Active Learning for Personalizing Treatment

Kun Deng¹ Joelle Pineau² Susan Murphy¹

¹Department of Statistics University of Michigan

²Department of Computer Science McGill University

April 6, 2011

Kun, Joelle, Susan Active Learning for Personalizing Treatment

< ロ > < 同 > < 回 > < 回 > .

3 🕨 3

Introduction

- Personalized Medicine/Treatment
 - treat each patient based on his characteristics: patients with different gene biomarker or clinical biomarkers often show differential responses to the same treatment.

Basic Problem

- adapt treatment over time (not covered in this talk)
- Our Goal
 - provide reliable evidence that informs clinical decision making
 - construct decision rules from clinical data that are tailored to individual heterogeneity
 - quantify confidence/uncertainty of these decision rules
 - make better use of clinical trial resources
 - number of recruitments

э.

Basic Problem

A Motivating Example

- Patients are categorized into subpopulations $c_1 \sim c_4$ based on biomarkers
- Two treatment actions a_1 and a_2
- An individualized treatment assignment looks like:

$$\mathcal{O}(c_i) = \begin{cases} a_1 & \text{ if } \hat{\mu}_{i1} - \hat{\mu}_{i2} \ge 0 \\ a_2 & \text{ if } \hat{\mu}_{i1} - \hat{\mu}_{i2} < 0 \end{cases} \quad \forall i \in \{1, 2, 3, 4\}$$

- $\hat{\mu}_{i}$ are the estimates of mean responses for subpopulation C_{i}
 - The uncertainty in the estimated treatment effect lies in $Var[\hat{\mu}_{i1} \hat{\mu}_{i2}] = Var[\hat{\mu}_{i1}] + Var[\hat{\mu}_{i2}]$
 - Further we want to treat all four subpopulations, so we need to control the uncertainty for all *i*.

・ 同 ト ・ ヨ ト ・ ヨ ト

Cont'd

Current Practice

• Recruit from the entire population as patients arrive: patients in the trial roughly reflect their natural composition.

Basic Problem

- A post subgroup analysis is used to calculate $Var[\hat{\mu}_{i1} \hat{\mu}_{i2}]$, often yielding highly variable responses for some subpopulations
- Question: how to intelligently recruit patients from subpopulations in order to construct a uniformly-good treatment policy.

Basic Problem

Cont'd

• Our Approach

- a minimax bandit model that intelligently recruits patient from different subpopulations and assigns them to different treatments
- minimize the largest variance of the estimated treatment effects among the different subpopulations
- Assumptions
 - Active treatment period of a patient is short compared to the pace of patient recruitments (i.e. the entire trial)
 - Patient treatment and monitoring is extremely costly
 - The budget for a clinical trial is specified a priori, say *N* subjects maximally

Methods Algorithms Experimental Results

A MiniMax Bandit Problem

- There are C bandits (corresponding to the C subpopulations), each equipped with K arms
- At each time point, we are only allowed to pick one bandit. For that bandit, we need to further decide an arm to pull.
- mean μ_{ij} (corresponding to the primary outcome of action (*i*, *j*)) and variance σ²_{ii}.
- Based on our goal of creating good ITRs, we want to control the maximum estimation loss for all subpopulations

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Methods Algorithms Experimental Results

A MiniMax Bandit Problem

Some Definitions

- The error of estimation for an arm: $L_{ij}^n = E[(\hat{\mu}_{ij}^n - \mu_{ij})^2] = \operatorname{Var}[\hat{\mu}_{ij}^n] = \frac{\sigma_{ij}^2}{T_u},$
- T_{ij} being the number of pulls for (i,j)
- The loss for a bandit : $L_i^n = \sum_{j=\{1,2\}} L_{ij}^n$
- The overall loss of an active learning policy π : $L^{n}(\pi) = \max_{1 \le i \le C} L_{i}^{n}$
- An oracle policy π^{Oracle} that knows the variances σ_{ii}^2
- The excessive loss of π compared to an optimal oracle policy $L^n(\pi) L^n(\pi^{\text{oracle}})$, goal is to find π that minimizes it.

< ロ > < 同 > < 回 > < 回 >

Methods Algorithms Experimental Results

The Oracle Algorithm

The Oracle Algorithm minimize $\max_{i} \sum_{j} \frac{\sigma_{jj}^{2}}{T_{ij}}$ s.t. $\sum_{i} \sum_{j} T_{ij} = N$ $T_{ij} \ge 0$

Solution

$$T_{ij}^* = rac{\sigma_{ij}\sum_j \sigma_{ij}}{\sum_i (\sum_j \sigma_{ij})^2} N$$
 $r^* = rac{\sum_i (\sum_j \sigma_{ij})^2}{N}$
is the optimal value o

3

Methods Algorithms Experimental Results

The Oracle Algorithm

The Oracle Algorithm minimize $\max_{i} \sum_{j} \frac{\sigma_{ij}^{2}}{T_{ij}}$ s.t. $\sum_{i} \sum_{j} T_{ij} = N$ $T_{ij} \ge 0$

Solution

$$T_{ij}^* = \frac{\sigma_{ij} \sum_j \sigma_{ij}}{\sum_i (\sum_j \sigma_{ij})^2} N$$
$$r^* = \frac{\sum_i (\sum_j \sigma_{ij})^2}{N}$$
$$r^* \text{ is the optimal value of the objective function.}$$

< ロ > < 同 > < 回 > < 回 > .

æ.

Methods Algorithms Experimental Results

AREOA Algorithm

- $\left\{\frac{\sigma_{ij}\sum_{j}\sigma_{ij}}{\sum_{i}(\sum_{j}\sigma_{ij})^{2}}; i \in \{1,...,C\}, j \in \{1,...,K\}\right\}$ forms a probability distribution
 - if an active learning algorithm samples according to this at each time point,
 - $E[T_{ij}(\pi)] = T_{ij}^*$
 - if σ_{ij} is large or $\sum_{i} \sigma_{i}$ is large, arm (i,j) should be pulled more often
- Use plugin estimates $\hat{\sigma}_{ij}$ in the active learning policy
- Compared against uniformly random–AARandom and one related algorithm GAFS-MAX

э.

Motivation Meth Methods and Algorithms Algo Discussion Expe

Methods Algorithms Experimental Results

Experiments

- All arms were initialized with B=5 pulls
- AREOA uses ε -greedy strategy to keep a small probability of random exploration, $\varepsilon = 0.1$

dataset	subpopulation/	distributions	means	variances
	treatments			
D\$1	4/2	(25 .25 .25 .25 .25	$ \left(\begin{array}{rrrr} 1 & 4 \\ 2 & 2 \\ 4 & 1 \\ 2 & 2 \end{array}\right) $	$ \left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
D\$2	4/2	$\begin{pmatrix} .1 \\ .3 \\ .3 \\ .3 \end{pmatrix}$	$\begin{pmatrix} 1 & 4 \\ 2 & 2 \\ 4 & 1 \\ 2 & 2 \end{pmatrix}$	$ \left(\begin{array}{cccc} 1000 & 1000 \\ 100 & 100 \\ 100 & 100 \\ 100 & 100 \end{array}\right) $
D\$3	8/2	(125 .125 .125	$\begin{pmatrix} 2 & 2 \\ 2 & 2 \\ \dots & \dots \\ 2 & 2 \end{pmatrix}$	5 5 10 10 640 640
D\$4	4/2	(25 25 25 25 25 25	$\begin{pmatrix} 1 & 4 \\ 2 & 2 \\ 4 & 1 \\ 2 & 2 \end{pmatrix}$	$ \left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
DS-CBASP	3/2	$ \left(\begin{array}{c} 1/3\\ 1/3\\ 1/3 \end{array}\right) $	$ \left(\begin{array}{ccc} 10.9 & 16.2 \\ 9.3 & 19.4 \\ 12.9 & 15.8 \end{array}\right) $	(99.3 79.7 110.7 55.9 103.5 78.6

Table: datasets for the experiment

< 17 ▶

A B > A B >

Cont'd

Methods Algorithms Experimental Results

500 r 500 r RandomAssignmentPolicy AREOAPolicy 0.1 RandomAssignmentPolicy AREOAPolicy 0.1 450 450 GAFS-MAX GAFS-MAX Ideal Baseline Ideal Baseline 400 400 350 350 300 300 8 250 8 250 200 200 150 150 100 100 50 50 0 20 40 80 100 120 140 160 180 200 20 40 80 100 120 140 160 180 200 recruitment recruitment DS1 DS2

Kun, Joelle, Susan Active Learning for Personalizing Treatment

< D > < B > < E > < E >

æ.

Motivation Methods Methods and Algorithms Algorithms Discussion Experimental Results

Table: datasets for the experiment

dataset	subpopulation/	distributions	means	variances
	treatments			
DS1	4/2	(25 .25 .25 .25 .25	$ \left(\begin{array}{rrrr} 1 & 4\\ 2 & 2\\ 4 & 1\\ 2 & 2 \end{array}\right) $	$ \left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
DS2	4/2	$ \left(\begin{array}{c} .1\\ .3\\ .3\\ .3 \end{array}\right) $	$ \left(\begin{array}{rrrr} 1 & 4 \\ 2 & 2 \\ 4 & 1 \\ 2 & 2 \end{array}\right) $	$ \left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
DS3	8/2	(125 .125 .125	$ \left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \left(\begin{array}{ccc} 5 & 5\\ 10 & 10\\ &\\ 640 & 640 \end{array}\right) $
DS4	4/2	(25 .25 .25 .25 .25	$ \left(\begin{array}{rrrr} 1 & 4\\ 2 & 2\\ 4 & 1\\ 2 & 2 \end{array}\right) $	$ \left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
DS-CBASP	3/2	$ \left(\begin{array}{c} 1/3\\ 1/3\\ 1/3 \end{array}\right) $	$\left(\begin{array}{rrr}10.9 & 16.2\\9.3 & 19.4\\12.9 & 15.8\end{array}\right)$	$\left(\begin{array}{rrr}99.3 & 79.7\\110.7 & 55.9\\103.5 & 78.6\end{array}\right)$

Kun, Joelle, Susan Active Learning for Personalizing Treatment

E 99€

Methods Algorithms Experimental Results

Cont'd

Kun, Joelle, Susan Active Learning for Personalizing Treatment

< D > < B > < E > < E >

æ.

Related Work Summary and Future Work

Related Work

RL

- action space is (subpopulation, treatment) pair
- finite horizon (N)
- goal is NOT maximizing cumulative reward
- Budgeted Multi-armed Bandit Problem: optimize a goal function constrained by a time or cost budget
 - pick an arm of a slot machine with maximal payoff
 - design a classifier with minimal prediction risk
 - estimate quantities with minimal variances (GAFS-MAX)

- 4 同 ト 4 回 ト

Related Work Summary and Future Work

Summary

- A minmax bandit model for characterizing the quality of a treatment rule
- Potential in cost saving in comparison with a completely randomized exploration policy.
- Modeling choice. Provide a way to estimate the required total budget *N* in order to provide a high quality treatment rules.
- Other criteria for defining "good" treatment rules.
 - maximal error of confusing suboptimal treatment with the true best treatment for any subpopulation
 - maximal total number of correctly identified "best" treatment
- use electronic medical record to discover biomarkers and recruit patients.