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Abstract

Active machine learning algorithms are used when large
numbers of unlabeled examples are available and getting
labels for them is costly (e.g. requiring consulting a human
expert). Many conventional active learning algorithms fo-
cus on refining the decision boundary, at the expense of ex-
ploring new regions that the current hypothesis misclassi-
fies. We propose a new active learning algorithm that bal-
ances such exploration with refining of the decision bound-
ary by dynamically adjusting the probability to explore at
each step. Our experimental results demonstrate improved
performance on data sets that require extensive exploration
while remaining competitive on data sets that do not. Our
algorithm also shows significant tolerance of noise.

1. Introduction

In active machine learning (also known as active sam-
pling or selective sampling), the learning algorithm A has
access to a large set U of unlabeled examples and some or-
acle O that A can query to get the label of an individual ex-
ample x ∈ U (x is then moved from U to a set L of labeled
examples). As A’s queries to O are assumed to be expensive
(e.g. consulting a human expert), it is only feasible to label
a small subset of U . Thus the goal is for A to actively se-
lect examples from U such that a good hypothesis is learned
while using as few (carefully chosen) labeled examples as
possible. Applications of active learning include areas in
which there is so much data available that it’s infeasible to
manually label it all, so one needs to manually label a small
subset to train a classifier. Successful applications of ac-
tive learning include include text classification [20], image
classification [12], speech recognition [7, 8], and software
testing [3].

Many conventional active learning algorithms choose to
label points that are near the decision boundary of the cur-
rent hypothesis. This can work well if the active learner is
aware of all the important regions of the instance space, i.e.
there are no large “pockets” of examples that the learner’s
hypothesis will misclassify since it hasn’t seen labeled ex-
amples from them. Such active learners are good at “ex-
ploitation” (labeling examples near the boundary to refine
it), but they do not conduct “exploration” (searching for
large regions in the instance space that they would incor-
rectly classify). An example of a problem requiring explo-
ration is the exclusive OR problem (Figure 1(a)), where the
negative examples are in the upper-left and lower-right re-
gions (respectively numbered 1 and 4) and the positives are
in the other two regions (numbered 2 and 3). If all the la-
beled points are from regions 1–3 and none from 4, then an
active learner that is not designed to explore (e.g. one that
always chooses from near the decision boundary) may never
discover that region 4 contains negatively-labeled examples
and thus never adjust its hypothesis to accommodate it. The
result is that all new negative examples that appear in region
4 would be misclassified, which could lead to high gener-
alization error. However, one must not focus too much on
exploration. Algorithms that do nothing but explore will re-
quire many calls to the labeling oracle to refine its decision
boundary.

Our algorithm addresses this problem by randomly
choosing between exploration and exploitation at each
round, and then receives feedback on how effective the ex-
ploration phase was, measured by the change induced in the
learned classifier when an exploratory example is labeled
and added to the training set. Like a simple reinforcement
learning algorithm, our active learner updates the probabil-
ity of exploring in subsequent rounds based on the feedback
it received. In this way, our algorithm is similar to Baram et
al.’s [1] “COMB” algorithm, except that ours is simpler.
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Figure 1. (a) An example of the exclusive OR problem, aka a 2 × 2 “checkerboard.” (b) 4 × 4 checker-
board data (d = 2 and n = 4).

We found that in synthetic data with many regions that
require exploration, our algorithm showed a distinct advan-
tage over others in the literature, including COMB. Further,
on data when extensive exploration was unnecessary, our al-
gorithm performed competitively with the others despite its
desire to explore. Finally, we discovered that even on data
when extensive exploration was unnecessary, our algorithm
showed improvements over the others when the labels were
corrupted by noise.

In the next section we summarize related work in active
learning. Then in Section 3 we describe our algorithm. Sec-
tion 4 presents experimental results on noise-free and noisy
data. Finally, we conclude in Section 5.

2. Related Work

An active learner tries to select the most informative ex-
ample from the unlabeled pool U . One basic idea is to
select examples that effectively shrink the current version
space (the set of hypotheses consistent with the training
data). As discussed by Tong and Koller [20], such a heuris-
tic would be probabilistically optimal if it could always ex-
actly halve the version space each time A makes a query.
Strong theoretical results using this idea are yielded by the
Query by Committee algorithm [6, 19]. The “closest sam-
pling” method [5, 18, 20] (sometimes called “uncertainty
sampling”) can be thought of as a heuristic to shrink the
version space. It greedily selects points that are closest to
the current decision boundary. The intuition behind this is
that points that are closest to the current decision boundary
are points that A is most uncertain about. By labeling these,
A can have better knowledge about the correctness of its

decision. Tong and Koller explain why this method often
works: in a large margin classifier such as a support vector
machine (SVM), the current hypothesis lies approximately
“in the center” of the version space and by choosing an ex-
ample (a hyperplane in version space) that is closest to it, it
also cuts the version space approximately in half. Although
this method is elegant and easy to implement, focusing on
examples near the decision boundary prevents exploration
of the feature space for regions of examples that the current
hypothesis misclassifies [1].

Another approach [6, 9, 11, 17] is to select examples
that are helpful in building up confidence in low future er-
ror. It is impossible to know the exact future error without
knowing the target concept, but approximations make this
method feasible. For example, Roy and McCallum [17]
suggest to directly minimize the expected error on the
dataset. One challenge to this approach is that a naı̈ve im-
plementation results in prohibitive computational complex-
ity (though some heuristics are available to mitigate this).
Further, a fair amount of initial labeled data is needed to
establish a good approximation of the prior class distribu-
tion in order for this method to work, and if labeled exam-
ples are not chosen randomly, the class probability estima-
tion may not be statistically valid. In line with this work,
Nguyen and Smeulders [14] chose examples that have the
largest contribution to the current expected error: they built
the classifier based on centers of clusters and then propa-
gated the classification decision to the other samples via a
local noise model. During active learning, the clustering is
adjusted using a coarse-to-fine strategy in order to balance
between the advantage of large clusters and the accuracy
of the data representation. Yet another approach [13] is spe-
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cific to SVM learning. Conceptually, in SVM learning if we
can find all the true support vectors and label all of them,
we will guarantee low future error. Mitra et al. assigned
a confidence factor c to examples within the current deci-
sion boundary and 1 − c to examples outside each indicat-
ing the confidence of whether they are true support vectors,
and then chose those examples probabilistically according
to this confidence. It is noteworthy that their approxima-
tion of c is done using a separate validation set (with known
labels) and c indicates balance of number of positive and
negative examples within the neighborhood of current sup-
port vectors.

The third category contains active learning algorithms
that try to quickly “boost” or “stabilize” an active learner.
Active learning is unstable, especially with limited labeled
examples, and the hypothesis may change dramatically each
round it sees a new example. One way to boost active learn-
ing algorithms is simply combining them in some way. For
example, Baram et al.’s [1] algorithm COMB combines three
different active learners by finding and fast-switching to the
one that currently performs the best. These three algorithms
are “Simple” [20] (which selects the example nearest the
decision boundary), “Self-Conf” [17] (which attempts to di-
rectly minimize generalization error), and, to better explore
the feature space, their own heuristic “Kernel Farthest First”
(KFF). Given a set L of labeled examples, the next example
x chosen by KFF to be labeled is the one farthest from L in
the feature space induced by the SVM’s kernel K:

argmax
x∈U

(
min
y∈L

‖ΦK(x) − ΦK(y)‖
)

, (1)

where

‖ΦK(x) − ΦK(y)‖ =
√

K(x, x) + K(y, y)− 2K(x, y)

is the Euclidean distance from ΦK(x) to ΦK(y), which are
the images of x and y in the feature space induced by the
kernel K .

The COMB algorithm works by having each “expert” (ac-
tive learner) in a pool score each candidate unlabeled exam-
ple (higher score implies more suitable for labeling). These
scores are exponentially weighted and normalized to proba-
bilities. After low-probability instances are filtered out, the
remaining probabilities are combined into a single probabil-
ity vector, which is used to randomly select the next point
x from U to be labeled. After x is chosen, it is labeled and
added to L, which is used to train a new classifier C. Next,
the unlabeled examples in U are labeled by C and a “re-
ward utility” of x is computed based on the classification
entropy maximization (CEM) score: H (|C+(U)|/|U |),
where C+(U) ⊆ U is the subset of examples of U that C
labels positive and H(p) = −p log2 p− (1− p) log2(1− p)
is the entropy function. Given the previous CEM score H

(before x was chosen) and the new one H ′ (after x was cho-
sen), the reward utility of x is

r(x) =
eH′ − eH + e − 1

2e − 2
.

The reward utility is then used to update the weights of the
active learners in the pool. While it is possible to prove
guaranteed relative loss bounds on the performance of this
algorithm, it is complex to implement.

Related to Baram et al.’s approach, Pandey et al. [15]
proposed an algorithm based on Kalai and Vempala’s [10]
“follow the perturbed leader” algorithm. Pandey et al.’s al-
gorithm chooses between Simple and randomly selecting
from U . As with COMB, their algorithm updates the weights
of the “experts” (active learners) based on their effective-
ness. Pandey et al. measure effectiveness by the change in
classification error from the current hypothesis to the new
one. A drawback to this approach is that the classification
error is measured on the labeled training set. Measuring
error on the training set can yield a biased estimate of the
error and requires a larger starting set of labeled examples.

3. Our Algorithm

We now describe our algorithm for exploratory active
learning. As with Baram et al. [1], the problem we ad-
dress is how to balance the exploitation of labeling exam-
ples that are near the current decision boundary and the ex-
ploration of searching for examples that are far from the
already-labeled points and labeled inconsistently with how
the current hypothesis would predict.

Our work addresses this problem by, at each step, ran-
domly deciding whether to explore or exploit. If an ex-
ploratory step is taken, then our algorithm considers the
“success” of the exploration to adjust its probability of ex-
ploring again. Our algorithm is similar to that of Baram et
al., but is simpler to implement since its decision-making
process is more straightforward and its probabilistic model
is easier to update. Further, our algorithm measures the im-
pact of a selected example on the hypothesis via a simple
empirical measure rather than Baram et al.’s classification
entropy maximization score.

Formally, our algorithm flips a biased coin with proba-
bility p of coming up heads. If the result is heads, then we
apply the KFF algorithm to select the next example to label.
If tails, then we choose the next example with Simple [20],
which chooses a point near the current decision boundary.
After training using this new example, we get a new hy-
pothesis h′ (let h be the hypothesis before the new example
was labeled). To determine how successful an exploration
step is, we look at the change induced from h to h′, denoted
d(h, h′) ∈ [−1, +1]. If this is positive (implying signifi-
cant change from h to h′), we assume the exploration was
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successful and we want to keep the probability p high to
encourage further exploration. If d(h, h′) is negative, we
reduce p. Formally, we update the exploration probability p
to p′ as follows:

p′ = max(min(pλ exp(d(h, h′)), 1 − ε), ε) , (2)

where ε is a parameter that upper- and lower-bounds the
value of p (so there’s always a chance of exploring and ex-
ploiting) and λ is a learning rate for updating p.

We now define the function d(h, h′) that we use1. Let
S = {x1, . . . , xm} = L ∪ U be the set of labeled and
unlabeled training examples that we have. Then for each
of the two real-valued hypotheses h(·), h′(·), we define
the vectors H = (h(x1), h(x2), . . . , h(xm)) and H ′ =
(h′(x1), h′(x2), . . . , h′(xm)), i.e. vectors of the real-valued
predictions of h and h′ on S. Now we define

s1(h, h′) =
〈H, H ′〉
‖H‖ ‖H ′‖ ,

i.e. the inner product of H and H ′ normalized by the prod-
uct of their lengths. Thus s1(h, h′) ∈ [−1, +1] is the cosine
of the angle between H and H ′. Despite the fact that math-
ematically, s1(h, h′) could be as small as −1, in our exper-
iments, we found that s1(h, h′) was always2 in the interval
[1/2, 1]. Thus we rescaled and translated s1 as follows:

d1(h, h′) = 3 − 4s1(h, h′) .

Now mathematically, d1 could be as large as 7, but in prac-
tice d1(h, h′) ∈ [−1, +1]. Negative values of d1 correspond
to large values of s1, i.e. negative values of d1 mean that h
and h′ predicted similarly on S, implying that relatively lit-
tle change was induced by exploration.

The time complexity of our algorithm obviously depends
on the active learners used as subroutines (KFF and Simple
in our case). For each round of active learning, our algo-
rithm takes constant time to choose between KFF and Sim-
ple, then we add the time complexity of the chosen algo-
rithm, and we add time linear in |S| to update p. Specifi-
cally, our algorithm’s expected time complexity in the cur-
rent round is pTKFF +(1−p)TSimple + |S|, where TKFF

is the time to run KFF and TSimple is the time to run Simple.
The time complexities of KFF and Simple are similar.

Given w as the weight vector of the current hypothesis
h, Simple computes the dot product 〈w, ΦK(x)〉 for every
x ∈ U . This requires computing the kernel K(x, v) for ev-
ery support vector v ∈ Vh. This takes time Θ(|U | |Vh|TK),
where TK is the time to evaluate kernel K . Similarly, com-
puting the argmax (1) for KFF takes time Θ(|U | |L|TK).

1Other possible measures are proposed later.
2This is because h and h′ come from training on very similar data sets

(only differing in a single example). For s1(h,h′) to be −1, h and h′
would have to predict the exact opposite of each other on every example in
S, which is very unlikely.

Since Vh ⊆ L and S = L∪U , we have that our algorithm’s
time complexity is O(|U | |L|Tk) per round.

In the worst case, our time complexity each round
asymptotically matches that of COMB. However, an exam-
ination of the full page of COMB’s pseudocode [1] reveals
that it requires more steps in practice. E.g. COMB executes
all of its active learning subroutines each round, whereas we
choose a single one to execute. It also performs significant
bookkeeping, which takes time to run and is more complex
to implement.

4. Experimental Results

We implemented our algorithm in Matlab using the Spi-
der3 package and SVMlight 4.0. We used d1 as the measure
between hypotheses and set the parameters ε = 0.01 and
λ = 0.1. We evaluated our algorithm on noise-free and
noisy data.

4.1. Noise-Free Data

The data we used in our first experiment was a general-
ization of exclusive OR: a d-dimensional, n × n × · · · × n
“checkerboard” (e.g. Figure 1(b)). We randomly generated
250 points per square in the checkerboard and put them in
a set T (so |T | = 250nd). The results in Figure 2 are based
on 50 runs of the following experiment: We randomly se-
lected 100 points from T to serve as the test set and placed
the remaining points into U , the unlabeled set. Each curve
in each figure is the average of these 50 experiments. Our
results (“exploration”) are contrasted against Simple, KFF,
random sampling (each point labeled is chosen uniformly
at random from U ), and COMB, which is Baram et al.’s [1]
combination of Simple, Self-Conf, and KFF. In each plot,
we see that our approach starts out roughly even with the
others, but then surpasses them in generalization accuracy
after 50–250 examples have been labeled4. Our conclusion
is that our method starts by emulating KFF then switches to
Simple once exploratory learning is no longer fruitful, i.e.
after it has sufficiently sampled all nd regions.

To determine if our algorithm performs worse on on data
that does not require extensive exploration, we tested it on
three data sets from the UCI repository [2]: Landsat Satel-
lite (SAT), Waveform, and Image Segmentation. We also
tested it on data extracted from the Corel CD Image Col-
lection, with features based on color histograms, color co-
herence, and moment invariants. Table 1 describes these

3http://www.kyb.tuebingen.mpg.de/bs/people/spider/index.html
4Our simulations of COMB yielded slightly worse results than those of

Baram et al. on similar data. A possible explanation of this is that the
squares of our checkerboards are closer together than those in Baram et
al.’s XOR data; thus Simple is needed more often to refine the decision
boundaries.
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Figure 2. Checkerboard results for (a) d = 2 and n = 3, (b) d = 2 and n = 4, (c) d = 3 and n = 2, and (d)
d = 3 and n = 3. “Exploration” is our algorithm, “COMB” and “kff” are from Baram et al. [1], “simple”
is from Tong and Koller [20], and “random” is uniform random sampling.

four data sets and also gives the parameters γ (for the Gaus-
sian RBF kernel) and C (for the soft-margin SVM) that we
used for all active learners in each experiment. Since each
of these data sets is multi-class, we ran our experiments in
a one-versus-rest fashion (for brevity, only a subset of the
results are shown).

Figure 3 summarizes results of 20 runs of each exper-
iment using random, Simple, KFF, and our algorithm5.
These along with Figure 4(a) show that our algorithm
quickly learns when to stop exploring and keeps pace with
Simple. Thus on these data sets, using Exploration does not
hurt, even when extensive exploration is unnecessary.

4.2. Noisy Data

We also evaluated our algorithm on noisy data, using the
Image Segmentation dataset from the UCI repository [2].
We performed 25 trials, where each trial started with two

5Experiments using COMB are pending.

randomly chosen labeled examples (one positive and one
negative), and each algorithm was run until it chose 150
examples to label. When an active learner chose an example
to label, the label was randomly flipped with probability η ∈
{0, 0.05, 0.10, 0.20}.

In Figure 4, we see that COMB initially fares better than
our algorithm for all noise rates, but only until 20–70 exam-
ples are labeled. After that point, for noise rates η > 0, our
algorithm shows improved performance over the others, and
the amount of improvement increases with the noise rate.

It is not obvious why our algorithm is so effective in the
presence of high noise rates. One possible explanation of
the advantage of our algorithm over Simple is as follows. If
Simple gets a noisy label early on in learning (when |L| is
small), that will induce a large change in the hypothesis, po-
tentially moving it far from the optimal hypothesis. Simple
labels points near the decision boundary since it assumes
that its current hypothesis is near the optimal one. When
this assumption is violated due to an early noisy point, it
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Table 1. UCI data set characteristics and experimental parameters.
Data Set Number of Attributes Number of Instances Test Set Size γ C

SAT 36 6435 500 4 100
COREL 310 1000 100 2 100

Waveform 21 5000 1000 2 128
Image Segmentation 19 2310 300 1 1000

can take many small steps to reach the optimum6. In con-
trast, our algorithm starts with frequent exploration before
it begins to sample near the boundary (the presence of noise
will likely prolong the exploratory phase). Thus by the time
our algorithm is making small steps due to closest sampling,
it has a more diverse set of labeled points available, result-
ing in a more optimal “starting hypothesis” to refine (i.e. it
starts its small steps closer to the optimal hypothesis).

Further, while COMB also chooses KFF early on, it ap-
pears that it over-commits to KFF by letting KFF’s weight
far exceed those of Simple and random (this is evident
in Figure 4 where COMB’s curves tend to follow those of
KFF). Since COMB’s weight updates are done multiplica-
tively, such an over-commitment can be difficult to reverse.
In contrast, our algorithm’s use of an ε bound on p in (2)
helps to avoid this. Further experimentation (including run-
ning COMB with bounds on the ratios of the algorithms’
weights) is necessary to confirm this.

4.3. Effect of Alternative Measures

Other measures of hypothesis change can be used in our
algorithm. One that we have started to evaluate is specific to
linear threshold units, e.g. support vector machines. Let w
be the weight vector for hypothesis h and w′ be the weight
vector for hypothesis h′. Then we can use

s2(h, h′) =
〈w, w′〉
‖w‖ ‖w′‖ , (3)

which for a support vector machine can be computed using

〈w, w′〉 =
∑

xi∈Vh

∑
xj∈Vh′

αi α′
j yi yj K(xi, xj) ,

where Vh (Vh′) is the set of h’s (h′’s) support vectors, yi is
the {−1, +1} label of xi, α is the representation of SVM h,
and K(·, ·) is the kernel used by the SVM. We complete the
computation of (3) by noting that ‖w‖ =

√〈w, w〉. Finally,
we set d2(h, h′) = −s2(h, h′) ∈ [−1, +1].

We have completed preliminary experiments with 2 × 2
checkerboard, COREL, and SAT, with and without noise.

6This is not unlike optimizing a function using gradient descent with
a small step size. Eventually a near-optimal point will be reached, but
convergence is slow.

So far we have not found any significant difference between
d1 and d2, but more experiments are necessary.

5. Conclusions and Future Work

In some active learning applications, it is necessary to
early on emphasize exploration of the instance space in or-
der to familiarize the learner with the “pockets” of examples
that it would otherwise misclassify. We presented a fast,
simple alternative to Baram et al.’s [1] COMB algorithm. In
experiments, our algorithm fared better than others in the
literature on synthetic checkerboard data, and did not fare
worse on data sets that did not require extensive exploration.
Finally, we found that our algorithm is robust against high
rates of classification noise.

Another measure of hypothesis change that we plan to
evaluate is a variation of the measure d1 from Section 3.
This variation uses the symmetric difference of the subsets
of S that h and h′ label as positive. I.e. if P (similarly P ′)
is the subset of S that h (h′) labels positive, then we define

d3(h, h′) =
2 |PΔP ′|

m
− 1 ,

which has range [−1, +1]. This measure is similar to a spe-
cial case of d1 (if h(·) and h′(·) are {0, 1}-valued), the main
difference being a change in the normalization factor.

Our algorithm’s update of p via (2) is sensitive to the
change measured between h and h′ via d. As the set of la-
beled examples L grows, each new labeled example added
to L has less impact on h′. Thus d(h, h′) could be small
even if the new point was a valid exploration. We did not
witness this phenomenon, but it is conceivable that if L is
large, then p could be reduced even if an exploratory label-
ing of x discovered a new region but was disregarded as
noise since it was overwhelmed by the other examples in L.
One way to remedy this would be to dynamically weight d
by the size of L. I.e. when L is large, even small changes
from h to h′ should result in a positive value of d(h, h′).
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Figure 3. UCI results for (a) SAT class 7 vs. rest, (b) SAT class 2 vs. rest, (c) COREL class 3 vs.
rest, and (d) Waveform class 0 vs. rest. “Exploration” is our algorithm, “kff” is from Baram et al. [1],
“simple” is from Tong and Koller [20], and “random” is uniform random sampling.
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Figure 4. Image segmentation data results for (a) no noise, (b) noise rate η = 0.05, (c) noise rate
η = 0.10, and (d) noise rate η = 0.20. “Exploration” is our algorithm, “COMB” and “kff” are from Baram
et al. [1], “simple” is from Tong and Koller [20], and “random” is uniform random sampling.
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