Active Learning for Developing Personalized Treatment

Kun Deng¹ Joelle Pineau² Susan Murphy¹

¹Department of Statistics University of Michigan

²Department of Computer Science McGill University

July 16, 2011

Kun, Joelle, Susan Active Learning for Developing Personalized Treatment

- Methods and Algorithms
 Optimization Criterion 2
- 3 Results and Discussion
 - Experimental Results for Criterion 2
 - Discussion

Basic Problem

A Motivating Example

- Patients are categorized into subpopulations $c_1 \sim c_4$ based on biomarkers. Two treatment actions a_1 and a_2
- An individualized treatment rule (ITR) looks like:

$$\mathcal{O}(c_i) = \begin{cases} a_1 & \text{if } \hat{\mu}_{i1} - \hat{\mu}_{i2} \ge 0 \\ a_2 & \text{if } \hat{\mu}_{i1} - \hat{\mu}_{i2} < 0 \end{cases} \quad \forall i \in \{1, 2, 3, 4\}$$

 $\hat{\mu}_{i}$ are the sample mean responses for subpopulation C_{i}

- An uncertainty measure in the estimated treatment effect: $\operatorname{Var}[\hat{\mu}_{i1} \hat{\mu}_{i2}] = \operatorname{Var}[\hat{\mu}_{i1}] + \operatorname{Var}[\hat{\mu}_{i2}]$ for each *i*.
- A confidence measure in the correctness of the policy: $\Pr[\hat{\mu}_{i1} > \hat{\mu}_{i2}]$, if, say, treatment 1 is the best for all subpopulations.

< D > < P > < P >

Basic Problem

Introduction

- Personalized Medicine/Treatment
 - treat each patient based on his characteristics: patients with different gene biomarker or clinical biomarkers often show differential responses to the same treatment.
 - adapt treatment over time (not covered in this talk)
- Our Goal: collect reliable evidence for medical decision making
 - construct decision rules that are tailored to individual heterogeneity
 - quantify and optimize the quality of these decision rules in terms of their uncertainty, confidence of correctness etc.
 - make better use of limited clinical trial resources: number of people recruited

Cont'd

Current Practice and Discussion

• Recruit from the entire population as patients arrive: patients in the trial roughly reflect their natural composition. A post subgroup analysis is used to derive treatment assignment for subpopulations

Basic Problem

- The results lack power, are difficult to reproduce, because the trial is not powered to detect treatment differences in subpopulations.
- Question: how to intelligently recruit patients from subpopulations in order to construct a more-balanced treatment policy.

< 同 > < ∃ >

Our Approach

Cont'd

- A minimax bandit model that intelligently recruits patient from different subpopulations and assigns them to different treatments
- Two performance criteria in terms of the quality of the treatment policy:
 - (Minimize) the largest variance of the estimated treatment effects among the different subpopulations
 - (Minimize) the probability of selecting suboptimal treatments across the different subpopulations
- Other performance criteria are possible too.

Image: A image: A

Assumptions

 Active treatment period of a patient is short compared to the pace of patient recruitments (i.e. the entire trial)

Basic Problem

- Patient treatment and monitoring are very costly
- The budget for a clinical trial is specified a priori, say *N* subjects maximally

A MiniMax Bandit Problem

- There are C bandits (corresponding to the C subpopulations), each equipped with K arms
- At each time point, we are only allowed to pick one bandit. For that bandit, we need to further decide an arm to pull.
- mean μ_{ij} (corresponding to the primary outcome of action (*i*, *j*)) and variance σ²_{ii}.
- Define some kind of loss, based on our goal of creating good ITRs, we want to control the maximum loss for all subpopulations
- Focus on the loss regarding the confidence of the correctness of the ITRs.

Criterion 2: controlling maximal error probability of selection

Some Definitions

- Assume there is a single best treatment for each subpopulation j^{*}_i
- Define loss for a bandit (subpopulation) i

$$L_i^n = \Pr[\max_{j \neq j^*} \hat{\mu}_{ij} \ge \hat{\mu}_{ij^*}]$$
,

- The overall loss of an active learning policy π : $L^{n}(\pi) = \max_{1 \le i \le C} L_{i}^{n}$
- Aims to control the maximal error of incorrectly selecting a suboptimal treatment for patient of any subpopulations.

Optimization Criterion 2

Cont'd

- L_i has a closed form, but not convex in n_i., neither is max_i L_i.
- First, consider a surrogate oracle algorithm that knows mean/variance

$$\Pr[\max_{j\neq j^*} \hat{\mu}_{ij} \geq \hat{\mu}_{ij^*}] \leq \sum_{j\neq j^*} \Pr\left[\hat{\mu}_{ij} \geq \hat{\mu}_{ij^*}\right] \leq \sum_{j\neq j^*} \frac{\mathbb{V}(\hat{\mu}_{ij} - \hat{\mu}_{ij^*})}{(\mu_{ij} - \mu_{ij^*})^2},$$

surrogate: minimize
$$\max_{i} \sum_{j \neq j^*} \frac{\frac{y}{n_{ij}} + \frac{y^*}{n_{ij^*}}}{(\mu_{ij} - \mu_{ij^*})^2}$$
s.t.
$$\sum_{i} n_{ij} = N.$$

 σ^2

 σ^2

Optimization Criterion 2

• The optimal surrogate oracle allocation is:

$$n_{ij}^* = rac{v_{ij}\sum_j v_{ij}}{\sum_i (\sum_j v_{ij})^2} N,$$

where

Cont'd

$$\begin{cases} \mathsf{v}_{ij}^2 = \frac{1}{(\mu_{ij^*} - \mu_{ij})^2} \sigma_{ij}^2 & j \neq j^* \\ \mathsf{v}_{jj^*}^2 = \sum_{j \neq j^*} \frac{1}{(\mu_{ij^*} - \mu_{ij})^2} \sigma_{ij^*}^2 & j = j^*. \end{cases}$$

• We use $\hat{\sigma}_{ij}$ and $\hat{\mu}_{ij}$ to derive an active learning policy MINIMAXPICS, the next bandit/arm pulled is drawn according to: $\left\{ \frac{\hat{v}_{ij}\sum_{j}\hat{v}_{ij}}{\sum_{i}(\sum_{j}\hat{v}_{ij})^{2}}; i \in \{1,...,C\}, j \in \{1,...,K\} \right\}$.

Experimental Results for Criterion 2

- We evaluate two variants against random sampling/assignment (AARandom)
- MINMAXPICS(SEQ): $\{\hat{v}_{ij}\sum_{j}\hat{v}_{ij}, 1 \le i \le C, 1 \le j \le K\}$
- MINMAXPICS(GRP) selects the next subpopulation: $\{(\sum_{j} \hat{v}_{ij})^2, 1 \le i \le C\}$ and randomly assigns one patient to each subpopulation. Why?

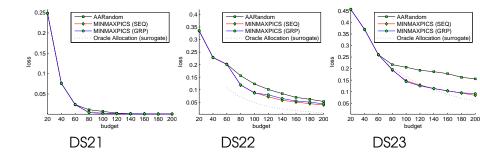
Table: Datasets for the MINMAXPICS comparison

DS	subpop./ treatments	dist.	means	variances	
D\$21	4/3	(25 25 25 25 25	$\begin{pmatrix} 20 & 10 & 10 \\ 20 & 10 & 10 \\ 20 & 10 & 10 \\ 20 & 10 & 10 \\ 20 & 10 & 10 \end{pmatrix}$	50 50 50 50 50 50 50 50 50 50 50 50 50 50 50	
D\$22	4/3	(25 25 25 25 25 25	$\begin{pmatrix} 20 & 19 & 15 \\ 20 & 10 & 10 \\ 20 & 10 & 10 \\ 20 & 10 & 10 \\ 20 & 10 & 10 \end{pmatrix}$	$\begin{pmatrix} 50 & 50 & 50 \\ 50 & 50 & 50 \\ 50 & 50 & 50 \\ 50 & 50 & 50 \\ 50 & 50 & 50 \end{pmatrix}$	
D\$23	5/3	(.05 .05 .3 .3 .3 .3	$\left(\begin{array}{cccc} 20 & 15 & 15 \\ 20 & 15 & 15 \\ \hline 20 & 15 & 15 \\ 20 & 15 & 15 \end{array}\right)$	$\left(\begin{array}{cccc} 50 & 50 & 50 \\ 50 & 50 & 50 \\ \vdots & \vdots & \vdots & \vdots \\ 50 & 50 & 50 \end{array}\right)$	
DS24	8/3	(.125 .125 	(20 15 15 20 10 10 20 10 10	50 50 50 50 50 50 50 50 50	
DS2-CBASP	3/2	$\begin{pmatrix} 1/5 \\ 2/5 \\ 2/5 \end{pmatrix}$	$\begin{pmatrix} 10.9 & 16.2 \\ 9.3 & 19.4 \\ 12.9 & 15.8 \end{pmatrix}$	(99.3 79.7 110.7 55.9 103.5 78.6	
				< □ > < □	▶ < ≣ ▶

Kun, Joelle, Susan Active Learning for Developing Personalized Treatment

Experimental Results for Criterion 2 Discussion

Experimental Results for Criterion 2



< D > < P > < P >

Experimental Results for Criterion 2 Discussion

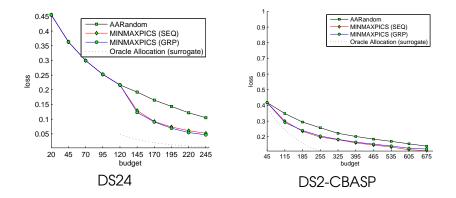
Experimental Results for Criterion 2

Table: Datasets for the MINMAXPICS comparison

DS	DS subpop./ treatments		means	variances	
DS21	4/3	$\begin{pmatrix} 25\\ 25\\ 25\\ 25\\ 25\\ 25 \end{pmatrix}$	$\begin{pmatrix} 20 & 10 & 10 \\ 20 & 10 & 10 \\ 20 & 10 & 10 \\ 20 & 10 & 10 \\ 20 & 10 & 10 \end{pmatrix}$	$\begin{pmatrix} 50 & 50 & 50 \\ 50 & 50 & 50 \\ 50 & 50 & 50 \\ 50 & 50 & 50 \end{pmatrix}$	
D\$22	4/3	$\begin{pmatrix} 25\\ 25\\ 25\\ 25\\ 25\\ 25 \end{pmatrix}$	$\begin{pmatrix} 20 & 19 & 15 \\ 20 & 10 & 10 \\ 20 & 10 & 10 \\ 20 & 10 & 10 \end{pmatrix}$	$\begin{pmatrix} 50 & 50 & 50 \\ 50 & 50 & 50 \\ 50 & 50 & 50 \\ 50 & 50 & 50 \end{pmatrix}$	
D\$23	5/3	(105 105 13 13 13	$\left(\begin{array}{cccc} 20 & 15 & 15 \\ 20 & 15 & 15 \\ & & \\ 20 & 15 & 15 \end{array}\right)$	$\left(\begin{array}{cccc} 50 & 50 & 50 \\ 50 & 50 & 50 \\ & & \\ 50 & 50 & 50 \end{array}\right)$	
DS24	8/3	(125 .125 .125	(20 15 15 20 10 10 20 10 10	(50 50 50 50 50 50 50 50 50 50 50 50 50 50 50	
DS2-CBASP	3/2	$\begin{pmatrix} 1/5 \\ 2/5 \\ 2/5 \end{pmatrix}$	(10.9 16.2 9.3 19.4 12.9 15.8	(99.3 79.7 110.7 55.9 103.5 78.6	

Experimental Results for Criterion 2 Discussion

Experimental Results for Criterion 2



Kun, Joelle, Susan Active Learning for Developing Personalized Treatment

Experimental Results for Criterion 2 Discussion

Related Work

RL

- action space is (subpopulation, treatment) pair
- finite horizon (N)
- goal is NOT maximizing cumulative reward
- Budgeted Multi-armed Bandit Problem: optimize a goal function constrained by a time or cost budget
 - pick an arm of a slot machine with maximal payoff
 - design a classifier with minimal prediction risk
 - estimate quantities with minimal variances (GAFS-MAX, Antos et al, 2008)

Experimental Results for Criterion 2 Discussion

Summary

- A minmax bandit model for characterizing the quality of a treatment rule
- Potential in cost saving in comparsion with a completely randomized exploration policy.
- Optimization Criteria
 - Why "max" or "uniformly good"? computational issue, patient/clinician's perspective.
 - What if there exist several equally good treatments?
 - output one treatment per subpopulation, minimize maximal error of choosing δ -bad treatment for prespecified δ
 - allow output multiple treatments per subpopulation, minimize maximal error of failing to exclude a "bad" treatment

Experimental Results for Criterion 2 Discussion

Summary Cont'd

- Modeling choice. Bandit with covariate model, contextual bandits? How to quantify the quality of treatment rules for treating a particular patient?
- Provide a way to estimate the required total budget *N* in order to provide a high quality treatment rules.
- use electronic medical record to discover biomarkers and recruit patients.