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Abstract—In active learning, where a learning algorithm
has to purchase the labels of its training examples, it is
often assumed that there is only one labeler available to label
examples, and that this labeler is noise-free. In reality, it
is possible that there are multiple labelers available (such
as human labelers in the online annotation tool Amazon
Mechanical Turk) and that each such labeler has a different
cost and accuracy. We address the active learning problem with
multiple labelers where each labeler has a different (known)
cost and a different (unknown) accuracy. Our approach uses
the idea of adjusted cost, which allows labelers with different
costs and accuracies to be directly compared. This allows
our algorithm to find low-cost combinations of labelers that
result in high-accuracy labelings of instances. Our algorithm
further reduces costs by pruning under-performing labelers
from the set under consideration, and by halting the process
of estimating the accuracy of the labelers as early as it can.
We found that our algorithm often outperforms, and is always
competitive with, other algorithms in the literature.

Keywords-active learning; multiple labelers; noisy labelers;
algorithms; adjusted cost

I. INTRODUCTION

In active learning, it is assumed that unlabeled data is

easy to obtain but labels are expensive. For example, when

building a speech recognizer, it is easy to get raw speech

samples, but labeling the samples is a tedious process in

which a human must examine the speech signal and carefully

segment it into phonemes. Therefore, a subset of instances

is carefully chosen to be labeled by a labeler, and the

remaining instances remain unlabeled. The goal is to learn

a classifier by labeling as few instances as possible by

actively selecting the instances to be labeled as learning

proceeds. Many results in active learning focus on choosing

the instances for labeling and assume that the labeling is

handled by a single, noise-free labeler [1], [2], [3]. However,

it is possible that there is no perfect labeler and that instead

multiple, noisy labelers are available. For example, consider

the aforementioned speech recognition application. It is

difficult to guarantee 100% accuracy from a human labeler,

due to the wide variations in how we interpret speech signals.

However, one may easily have access to multiple human

labelers, each with a different cost.

Another example of multiple noisy labelers is the online

annotation tool Amazon Mechanical Turk (AMT) [4]. AMT

requesters submit human intelligence tasks (HITs) to the

site. A HIT is a task that is simple for humans but may

be difficult to automate. Examples include: draw an outline

around a human in a given picture, solve an optical character

recognition task, etc. For their efforts, AMT workers are paid

a fee, based on how many data items they label. Certainly,

in the AMT model, one cannot guarantee noise-free labels

from any human labelers, and in fact, depending on the task,

noise rates may vary considerably. Finally, while requesters

who submit the HITs set the pay rates, it is not conceptually

difficult to extend the AMT idea to that of a marketplace in

which the workers (labelers) would bid on jobs, using strong

on-line ratings to justify higher costs. Such a marketplace

would have variance both in cost and in quality of labelers.

We refer to this model as active learning with multiple

noisy labelers, where the goal is to learn a hypothesis that

generalizes well while spending as little as possible on

queries to labelers. We will assume that the label given by

labeler oi for a particular instance will be the true label,

corrupted by noise with probability ηi < 1/2, which is

oi’s noise rate. We assume that the noise model is an i.i.d.

process, where the independence is across labelers (one

labeler’s label of instance x is not influenced by the label

issued by any other labeler for x) and across instances (a

labeler’s label for instance x is independent of the label it

issued for instance x′, which it saw earlier). Finally, we

assume that each labeler’s noise model is persistent in that

if labeler oi labels instance x as class y at some point in

the run of the algorithm, then it will always answer y as its

label for x. Thus, there is no more information to be had by

asking a labeler to label the same instance multiple times.

Note that there is no hard budget in our problem definition.

Instead, the goal in our model is to simply spend as little as

possible while generalizing well.

Sheng et al. [5] show that when labelers provide noisy

labels under the persistent noise model, one can still estimate

well the true labels of instances by requesting labels on

a single instance from multiple, independent labelers. The

idea is that, if all labeler responses are independent from

each other and all noise rates are < 1/2, then a majority

vote from an appropriate subset of the labelers can be

very effective. (We extend this concept into part of our

2010 IEEE International Conference on Data Mining

1550-4786/10 $26.00 © 2010 IEEE

DOI 10.1109/ICDM.2010.147

639



algorithm: the notion of combined accuracy of a group of

labelers.) However, in their work they assume that all the

labelers have the same costs and noise rates. Donmez et

al. [6] relaxed this assumption and assumed that labelers

can have different, unknown accuracies. They proposed a

method called IEThresh for active learning with multiple

noisy labelers with different accuracies.

Briefly, IEThresh works as follows: First, the algorithm

chooses an instance for labeling. Then it compares the

relative performance of the labelers so far (via interval

estimation learning [7]) to choose what it believes to be the

most accurate labelers to label the chosen instance. Next,

it estimates the “ground truth” (true label) of the instance

by a majority vote of these chosen labelers. At that point

it updates its classifier based on the newly labeled training

instance. Finally, it updates its estimate of each labeler’s

accuracy, and repeats the process.

Contrasting IEThresh to the naı̈ve approach of simply

having every labeler label every instance and then taking a

majority vote (what is sometimes called “repeated labeling”

in the literature and what we refer to as “Repeated” in our

experimental section), the advantage of IEThresh is obvious.

The execution of IEThresh excludes labelers believed to be

inferior, which saves total cost over Repeated. However,

while effective, IEThresh does not consider the possibility

that one can further save labeling cost when many accurate

labelers exist by further pruning the set of labelers used. Our

new algorithm IEAdjCost overcomes this shortcoming.

The intuition behind IEAdjCost is that we “normalize” the

accuracies of labelers with respect to their costs, allowing for

direct comparison between labelers. Then, rather than simply

identifying the most accurate labelers, our algorithm instead

seeks a subset of labelers that, when combined, achieves the

desired level of accuracy for the least cost.

IEAdjCost works in two phases. In Phase 1, it uses

higher accuracy labelers to predict the ground truth by

majority vote, and it stops estimating labeler accuracy when

it has a sufficiently large set of labelers with good accuracy

estimates. In Phase 2, a heuristic finds a subset of the labelers

with good accuracy estimates that, when used together, has

high accuracy and low cost. This subset is what is used from

that point forward for labeling requests.

Thus, in Phase 1, there exist both exploration (estimat-

ing the accuracies of labelers) and exploitation (estimating

ground truth by using only subset of labelers believed to

be most accurate). In Phase 2, there is no exploration

and IEAdjCost chooses a final set of labelers that, when

combined, is believed to have high accuracy and low cost.

(In Phase 2, we stop refining the accuracy estimates of the

labelers since by definition of the algorithm we already

have sufficiently good estimates for our purposes and further

refinement would be an unnecessary expense.)

Another drawback of Donmez et al.’s IEThresh is that

it ignores the possibility that labelers can have different

costs. In reality, there could be high variance in the costs

of available labelers, and it may be the case that the costs

may not even correlate with accuracy (expensive label-

ers may not necessarily be highly accurate). But even in

cases where cost correlates with accuracy, it is possible

that multiple inexpensive labelers, when used together in

a voting scheme, may have a greater accuracy than one

highly expensive labeler. For these reasons, active learning

with multiple labelers, when both cost and accuracy vary,

is a more complex problem than the case of identical costs,

as addressed by IEThresh. Thus we introduce the notions

of adjusted cost and combined accuracy that allow us to

directly compare labelers with different costs and accuracies.

Combined accuracy gives us the probability that a group of

independent labelers will make a labeling mistake when the

label is found by a majority vote within that group. The

adjusted cost of labeler oj is the cost of oj multiplied by

the number of independent copies1 of oj needed to achieve

a particular combined accuracy.

In Phase 2, we take a set of labelers who have their

accuracies estimated well and select a subset of them with

low total cost and high combined accuracy. We propose a

heuristic called LabelersByAdjCost to solve this problem.

LabelersByAdjCost first sorts the given labelers by their

adjusted costs in ascending order, and then grows the final

set of labelers in the order of increasing adjusted cost until

the combined accuracy of the group exceeds a threshold.

This rest of the paper is organized as follows. Section II

describes related work. Section III presents our new al-

gorithm IEAdjCost. Our experiments are summarized in

Section IV, comparing our algorithm IEAdjCost to Repeated

and IEThresh on six data sets from UCI [8] and two data

sets from AMT [4], [9]. We conclude in Section V.

II. RELATED WORK

One of the primary objectives of engineering machine

learning systems is to reduce the expense of human effort.

Ironically, in many applications, significant amounts of hu-

man labor and time are still spent in preparing high-quality

data in order to build such intelligent systems.

If we treat data preparation as an independent “post-

processing” step after the data is initially collected, one way

of utilizing incomplete, noisy or erroneous labeling sources

without manual intervention is to infer the truth. The EM

algorithm of Dempster et al. [10] is a popular procedure for

finding maximum likelihood estimates of parameters where

the model depends on unobserved latent variables. Dawid

and Skene [11] proposed using EM to improve the quality of

simple majority voting by experts in the biostatistics commu-

nity. They showed that by using EM, one can better estimate

the ground truth and therefore the accuracies of each expert.

1This is purely hypothetical. In the persistent noise model, using the
same labeler repeatedly on a single instance yields no new information.
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Smyth et al. [12] took advantage of the EM algorithm for the

application of a large-scale image analysis problem. They

studied the problem of inferring volcano types based on

labelings from multiple labelers. The EM algorithm was

applied to estimate the conditional distribution of a volcano’s

type given noisy labels. This information was then used as

the ground truth to learn a classifier.

Sheng et al. [5] studied the problem of acquisition of

labels from multiple imperfect labelers, and one of their

conclusions was that repeated labeling (getting an instance’s

label once from each of several labelers) is often preferable

to single labeling (getting an instance’s label once from a

single labeler), even when labels are not particularly cheap.

In another study in the natural language processing domain,

Snow et al. [9] concluded that multiple cheap labelers can

be preferable to a single expert. They also proposed a bias

correction technique by checking the labelers’ performance

on the “gold standard” (true labels) in order to fine tune each

labeler’s relative weight. By doing experiments on five tasks

from the Amazon Mechanical Turk system [4], they showed

that significant improvements in annotation quality can be

achieved at a fraction of the usual expense. In the medical

domain, where an expert’s performance is usually described

by the trade-off of sensitivity and specificity, another study

by Raykar et al. [13] showed a significant advantage of

combining the opinions of multiple experts when training

a logistic regression classifier.

Donmez and Garbonell [14] provided a decision-theoretic

framework to select labelers and instances in an active

learning setting. However, their algorithms required at least

one labeler to be noise-free and able to answer all queries.

They studied scenarios where (1) one labeler answers every

query and is noise-free and the other is noise-free but

declines to answer some queries; (2) both labelers answer all

queries, one noise-free and one noisy; and (3) both labelers

answer all queries without noise, but one labeler has a fixed

cost per query and the other labeler’s cost depends on the

instance’s class posterior probability.

Finally, Donmez et al. [6] extended Donmez and Gar-

bonell’s work to remove the limitations that there are only

two labelers and that one labeler must be perfect. They

proposed a method called IEThresh that takes multiple noisy

labelers and chooses those labelers with high accuracy to

both save cost and improve accuracy. They studied active

learning in the case of multiple noisy labelers with identical

costs. Their method assumes that each labeler’s accuracy

is strictly better than random guessing, which implies that

majority voting will, in expectation, yield correct labels.

They reduced the cost of labeling by filtering out labelers

that are not as good as the others.

Donmez et al.’s work can be improved in two ways. First,

after estimating the accuracies of the labelers, one doesn’t

need to select all of those that are highly accurate. Instead,

one only needs to choose enough such labelers to achieve

the desired rate of combined accuracy when using majority

voting. Second, instead of assuming that all labelers have

identical costs, labelers with different costs and accuracies

should be directly compared, and the goal should be to

choose a set of labelers whose combined accuracy is high

but total cost is low. Our algorithm IEAdjCost makes both of

these improvements. IEAdjCost will avoid selecting labelers,

even if they are accurate, if they are expensive and not

needed to achieve the required combined accuracy.

III. ALGORITHM IEADJCOST

In this section, Section III-A introduces notation. Sec-

tion III-B summarizes the principle of uncertainty sam-

pling [15], [1] used in IEAdjCost to choose instances to

label. In Section III-C, we review interval estimation [7],

which is what we use to estimate the accuracies of the

labelers, and we describe the various subsets of labelers that

we use in our algorithm and their roles. Section III-D defines

our concepts of combined accuracy and adjusted cost, which

are used by our heuristic LabelersByAdjCost (Section III-E)

that finds a final set of labelers with high accuracy and low

cost, to be used in Phase 2. Finally, Section III-F puts the

pieces together into the full algorithm IEAdjCost.

A. Notation

We consider the problem of supervised classification for

which a training set {(x1, y1), · · · , (xn, yn)} is used to

induce a classifier, where {x1, · · · , xn} = X is the set of

instances and {y1, · · · , yn} = Y is the set of labels. We

assume that the instances xi are given, while the labels yi
are only obtained by purchasing them from one or more

labelers from the set O = {o1, . . . , oN}. (For convenience,

we will partition X into U and L, where U is the set of

instances for which a label has not yet been purchased, and

L is the set of labeled instances.2) The cost of purchasing a

label from labeler oi ∈ O is ci and the label returned by oi is

correct with probability ai = 1− ηi (labeler oi’s accuracy).

We denote by âi our algorithm’s estimate of this accuracy.

B. Selecting Instances

In each iteration of our algorithm, the first step is to

choose an unlabeled instance x∗ ∈ U for labeling. Our

algorithm chooses the instance to label via uncertainty

sampling [15], [1], in which one chooses the unlabeled

instance for which the current hypothesis is least certain

in its classification. Specifically, if P̂ (y | x) is the current

hypothesis’s estimate of the probability that instance x has

label y, then the instance selected for labeling is

x∗ = argmax
x∈U

(

1−max
y∈Y

P̂ (y | x)
)

. (1)

2The actual label that goes to L is explained in Algorithm 3.
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C. Estimating Labeler Accuracy

Our algorithm IEAdjCost consists of two phases. Phase 1

is the exploration and exploitation phase and Phase 2 is the

pure exploitation phase. In Phase 1, IEAdjCost purchases la-

bels from many labelers (exploration) while simultaneously

using the labels offered by a select subset of labelers to train

the classifier (exploitation). In Phase 2, IEAdjCost selects a

final subset of labelers to label training data.

To estimate the accuracies of the labelers, we adapt the

procedure of interval estimation from Kaelbling [7], which

was also applied by Donmez et al. [6]. Our algorithm

estimates the accuracy ai of labeler oi by asking oi to label

several instances from U and giving that labeler a reward of

1 for each instance that it labels correctly, and a reward of 0

otherwise. Then our estimate âi of ai is the sample mean of

the rewards that oi received. We also compute ŝi, the sample

standard deviation. We then compute the upper interval (UIi)

and lower interval (LIi) of an (α/2)-level confidence interval

centered on âi:

UIi = âi + t
(ni−1)
α/2

ŝi√
ni

(2)

LIi = âi − t
(ni−1)
α/2

ŝi√
ni

, (3)

where ni is the number of rewards (of value 0 or 1) given

to labeler oi (i.e., the number of values used to compute

âi and ŝi), and tni−1
α/2 is the critical value for the Student’s

t distribution with ni − 1 degrees of freedom at the α/2
confidence level. In our experiments, we set α = 0.05. Since

the true labels of instances are unavailable, we estimate

the true labels by a majority vote of a select subset of the

labelers, which we describe later. To avoid trivialities in the

formulas, we initialize each labeler’s set of rewards to be

{0, 1}.

The first step of Phase 1 is for IEAdjCost to determine

which subset of labelers will have their accuracy estimates

refined. IEAdjCost uses a parameter λ (in our experiments,

we tried λ ∈ {0.01, 0.25, 0.5, 0.75, 1}) that specifies the

fraction of labelers from O that must be explored. Define

rank(oi) = 1 + |{oj ∈ O : UIj > UIi}|

as 1 plus the number of labelers in O that have a larger

upper interval as labeler oi, i.e. it is oi’s rank in a partial

ordering of the labelers based on upper interval. Now we

define the set of labelers whose accuracy estimates will be

refined:

Oℓ = {ok ∈ O : rank(ok) ≤ ⌈λ|O|⌉} −Og , (4)

where Og is the set of labelers that have sufficiently good

estimates of their accuracies (see below).

To estimate the accuracies of labelers in Oℓ, we need

an estimate of the correct label of the instance x∗. This is

O1

O2

O3

O4

O5

O6

O7

Oℓ

Or

O1

O2

O3

Og

Of

Figure 1. An example of the relationship among Oℓ, Or , Og , and Of

in Phase 1.

computed by taking a majority vote of a separate set of

labelers, which we denote Or:

Or =

{

oi : UIi ≥ ǫmax
oj∈O

UIj

}

, (5)

where ǫ ∈ [0, 1] is a parameter (in our experiments, we

tried ǫ ∈ {0.7, 0.8, 0.9}). Thus in each iteration in Phase 1,

IEAdjCost requests labels of the chosen instance from the

labelers in Oℓ ∪ Or. From the results of the labelings, we

can update the rewards for each labeler oi ∈ Oℓ, and then

update UIi and LIi. (Since it doesn’t cost any more, we also

update UI and LI of labelers in Or −Oℓ.)

Once a labeler’s accuracy is well-estimated, we put it in:

Og = {oi ∈ O : UIi − LIi ≤ δ} . (6)

(We tried δ ∈ {0.2, 0.3, 0.4}.) Phase 1 ends when |Og| ≥
⌈λ|O|⌉ and function LabelersByAdjCost(Og) returns a non-

empty set (Section III-E).

Figure 1 shows an example of the relationship among Oℓ,

Or, Og , and Of . To summarize, Oℓ is the set of labelers

whose accuracy estimates we are refining, Or is the set of

high-accuracy labelers that are used to predict the ground

truth, Og is the set of labelers whose accuracies are well-

estimated, and Of is the set of final chosen labelers (see

Section III-E).

D. Combined Accuracy and Adjusted Cost

Once Og is sufficiently large, we switch to Phase 2, the

pure exploitation phase. In this phase, a fixed set of labelers

is chosen to label all future instances that are added to

the labeled training set L. (We no longer refine accuracy

estimates in Phase 2 because we already have sufficiently

good estimates, and continuing to do so only incurs more
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cost.) Ideally, we want to choose labelers that together are

highly accurate and individually are inexpensive to query. In

our process to find such a set of labelers, we use quantities

that we call combined accuracy and adjusted cost.

The notion of combined accuracy of a set O′ of labelers

is based on the idea that, when taking a majority vote of the

labelers in O′, we only need at least half of the labelers to

correctly label the instance. The combined accuracy of O′ =
{o1, . . . , ok} is the probability that this occurs. Of course,

the true accuracies ai are unavailable, so we compute Â, our

estimate of A, by substituting our estimated accuracies for

the true ones:

Â(o1, . . . , ok) =

∑

{i1,··· ,ik′}⊆{1,··· ,k}:

k′>k/2





k′

∏

j=1

âij
∏

ℓ 6∈{i1,...,ik′}

(1− âiℓ)



 . (7)

In other words, for every subset of O′ that contains a ma-

jority of the labelers in O′, the products are the probability

that that majority subset will correctly label the instance.

Summing over all such subsets, we get the probability that

some majority subset will correctly label the instance.

Using combined accuracy, we can now define the adjusted

cost of a labeler, which quantifies its cost/accuracy tradeoff.

Central to the concept of the adjusted cost of labeler oi is its

multiplier βi(R), which is the number of copies of oi (in a

hypothetical non-persistent noise model) needed to achieve

a combined estimated accuracy of at least R. I.e., βi(R) is

the minimum value of k such that3

Â(

k
︷ ︸︸ ︷
oi, . . . , oi) ≥ R .

(Since we assume that R is fixed ahead of time as a

parameter, for brevity’s sake we will omit it from now on

and just refer to oi’s multiplier as βi.) We can now define

the adjusted cost of oi in terms of its multiplier:

AdjustedCost(oi) = ciβi . (8)

E. Choosing the Final Set of Labelers

Given a set Og ⊆ O of distinct labelers whose accuracies

are well-estimated, we want to choose a final subset Of ⊆
Og to use in Phase 2. The subset we seek is one that achieves

a minimum combined accuracy of R whose combined costs

are minimized:

Of = argmin
S⊆Og :Â(S)≥R

C(S) , (9)

where C(S) =
∑

oj∈S cj is the combined cost of S.

To solve this optimization problem, we employ the heuris-

tic LabelersByAdjCost, which first sorts the labelers in Og in

ascending order by their adjusted costs, breaking ties by their

3In Section III-E, we describe how to compute βi.

estimated accuracies. Then it adds the labelers one at a time

to Og in sorted order, stopping when the combined accuracy

of the labelers in Og exceeds the threshold R. Pseudocode

for this routine is in Algorithm 1.

Algorithm 1 LabelersByAdjCost(o1, . . . , oN )

1: Compute adjusted cost for each labeler per Equation (8);

2: Sort the labelers in ascending order by their adjusted

costs (breaking ties by their accuracies in descending

order), yielding {or1 , . . . , orN } ;

3: for i from 1 to N do

4: Let O′ = {or1 , . . . , ori} ;

5: Sort the labelers of O′ by their accuracies in descend-

ing order (breaking ties by their costs in ascending

order), yielding {oz1 , . . . , ozi} ;

6: for j from 1 to i do

7: if CombAccuReachesThres(oz1 , . . . , ozj , R) then

8: return {oz1 , . . . , ozj} ;

9: end if

10: end for

11: end for

12: return ∅ ;

Algorithm 2 CombAccuReachesThres(oz1 , . . . , ozj , R)

1: m = |{oz1 , . . . , ozj}| ;

2: if m ≤ N0 then

3: compute the combined accuracy Â of oz1 , . . . , ozj per

Equation (7), stop early if Â ≥ R ;

4: if Â ≥ R then

5: return true ;

6: else

7: return false ;

8: end if

9: else

10: if m ≥ maxoi∈{oz1 ,...,ozj }
βi then

11: return true ;

12: else

13: return false ;

14: end if

15: end if

In Algorithm 1, we use combined accuracy to determine

each labeler’s multiplier to compute its adjusted cost, and

to compute the combined accuracy of candidate Of sets.

Below we describe methods we use to perform each task

while mitigating the intractability of of Equation (7).

There is a simple means to find the multiplier of a labeler

with an accuracy estimate of â that leverages the fact that all

the accuracies in the hypothetical collection are equal. Since

the left-hand side of the following expression is monotonic

in M , we simply perform a binary search to find the smallest
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value of M such that the following expression holds:

⌈M
2
⌉−1

∑

i=0

(
M

i

)

âM−i(1− â)i ≥ R .

Further, for fixed R, the multiplier for accuracy estimate

â never changes, so we in fact precompute the multipliers

for each value of â ∈ {0.51, 0.52, . . . , 0.99, 1.00}.

For example, if R = 0.95, then labelers with

accuracies 0.8, 0.81, . . . , 0.99 will have multipliers

7, 7, 5, 5, 5, 5, 5, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1.

When building the set Of in Algorithm 1, iteration i of

the loop of Lines 3–11 considers the i labelers in Og that

have the lowest adjusted costs. Call this set O′. Since we

do not need to know O′’s exact combined accuracy, but

only whether it exceeds R, Line 7 of Algorithm 1 calls

CombAccuReachesThres (Algorithm 2) to determine if O′ is

acceptable to become Of . For increased efficiency, calls to

CombAccuReachesThres are on sets that contain the most

accurate labelers from O′ (Lines 5–10), which will more

quickly return a true answer if one is possible4.

CombAccuReachesThres computes the combined accu-

racy using Equation (7) if the number of labelers m ≤ N0,

a parameter that we set to 20 in our experiments, though

the computation does stop early once the value exceeds R.

If instead m > N0, then to improve efficiency, we instead

employ the heuristic that returns true if m is at least as large

as the largest multiplier in the set of labelers, and false
otherwise.

If multipliers are precomputed, then Algorithm 2 has time

complexity O(m + N02
N0−1). In Algorithm 1, sorting the

labelers in Line 2 takes O(N logN) time. In iteration i of

the for loop, adding labeler ori to the already sorted list in

Line 5 takes O(log i) time, and iteration j of the inner for

loop takes time O(j+N02
N0−1). Summing over both loops

yields a time complexity of O(N3 +N2N02
N0−1).

F. Algorithm IEAdjCost

Pseudocode for our main algorithm IEAdjCost is given

in Algorithm 3. The parameter λ ∈ (0, 1] used on Lines 5

and 12 specifies the minimum value of |Og|/|O|, i.e. the

minimum fraction of original labelers that need to have well-

estimated accuracies. Thus λ = 1/|O| means that we merely

insist on at least one labeler in O to have an accuracy that

we estimate well, where λ = 1 means that we insist that we

have good estimates of the accuracies of all labelers.

IV. EXPERIMENTS

We tested IEAdjCost on six data sets from the Uni-

versity of California-Irvine (UCI) repository [8] and two

4Note that this efficiency optimization does not necessarily return the
subset with smallest adjusted costs since it doesn’t return a prefix of O′,
but we expect the set returned to still have low total cost, since what it
returns is a subset of O′, which consists of the i labelers with lowest
adjusted costs.

Algorithm 3 IEAdjCost

1: Og = ∅;

2: Phase 1: Initialize rewards for each labeler to {0, 1} ;

3: Compute the upper and lower confidence interval for

each labeler per Equations (2) and (3) ;

4: Pick the most uncertain unlabeled instance x∗ for label-

ing per Equation (1) ;

5: Build Oℓ per Equation (4) and Or per Equation (5) ;

6: Purchase labels for x∗ from all labelers in Oℓ ∪Or ;

7: Estimate the ground truth ȳ of x∗ using majority voting

of labelers in Or ;

8: Update the labeled training data L = L ∪ (x∗, ȳ) and

train a new classifier with L ;

9: Update the rewards of all labelers in Oℓ ∪Or ;

10: Compute the upper and lower confidence interval for

each labeler per Equations (2) and (3) ;

11: Compute the set Og of well-estimated labelers per

Equation (6) ;

12: if |Og| ≥ ⌈λ|O|⌉ and Of = LabelersByAdjCost(Og) 6=
∅ then

13: GOTO Step 17 ;

14: else

15: GOTO Step 4 ;

16: end if

17: Phase 2: Use Of to label future instances, add them to

L, and train classifier until training complete ;

data sets from Amazon Mechanical Turk (AMT) [4], [9].

Section IV-A shows the results of comparing IEAdjCost with

IEThresh and Repeated on the UCI data, and Section IV-B

presents results for the same algorithms on the AMT data.

A. Experimental Results on UCI Data Sets

Table I describes the six UCI data sets we tested

on: kr-vs-kp, mushroom, car, splice, nursery, and

spambase. Data sets car, splice, and nursery are

multiclass, but for simplicity we converted them to

binary by using partitioning into two classes as done by

Rätsch et al. [16]. Data set spambase had continuous

attributes, which we discretized using the package

weka.filters.supervised.attribute.Discretize

from Weka [17].

We repeated the following procedure 10 times for each

data set. First, we partitioned the data set into 80% training

data and 20% test data. Then as an initialization step, at

the start of each run we pre-labeled one randomly selected

training instance with its correct label, moved that labeled

instance from U to L, and trained the initial naı̈ve Bayes

classifier on L. As more points were added to L on Lines 17

and 8 in Algorithm 3, the naı̈ve Bayes classifier was updated.

Each time labeler oi was asked to label an instance, it

returned the true label from the data set with probability

ai = 1 − ηi and the opposite label with probability ηi. We
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set the parameter R = 0.95 and ran each algorithm until

it purchased 600 instances. This allowed us to witness the

asymptotic behavior of each algorithm.

Table I
UCI DATA SETS.

Number of
Data set Instances Attributes

kr-vs-kp 3196 35
mushroom 8124 22
car 1728 4
nursery 12960 8
splice 3190 62
spambase 4601 57

1) Uniform Accuracies: In our first set of experiments,

we repeated the following process five times. We instantiated

50 labelers, the accuracies of which were randomly chosen

from (0.5, 1], and the costs of which were randomly chosen

from {1, . . . , 30}. We tested our new algorithm IEAdjCost

with λ ∈ {0.02, 0.25, 0.5, 0.75, 1}, ǫ = 0.8, and δ = 0.3. We

compared its results to those from IEThresh with ǫ = 0.8
and Repeated on the six UCI data sets. For each collection

of labelers, we ran 10 separate test/training combinations as

described earlier. Thus we ended up with five sets of curves

(one per set of 50 labelers), each an average of 10 runs of

the algorithms.

Figure 2 shows5, for data set kr-vs-kp, the cost required

to reach a particular classification accuracy for each of

the algorithms (“Baseline” is the classification accuracy of

training a naı̈ve Bayes classifier on the entire training set

with all labels correctly specified). From the figure, we

can see that IEAdjCost with λ ≤ 0.5 requires significantly

less cost to achieve high classification accuracies than the

other algorithms. IEAdjCost with λ = 0.75 matched the

performance of IEThresh, except for data sets splice and

nursery (not shown), where it had an advantage. Repeated

was the worst performer of all algorithms on all data sets.

The figure shows how much cost is incurred by each

algorithm to achieve a certain accuracy. To instead consider

how well each method can perform under a fixed budget,

we noted the minimum cost across all algorithms required

to achieve the baseline accuracy. (For each dataset, this was

achieved by IEAdjCost with λ = 0.02.) Table II reports

this number for each dataset, along with each algorithm’s

accuracy from spending only that budget.

We found that, at the specified budget levels, the per-

formance improvement of IEAdjCost with λ = 0.02 over

all other algorithms (including λ = 0.25) is statistically

significant at the p < 0.01 level for kr-vs-kp and mushroom,

at the p < 0.0001 level for car and nursery, at the p < 0.03
level for splice, and at the p < 0.04 level for spambase.

5We got similar results for all five sets of curves from the five sets of
labelers, so we just present one such set in the figure. We also saw similar
results across all UCI data sets.

IEAdjCost with λ = 0.25 outperformed all algorithms

except IEAdjCost with λ = 0.02 at the p < 0.0001 level

for splice, and at the p < 0.1 level for kr-vs-kp.

In results not shown, we also set ǫ = 0.7 and ǫ = 0.9, and

found that each algorithm’s performance was very similar.

Again, the advantages of IEAdjCost over IEThresh and

Repeated still exist. In other results not shown, we set

δ = 0.2 and δ = 0.4. We found that increasing δ to 0.4

improved IEAdjCost’s performance for all values of λ, and

decreasing it to 0.2 made it worse. Future work is to further

tune δ to see how much more performance improvement we

can achieve, perhaps dynamically choosing its value.

Looking at Figure 2 and Table II, one might assume that

smaller values of λ will always yield superior results. That

is not necessarily the case. Since λ determines what fraction

of all the labelers are considered at each stage, the following

guidelines apply to setting its value.

1) If one believes that there exists a labeler that is cheap

and has high accuracy, then the smaller the λ value

is, the more cost one can save on exploring. In our

experiments of this section, it is the case that some

highly accurate labelers have low cost. As expected,

low values of λ yielded high-accuracy classifiers at a

lower cost than larger values of λ.

2) If one believes that the only highly accurate labelers

are expensive, then increasing λ will allow our al-

gorithm to consider cheaper alternatives, which when

taken collectively will perform as well as the expensive

labelers but for less cost. Figure 3 shows an experi-

ment in which 4 labelers had accuracy 0.8 and cost

100, and 46 labelers had accuracy 0.7 and cost 1.

In this case, IEAdjCost with λ = 0.25 (instead of

λ = 0.02) performs the best. Note that sometimes

although a bigger λ can find cheaper labelers, it costs

more to find such a combination of cheaper labelers.

In conclusion, all algorithms achieved the baseline accu-

racy eventually, but some required significantly more cost to

do so6. When the fifty labeler costs and labeler accuracies are

chosen uniformly at random from {1, . . . , 30} and (0.5, 1],
respectively, then our algorithms clearly required less cost

to achieve high classification accuracies than IEThresh and

Repeated. Varying ǫ did not seem to affect the results very

much, though larger values of δ did improve our algorithms’

performance somewhat.

2) Nonuniform Accuracies: In the second set of experi-

ments, we again used 50 labelers, but designated a certain

subset of them to be “good” labelers and the remainder to be

“bad” labelers. The accuracies of the good labelers were ran-

domly chosen from [0.8, 1] while the accuracies of the bad

labelers were randomly chosen from (0.5, 0.7]. The number

of good labelers varied from the set {10, 20, 30, 40, 50}. As

6The number of instances labeled by each algorithm were roughly the
same across all experiments; cost was the only thing that varied.
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Table II
CLASSIFICATION ACCURACY AFTER SPENDING A LIMITED BUDGET, USING 50 LABELERS, EACH WITH A COST FROM {1, . . . , 30} AND ACCURACY

FROM (0.5, 1]. R = 0.95, δ = 0.3 AND ǫ = 0.8. Boldface INDICATES A STATISTICALLY SIGNIFICANT ADVANTAGE OF λ = 0.02 OVER ALL OTHER

ALGORITHMS. Italics INDICATES A STATISTICALLY SIGNIFICANT ADVANTAGE OF λ = 0.25 OVER ALL ALGORITHMS EXCEPT λ = 0.02.

Budget Classification Accuracy

IEAdjCost IEThresh Repeated

λ = 0.02 λ = 0.25 λ = 0.5 λ = 0.75 λ = 1
kr-vs-kp 10038 0.88 0.76 0.68 0.68 0.67 0.68 0.67

mushroom 9219 0.95 0.9 0.89 0.89 0.87 0.89 0.87

car 11719 0.94 0.75 0.75 0.75 0.74 0.75 0.74

splice 13418 0.92 0.85 0.69 0.69 0.67 0.69 0.67

nursery 10897 0.91 0.74 0.73 0.73 0.71 0.73 0.71

spambase 9259 0.90 0.87 0.87 0.87 0.86 0.87 0.86

Table III
CLASSIFICATION ACCURACY AFTER SPENDING A LIMITED BUDGET, USING 50 LABELERS, EACH WITH A COST FROM {1, . . . , 30}. EACH GOOD

LABELER HAS AN ACCURACY FROM [0.8, 1] AND EACH BAD LABELER HAS AN ACCURACY FROM (0.5, 0.7]. R = 0.95, δ = 0.3 AND ǫ = 0.8. Boldface

INDICATES A STATISTICALLY SIGNIFICANT ADVANTAGE OF λ = 0.02 OVER ALL OTHER ALGORITHMS EXCEPT FOR λ = 0.25 FOR 40 AND 50
LABELERS. Italics INDICATES A STATISTICALLY SIGNIFICANT ADVANTAGE OF λ = 0.25 OVER ALL ALGORITHMS EXCEPT λ = 0.02.

# Good Labelers Budget Classification Accuracy

IEAdjCost IEThresh Repeated

λ = 0.02 λ = 0.25 λ = 0.5 λ = 0.75 λ = 1
10 9539 0.88 0.69 0.69 0.68 0.67 0.69 0.67

20 8999 0.88 0.68 0.68 0.67 0.67 0.68 0.67

30 10575 0.88 0.81 0.67 0.67 0.67 0.67 0.67

40 9058 0.88 0.87 0.68 0.68 0.67 0.68 0.67

50 9699 0.88 0.88 0.67 0.67 0.67 0.67 0.67
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Figure 2. Total cost required for each algorithm to achieve specific
classification accuracies on the UCI data set kr-vs-kp. Fifty labelers were
available, each with a cost randomly chosen from {1, . . . , 30} and accuracy
randomly chosen from (0.5, 1]. Values of parameters were R = 0.95,
δ = 0.3, and ǫ = 0.8.

with the previous experiment, the cost of each labeler was

randomly chosen from {1, . . . , 30}. For IEAdjCost, we used

ǫ = 0.8 and λ ∈ {0.02, 0.25, 0.5, 0.75, 1}.

Table III reports similar information as that in Table II,

for varying numbers of good labelers for dataset kr-vs-kp,

along with each algorithm’s accuracy from spending only

that budget (results on the other data sets show similar

patterns). We found that, at the specified budget levels, the
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Figure 3. Total cost required for each algorithm to achieve specific
classification accuracies on the UCI data set kr-vs-kp. Fifty labelers were
available, 4 with accuracy 0.8 and cost 100, 46 with accuracy 0.7 and cost
1. Values of parameters were R = 0.95, δ = 0.3, and ǫ = 0.8.

performance improvement of IEAdjCost with λ = 0.02 over

all other algorithms is statistically significant at the p < 0.01
level for all numbers of good labelers (the only exception

is that λ = 0.02 did not have a significant advantage

over λ = 0.25 for 40 and 50 labelers). IEAdjCost with

λ = 0.25 outperformed all algorithms except IEAdjCost

with λ = 0.02 at the p < 0.01 level for 30, 40, and 50

good labelers.
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B. Experiments on AMT data sets

We then tested our algorithm on two other data sets:

RTE (Recognizing Textual Entailment) and TEMP (Tempo-

ral Event Recognition) [9] from Amazon Mechanical Turk

(AMT). Each RTE instance is a sentence-sentence pair and

the annotators are asked to decide whether the second sen-

tence can be inferred from the first. The original RTE data set

has 800 instances and 165 annotators. Each TEMP instance

is a short article including two events and the annotators

need to judge which of the two events happens first. The

original data set has 462 instances and 76 annotators. We

used all instances from each data set, but when deciding

which labelers to use, we encountered the problem that for

each data set, not every annotator labels every instance. Thus

we selected as labelers only those labelers who labeled at

least 30 instances, leaving 40 labelers for RTE and 31 for

TEMP. For each such labeler oi, we used the instances

labeled by it to set7 its accuracy ai. When running the

algorithms in our experiments, whenever labeler oi is asked

to label an instance x, we first check to see if oi labeled x in

the original data set. In this case, we have oi return the label

that corresponds to it in the original data. If instead oi did

not label x in the original data set, we simulate oi by having

it return the correct label with probability ai. Table IV lists

the number of instances and the accuracies of the labelers

that remained after this preprocessing step.

Table IV
THE SIZE AND THE LABELER ACCURACIES FOR THE AMT DATA SETS.

data size labeler accuracies

RTE 800 0.50, 0.51, 0.51, 0.53, 0.56, 0.58, 0.60, 0.65,
0.73, 0.78, 0.80, 0.80, 0.81, 0.82, 0.82, 0.83,
0.83, 0.83, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85,
0.85, 0.88, 0.88, 0.89, 0.90, 0.90, 0.90, 0.91,
0.91, 0.92, 0.92, 0.93, 0.93, 0.93, 0.93, 0.95

TEMP 462 0.44, 0.44, 0.50, 0.54, 0.60, 0.70, 0.77, 0.77,
0.78, 0.80, 0.85, 0.89, 0.90, 0.90, 0.91, 0.92,
0.92, 0.92, 0.92, 0.93, 0.93, 0.93, 0.93, 0.93,

0.93, 0.94, 0.94, 0.95, 0.98, 0.98, 0.98

Unlike with the UCI data sets, we did not train classifiers

for AMT data because they are sentences instead of attribute

vectors. Thus, we adapted the approach used by Donmez

et al. [6]: we had each labeler in Of make its individual

prediction based on the procedure outlined above and then

output the “classifier’s” prediction as a majority vote of

these labelers. Hence these experiments evaluate the quality

of labelers selected rather than the quality of a classifier

induced by training data labeled by the chosen labelers.

As done in Section IV-A, we ran 10 rounds of exper-

iments. In each round we randomly chose 80% of the

instances for training data, and used the remaining 20%

as testing data. We ran our experiments with two cost

7This value that we compute as its accuracy is of course just an estimate
based on labeled data. But for the purposes of our simulation, we use this
value as its “true” accuracy ai.

Table V
EVALUATION OF THE QUALITY OF LABELERS CHOSEN FOR RTE.
TRAINING COST IS THE COST OF LABELING ALL TRAINING DATA.

When costs of labelers are 1.

Method Training Cost Testing Accuracy

Repeated 25600 1.00

IEThresh 22072 1.00

IEAdjCost (λ = 0.025) 2342 0.98

IEAdjCost (λ = 0.25) 2379 0.98

IEAdjCost (λ = 0.50) 2248 0.97

IEAdjCost (λ = 0.75) 1568 0.93

IEAdjCost (λ = 1.00) 2333 0.96

When costs of labelers are randomly chosen from {1, . . . , 100}.

Method Training Cost Testing Accuracy

Repeated 1340800 1.00

IEThresh 1172742 1.00

IEAdjCost (λ = 0.025) 47533 0.97

IEAdjCost (λ = 0.25) 47533 0.97

IEAdjCost (λ = 0.50) 45314 0.97

IEAdjCost (λ = 0.75) 56731 0.96

IEAdjCost (λ = 1.00) 95620 0.94

Table VI
EVALUATION OF THE QUALITY OF LABELERS CHOSEN FOR TEMP.
TRAINING COST IS THE COST OF LABELING ALL TRAINING DATA.

When costs of labelers are 1.

Method Training Cost Testing Accuracy

Repeated 11470 1.00

IEThresh 9674 1.00

IEAdjCost (λ = 0.03) 1423 0.98

IEAdjCost (λ = 0.25) 1448 0.98

IEAdjCost (λ = 0.50) 1424 0.98

IEAdjCost (λ = 0.75) 1140 0.95

IEAdjCost (λ = 1.00) 1671 0.96

When costs of labelers are randomly chosen from {1, . . . , 100}.

Method Training Cost Testing Accuracy

Repeated 625300 1.00

IEThresh 496520 1.00

IEAdjCost (λ = 0.03) 29774 0.99

IEAdjCost (λ = 0.25) 29774 0.99

IEAdjCost (λ = 0.50) 32959 0.99

IEAdjCost (λ = 0.75) 42752 0.96

IEAdjCost (λ = 1.00) 75378 0.95

models: one with unit cost for each labeler and one with

costs randomly selected from {1, . . . , 100}. For algorithm

IEThresh, we set ǫ = 0.8. For algorithm IEAdjCost, we set

ǫ = 0.8, δ = 0.3, and λ ∈ {0.025, 0.25, 0.5, 0.75, 1} for

RTE and λ ∈ {0.03, 0.25, 0.5, 0.75, 1} for TEMP.

Tables V and VI show, for each algorithm, the cost spent

on labeling the training data and the accuracy of the selected

labelers on the test data for RTE and TEMP. For both data

sets, IEAdjCost with λ = 1/|O| (0.03 for TEMP and 0.025

for RTE) shows a clear advantage over IEThresh: it saves

significant cost on labeling while maintaining high accuracy.

V. CONCLUSION

We presented a new algorithm IEAdjCost for active

learning from multiple labelers with unknown and varied
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accuracies and known, varied costs. IEAdjCost has two

phases. Phase 1 is similar to IEThresh, which estimates the

accuracies of the labelers, except that IEAdjCost reduces

costs by reducing the number of labelers used to estimate the

true labels and by stopping early when a sufficient number

of labelers have sufficiently well-estimated accuracies. In

Phase 2, IEAdjCost chooses a subset of the labelers for

which a good accuracy estimate exists. When the labelers

of this subset are used in a majority voting scheme, their

combined accuracy is high and combined cost is low. To

achieve this goal, we developed the notions of combined

accuracy and adjusted cost to compare labelers with dif-

ferent costs and accuracies. Then our algorithm uses the

heuristic LabelersByAdjCost to find the high-accuracy, low-

cost subset that is used to label instances from that point

forward. We tested our algorithm on six UCI data sets and

data from Amazon Mechanical Turk, and showed that our

new algorithm performed at least as well, and often better

than, algorithm IEThresh from the literature and the naı̈ve

approach Repeated. This was especially true when there

were many highly accurate labelers available, and/or when

high combined accuracy was needed.

In future work, we will look at developing more sophis-

ticated methods to learn when to switch from Phase 1 to

Phase 2, perhaps by dynamically tuning δ and λ. Another

direction is to replace majority voting with weighted major-

ity voting in Phase 2. Other possibilities for future work in-

clude replacing Equation (1) with entropy-based uncertainty

sampling. We also plan to test IEAdjCost on multi-class

data sets, and investigate if our ideas from IEAdjCost could

be applied to solve the cost-sensitive feature acquisition

problem [18]. Finally, it would be interesting to consider

the possibility that labelers’ accuracies could be affected by

exposure to labeled and unlabeled instances, as what is seen

to happen to human labelers [19].
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