas (.csv files):

Often raw data files will be in the form of CSV (Comma Separated Values) files. These files can be created by Excel, and are very easy for SAS to read. An excerpt of a csv file called PULSE.CSV is shown below. Note that the first line of data contains the variable names.

pulse1,pulse2,ran,smokes,sex,height,weight,activity

64,88,1,2,1,66,140,2

58,70,1,2,1,72,145,2

62,76,1,1,1,73,160,3

66,78,1,1,1,73,190,1

SAS commands to read in this raw data file are shown below.

data pulse;

 infile "pulse.csv" firstobs=2 delimiter = "," dsd;

 input pulse1 pulse2 ran smokes sex height weight activity;

run;

There are several modifications to the infile statement in the previous example:

a) delimiter = "," or dlm="," tells SAS that commas are used to separate the values in the raw data file, not the default, which is a blank.

b) firstobs = 2 tells SAS to begin reading the raw data file at line 2, which is where the actual values begin.

c) dsd allows SAS to read consecutive commas as an indication of missing values.

The delimiter option may be shortened to dlm, as shown below:

data pulse;

 infile "pulse.csv" firstobs=2 dlm = "," dsd;

 input pulse1 pulse2 ran smokes sex height weight activity;

run;

Note: this data set may also be imported directly into SAS by using the SAS Import Wizard, and selecting the file type as commas separated values.

Reading in raw data separated by tabs (.txt files):
Raw data separated by tabs may be created by Excel (saving a file with the text option) or by other applications. You can determine if your data are separated by tabs by viewing the file in a word processing program, such a Microsoft Word, and having the program display all formatting characters. The example below shows how tab-separated data appear when viewed without the tabs visible. This is a portion of the raw data file is called iris.txt:

51
38
15
3
Setosa

54
34
17
2
Setosa

51
37
15
4
Setosa

52
35
15
2
Setosa

53
37
15
2
Setosa

65
28
46
15
Versicolor

62
22
45
15
Versicolor

59
32
48
18
Versicolor

61
30
46
14
Versicolor

It is clearly not obvious to the naked eye that there are tabs separating the values in this file, but you still need to specify this to have SAS read the data correctly. To do this, modify the infile statement to tell SAS that the delimiters are tabs. Since there is no character equivalent of tab, the hexadecimal equivalent of tab is indicated in the delimiter = option, as shown below:

data iris;

 infile "c:\temp\labdata\iris.txt" dsd missover dlm="09"X ;

 length species $ 10;

 input sepallen

 sepalwid

 petallen

 petalwid

 species $;

run;

proc print data=iris;

run;
Note that SPECIES has been read as a character variable. We also use a length statement to be sure we get the correct length of the variable SPECIES. Even though this variable appears last in the raw data, it will be first in the SAS data set, because the length statement is given before the data are read in. Partial output from these commands is shown below:

 Obs species sepallen sepalwid petallen petalwid
 1 Setosa 50 33 14 2

 2 Setosa 46 34 14 3

 3 Setosa 46 36 10 2

 4 Setosa 51 33 17 5

 5 Setosa 55 35 13 2

 6 Setosa 48 31 16 2

 7 Setosa 52 34 14 2

Reading raw data that are aligned in columns:
Raw data may be aligned in columns, with each variable always in the same location. There may or may not be blanks between the values for given variables. An example is shown below. This is an excerpt from the raw data file: marflt.dat:

182030190 8:21LGAYYZ 366 458 390104 16 3123178

114030190 7:10LGALAX2,475 357 390172 18 6196210

20203019010:43LGAORD 740 369 244151 11 5157210

219030190 9:31LGALON3,442 412 334198 17 7222250

43903019012:16LGALAX2,475 422 267167 13 5185210
Because there are not blanks separating values in this raw data file, the data must read into SAS in a manner that identifies the column location of each variable.

Column-style input:

To read data that are lined up in columns, the input statement is set up by listing each variable followed by the column-range in which it can be found. Character variables should be followed by a $, and then the column-range. It is possible when using this type of input to skip to any desired columns, or to go to previous locations in a given row of data to read in values. To be sure which columns should to be read for each variable, you will need to have a code sheet that gives the column location of each of the variables. Many large data sets that are distributed by the government are documented in this manner.

Here is an example of a command file to read in raw data from marflt.dat. Notice that not all values are read in this example. Proc print is also used to print out the first 10 cases of the marflt data set.

data marflt;

infile "marflt.dat" ;

input flight 1-3 depart $ 15-17 dest $ 18-20 boarded 34-36;

run;

proc print data=marflt(obs=10);
run;

The output from these commands is shown below:

 Obs flight depart dest boarded

 1 182 LGA YYZ 104

 2 114 LGA LAX 172

 3 202 LGA ORD 151

 4 219 LGA LON 198

 5 439 LGA LAX 167

 6 387 LGA CPH 152

 7 290 LGA WAS 96

 8 523 LGA ORD 177

 9 982 LGA DFW 49

 10 622 LGA FRA 207
Reading column data that is on more than one line:

Sometimes the raw data for a single case are included on more than one line. An example of this is shown in the excerpt from the file afifi.dat shown below.

 340 70 160 23 4 62 38 53 29 100 187 90 190 390 0 394 241 131 400 1

 340 70 160 23 4 129 74 72 53 190 187 120 130 300 15 394 241 112 365 2

 412 56 173 11 4 83 66 110 60 10 182 126 221 407 110 362 240 166 500 1

 412 56 173 11 4 102 75 108 63 90 182 281 100 206 50 564 266 154 330 2

This data represents information on patients measured at 2 time points. First, measurements were made for each patient when they came in to the emergency room, and then these same measurements were made either just before discharge, or if the patient died, just before death. The first part of the information for a given patient is the same on both lines of raw data, the remainder of the data is different.

Here are SAS commands to read in this raw data file and to create a SAS data set called AFIFI. In this command file, a new line is indicated by a # sign, followed by the line number. In addition, there is a number after the column-range for the variables HGB1 and HGB2. This number tells SAS how many decimal places should be inserted in the values of these 2 variables. (There are no decimals in the original raw data file.) Thus, the value of HGB1 for the first patient is 13.1, rather than 131 as it appears in the raw data, and the value for HGB2 is 11.2. If there is an actual decimal point in the raw data, its placement will take precedence over what is specified in the input statement.

data afifi;

 infile "afifi.dat";

 input

 #1 idnum 1-4 age 5-8 sex 13-15 surv 16 shoktype 17-20 sbp1 21-24

 hgb1 69-72 1

 #2 sbp2 21-24 hgb2 69-72 1;

run;

An alternative way to read in raw data from two lines is shown below. Here the slash means to skip to the next line. You can use as many slashes as necessary to tell SAS how many lines to skip, and which lines to read.

data afifi;

 infile "afifi.dat";

 input

 idnum 1-4 age 5-8 sex 13-15 surv 16 shoktype 17-20 sbp1 21-24

 hgb1 69-72 1

 /sbp2 21-24 hgb2 69-72 1;

run;

Formatted-style input:

Raw data that are aligned in columns can also be read with formatted style input. The input statement must first indicate the column in which to begin reading with an @ sign, e.g. @46 to start reading at column 46 (by default, the first variable will be read, starting @1). Then the variable name is followed by the format of the variable in the form w.d (where w indicates the total width of the variable, including any signs and decimal points, and d indicates the number of places after the decimal). Note that explicit decimals in the data will override a decimal specification given in the input statement. The @ can be used to move around to different places in the data. The @ sign may point to any column that you wish and you may go back to previous columns if desired, or portions of the data may be skipped.

data afifi;

 infile "afifi.dat";

 input

 #1 @1 idnum 4.0 @5 age 4.0 @13 sex 3. @16 surv 1.

 @17 shoktype 4. @21 sbp1 4. @69 hgb1 4.1

 #2 @21 sbp2 4. @69 hgb2 4.1;

run;

Note that the format 4.0 is equivalent to the format 4. It is critical that the format be given with a period after it (e.g. 4. rather than 4), because that allows SAS to distinguish between a format and a column location.

Mixed-style input:

Mixed style input is also allowed. The example below shows how to read the marflt.dat raw data into SAS using column-style input for some variables, and formatted-style input for others. The commands below show how to read the variable DATE using the mmddyy6. informat, so you can do math with this variable later. The format statement after the input statement tells SAS to display the date using the mmddyy10. format, which will insert slashes between the month, day and year values, and display a four-digit year. The informat must match the way the raw data are set up, but the format statement can use any valid SAS date format to display the date. The date itself will be stored internally in SAS as the number of days from Jan. 1, 1960 to the date of the flight. Again, note the use of the period at the end of the informat mmddyy6. and the mmddyy10. format.

The variable MILES is read with a comma5. informat, because the value of miles contains a comma in the raw data. We display MILES with a comma5. format, by using the format statement.

data marflt2;

 infile "marflt.dat";

 input flight 1-3
 @4 date mmddyy6.

@10 time time5.

orig $ 15-17

dest $ 18-20

@21 miles comma5.

mail 26-29

freight 30-33

boarded 34-36

transfer 37-39

nonrev 40-42

deplane 43-45

capacity 46-48;

format date mmddyy10. time time5. miles comma5.; run;

The results of the above commands are shown below:

 Obs flight date time orig dest miles mail freight boarded transfer nonrev deplane capacity

 1 182 03/01/1990 8:21 LGA YYZ 366 458 390 104 16 3 123 178

 2 114 03/01/1990 7:10 LGA LAX 2,475 357 390 172 18 6 196 210

 3 202 03/01/1990 10:43 LGA ORD 740 369 244 151 11 5 157 210

 4 219 03/01/1990 9:31 LGA LON 3,442 412 334 198 17 7 222 250

 5 439 03/01/1990 12:16 LGA LAX 2,475 422 267 167 13 5 185 210

 6 387 03/01/1990 11:40 LGA CPH 3,856 423 398 152 8 3 163 250

 7 290 03/01/1990 6:56 LGA WAS 229 327 253 96 16 7 117 180

 8 523 03/01/1990 15:19 LGA ORD 740 476 456 177 20 3 185 210

 9 982 03/01/1990 10:28 LGA DFW 1,383 383 355 49 19 2 56 180

 10 622 03/01/1990 12:19 LGA FRA 3,857 255 243 207 15 5 227 250
Infile Options for Special Situations:

Sometimes your data will require special options for it to be read correctly into SAS. The infile statement allows a number of options to be specified. These infile options may appear in any order in the infile statement, after the raw data file is specified.

1. The missover option:

The missover option is used to prevent SAS from going to the next line to complete a case if it did not find enough values on a given line of raw data. The missover option will often correct problems in reading raw data that are separated by blanks, when the number of cases reported by SAS to be in your data set is less than expected.

In the example below, the raw data file "huge.dat" has 400 lines in it, but SAS creates a dataset with only 200 observations, as shown in the SAS NOTE from the SAS Log below.

data huge;

infile "huge.dat";

input v1-v100;

run;

The above commands result in the following note in the SAS log:

NOTE: 400 records were read from the infile "huge.dat".

 The minimum record length was 256.

 The maximum record length was 256.

 One or more lines were truncated.

NOTE: SAS went to a new line when INPUT statement reached past the end of a

 line.

NOTE: The data set WORK.HUGE has 200 observations and 100 variables.

The addition of the missover option on the infile line corrects this problem.

data huge;

infile "huge.dat" missover;

input v1-v100;

run;

NOTE: The infile "huge.dat" is:

 FILENAME=C:\kwelch\workshop\data\huge.dat,

 RECFM=V,LRECL=256

NOTE: 400 records were read from the infile "huge.dat".

 The minimum record length was 256.

 The maximum record length was 256.

 One or more lines were truncated.

NOTE: The data set WORK.HUGE has 400 observations and 100 variables.

.

Variable N Mean Std Dev Minimum Maximum

 V69 400 0.4850000 0.5004008 0 1.0000000

 V70 400 0.4775000 0.5001190 0 1.0000000

 V71 400 0.4825000 0.5003194 0 1.0000000

 V72 400 0.5125000 0.5004697 0 1.0000000

 V73 400 0.5050000 0.5006011 0 1.0000000

 V74 400 0.5025000 0.5006199 0 1.0000000

 V75 400 0.5150000 0.5004008 0 1.0000000

 V76 400 0.4850000 0.5004008 0 1.0000000

 V77 400 0.4600000 0.4990216 0 1.0000000

 V78 400 0.4925000 0.5005699 0 1.0000000

 V79 400 0.5175000 0.5003194 0 1.0000000

 V80 400 0.5450000 0.4985945 0 1.0000000

 V81 400 0.5000000 0.5006262 0 1.0000000

 V82 400 0.5275000 0.4998684 0 1.0000000

 V83 400 0.4925000 0.5005699 0 1.0000000

 V84 400 0.4800000 0.5002255 0 1.0000000

 V85 400 0.5050000 0.5006011 0 1.0000000

 V86 0

 V87 0

 V88 0

 V89 0

 V90 0

 V91 0

 V92 0

 V93 0

 V94 0

 V95 0

 V96 0

 V97 0

 V98 0

 V99 0

 V100 0

2. Using LRECL to read very long lines of raw data:
If your raw data file has very long lines, you will need to use the lrecl option on the infile statement. The lrecl (logical record length) option tells SAS the longest length (the longest number of characters) that any line in the raw data could possibly have. The default length used by SAS for Windows is 256, so if your data file has more than 256 characters (count characters by counting each letter, number, space, period or blank in your data line) you will need to give an lrecl statement. (Note: the default lrecl differs for different operating systems). You cannnot go wrong by giving an lrecl value that is too large. If you don"t know the exact length, guess, and guess at a large value. Here is an example of reading in a raw data file that has a logical record length that is set at 2000.

data huge;

infile "huge.dat" missover lrecl=2000;

input v1-v100;

run;

NOTE: The infile "huge.dat" is:

 FILENAME=C:\kwelch\workshop\data\huge.dat,

 RECFM=V,LRECL=2000

NOTE: 400 records were read from the infile "huge.dat".

 The minimum record length was 300.

 The maximum record length was 300.

NOTE: The data set WORK.HUGE has 400 observations and 100 variables.

NOTE: The DATA statement used 0.48 seconds.

Now, the data set now has the required 400 observations, and that all variables have values, as shown in the output from proc means below:

 Variable N Mean Std Dev Minimum Maximum

 V81 400 0.5000000 0.5006262 0 1.0000000

 V82 400 0.5275000 0.4998684 0 1.0000000

 V83 400 0.4925000 0.5005699 0 1.0000000

 V84 400 0.4800000 0.5002255 0 1.0000000

 V85 400 0.5050000 0.5006011 0 1.0000000

 V86 400 0.5000000 0.5006262 0 1.0000000

 V87 400 0.5000000 0.5006262 0 1.0000000

 V88 400 0.5350000 0.4993981 0 1.0000000

 V89 400 0.4875000 0.5004697 0 1.0000000

 V90 400 0.5250000 0.5000000 0 1.0000000

 V91 400 0.4850000 0.5004008 0 1.0000000

 V92 400 0.4700000 0.4997242 0 1.0000000

 V93 400 0.4875000 0.5004697 0 1.0000000

 V94 400 0.5025000 0.5006199 0 1.0000000

 V95 400 0.5050000 0.5006011 0 1.0000000

 V96 400 0.4425000 0.4973048 0 1.0000000

 V97 400 0.4975000 0.5006199 0 1.0000000

 V98 400 0.5175000 0.5003194 0 1.0000000

 V99 400 0.4875000 0.5004697 0 1.0000000

 V100 400 0.5025000 0.5006199 0 1.0000000

Checking your data after it has been read into SAS:

It is critically important to check the values in your SAS data set before proceeding with your analysis! Just because the data were read into SAS does not guarantee that they were read correctly. Data checking should be the first step before moving on to any statistical analyses.

1. Check the log: After reading raw data into SAS, check the log to verify that the number of cases that were read matches what it should be, and that the data set has the number of cases that you expect. If you have fewer cases than you expect, check your infile statement, you might want to add a missover option. Check the input statement also, to be sure that it is correct. The log will also alert you to any problems that SAS encountered in reading the data. SAS will print warnings (a limited number of them) indicating if there are problems in the data that you have read in. Save the log if you are having trouble reading your data. It is the best way to figure out how to remedy any problems!

2. Run descriptive statistics using proc means to check the data: Simple descriptive statistics are very easy to produce using proc means. The output from this procedure will give you several very important pieces of information. First, the minimum and maximum can be checked to see if they conform to the values that make sense for the variables that you are reading. Second, check the n (i.e., sample size) for each variable. The n will tell you if there are many missing values for a particular variable and may alert you to possible problems with the data that should be addressed.

3. Check the distributions of continuous variables with a histogram or box and whiskers plot: This can be done using SAS Proc Univariate, SAS/INSIGHT or Proc Boxplot. The histogram and box and whiskers plot will give you an idea if there are outliers that should be checked, if the distribution of a variable is symmetric, and the general shape of the distribution.

4. Check the values of categorical variables with proc freq: This is a useful way to check categorical variables that can have a limited number of values. Knowing the values that occur can help to determine if there were any errors in reading the data, and knowing the number of cases in each category can help to understand the data.

PAGE
1
Read raw data into SAS.

