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Abstract—The personalization of treatment via genetic
biomarkers and other risk categories has drawn increasing
interest among clinical researchers and scientists. A major
challenge here is to construct individualized treatment rules
(ITR), which recommend the best treatment for each of the
different categories of individuals. In general, ITRs can be
constructed using data from clinical trials, however these are
generally very costly to run. In order to reduce the cost of
learning an ITR, we explore active learning techniques designed
to carefully decide whom to recruit, and which treatment to
assign, throughout the online conduct of the clinical trial. As an
initial investigation, we focus on simple ITRs that utilize a small
number of subpopulation categories to personalize treatment.
To minimize the maximal uncertainty regarding the treatment
effects for each subpopulation, we propose the use of a minimax
bandit model and provide an active learning policy for solving
it. We evaluate our active learning policy using simulated data
and data modeled after a clinical trial involving treatments for
depressed individuals. We contrast this policy with other plausible
active learning policies. The techniques presented in the paper
may be generalized to tackle problems of efficient exploration in
other domains.

I. INTRODUCTION

We propose to actively learn individualized treatment rules
(ITRs), which are of increasing interest in the personalization
of treatment. Formally, for each patient we have the pre-
treatment observation variable X ∈ X , summarizing various
aspects of individual heterogeneity, treatment A taking values
in a finite, discrete treatment space A, and a real-valued
response R (assuming large values are desirable). An ITR,
denoted d, is a deterministic decision rule from X into the
treatment space A. We aim to construct this rule so as to
maximize the future response R. From an AI perspective,
learning ITRs is an example of reinforcement learning with a
time horizon of 1 step, and clinical trials that aim to discover
good ITRs represent the phase of exploration for learning a
good policy.

Consider the following motivating example, in which one
must decide between two actions (a1 and a2) for treating
subjects from each of four subpopulations (c1 ∼ c4). We
consider perhaps the simplest ITR, which will assign each
subpopulation to one of the two competing treatment options,
ignoring other characteristics/covariates of the subjects. This
setting, though simple, is not uncommon in many clinical
trials [8]. For instance, a subpopulation type may correspond
to patients with a particular Gene biomarker, and the two
treatment options are the standard and alternative treatment

option, or the top two choices of treatment for that disease.
Further, we assume the mean response under each treatment
option for subpopulation ci is µi1 and µi2. So the ITR looks
like this:

d(ci) =

�
a1 if µ̂i1 − µ̂i2 ≥ 0
a2 if µ̂i1 − µ̂i2 < 0

∀i ∈ {1, 2, 3, 4}

where the µ̂i· are the estimates of µi·. We observe that the
confidence in the correctness of an ITR lies in the variances
of µ̂i1 − µ̂i2, which we call the treatment effect for the ith
subpopulation. Assuming the patients in the subpopulations
respond independently, we have that the variance of the esti-
mated treatment effect Var[µ̂i1 − µ̂i2] = Var[µ̂i1] + Var[µ̂i2].
In current trials for constructing ITRs, patients are generally
recruited as they arrive, so that the number of patients in each
subpopulation reflects their natural composition in the general
population. However, this may not be the best utilization of
the trial resources, and can be problematic, especially for cases
where patients from certain subpopulations are rare.

We reiterate that our primary goal for running these trials
is to quantify the treatment effects and their variances. More
specifically, we would like to distribute the resources wisely
so that the constructed ITR has a bounded uncertainty (or vice
versa, high confidence) for each subpopulation. Since it may
take significantly more resources to estimate the uncertainty of
the estimated treatment effect for one subpopulation than for
the others, enrolling patients in the trial as they arrive (hence
with numbers of patients in each subpopulation reflecting the
relative sizes of the subpopulations) may not yield an overall
good ITR. As an extreme case, suppose that at the end of the
trial we had only learned, with high confidence, that patients
in subpopulation c1 respond better to treatment a1 than a2, but
we could not state anything about the relative importance of
the treatments for the remaining subpopulations. In such case,
it would seem the trial has at least partially failed in the task of
constructing an overall good ITR. Furthermore, currently, most
trials also use equal randomization of the treatment options for
a subpopulation, which could not only waste trial resources of
a particular treatment, but also run the risk of yielding highly
variable responses for that subpopulation.

Three further characteristics of these clinical trials are the
following. First, the trials are of relatively short duration
compared to the pace of patient recruitment. Second, once a
patient is recruited into the trial, the treatment and monitoring
process is extremely costly. Third, usually the budget for the



clinical trial is specified a priori and thus will allow for the
recruitment and treatment of, say , N subjects. For these
reasons, we should carefully decide who to recruit and what
treatment to assign in order to meet the goal of these trials.

We propose a minimax bandit model that intelligently
recruits patient from different subpopulations and assigns them
to different treatments in order to minimize the largest variance
of the estimated treatment effects among the different sub-
populations. In the language of reinforcement learning (RL),
the action space is composed of (subpopulation, treatment)
pairs. Each decision step corresponds to the recruitment and
treatment of a new subject. Thus our problem can be viewed
as a form of exploration in an online RL setting, with the
horizon being N steps corresponding to N subjects.

This formulation bears formal similarity with some of
response adaptive trials [6]–[8], popular in cancer research,
which also divide patients into groups. However our formal
criterion (defined below) is different from these response adap-
tive trials. Response adaptive trials usually aim to place more
patients on the better treatment based on patient responses
already accrued in the trial. In reinforcement learning terms,
our goal is more exploratory while the goal in response
adaptive trials is more exploitative.

The rest of the paper is organized as follows. In Section II
we give brief discussion for related work in active learning
and budgeted bandit problems. In Section III we present the
technical details of our methods and algorithms, followed by
experimental results in Section IV. We conclude this paper
with an extended discussion of potential issues and future work
in Section V.

II. RELATED WORK

Our problem is natually related to the famous “multi-armed
bandit problem” by Robbins (1952), in which a gambler
repeatedly chooses a slot machine to play, each with a different
payoff. The gambler’s goal is to maximize the total payoff over
all pulls of all machines. The Multi-armed bandit problem is
a prototypical example in RL that characterizes the necessities
of a trade-off between exploration and exploitation, in an
online decision process. A key difference between our work
and the conventional multi-armed bandit problem is that in
the latter, one tries to maximize the cumulative rewards
over all pulls, whereas with our work, one simply wants to
maximize the confidence of the resulting ITRs, which is a
highly nonlinear reward. Problems with similar interests in
only the “end results” as ours have been studied under the
names of “budgeted” multi-armed bandit problems [9,17,21],
where one tries to optimize a goal function, say picking a
arm of a slot machine with maximal payoff, designing a
classifier with minimal prediction loss, estimating quantities
with minimal variances etc, after an experimentation phase
that is typically constrained by a time or cost budget. For
example, an application of “budgeted” multi-armed bandit
problems in classification [17]–[21] is called budgeted learning
, which allows the learner to request more complete feature

information by “buying” the attributes (features), spending up

to at most a fixed budget. When the budget is exhausted, the
learner must output a classifier that can predict as accurately
as possible. Budgeted learning is related to our problem in
several ways. First, similar to the budget/cost constraint in
these learning problems, the budget constraint in our problem
is usually set upfront before the learning starts, so it is a
“hard” constraint. For example, one of the requirements for
a real clinical trial is to specify and justify the cost of the
trial subject to specification of the minimum and maximum
number of patients. Ideally, the budget should be set as low as
possible to increase the chance of a trial obtaining funding, yet
high enough to ensure that upon the completion of the trial,
answers to important research questions can be drawn reliably
from the results of the trial. Secondly, in budgeted learning,
the reward is the performance of the final classifier once the
budget is exhausted. This is a very different criterion from
maximizing the total payoff of a conventional multi-armed
bandit problem. Indeed, we formulated the objective function
for our problem in a similar fashion since we primarily care
about endpoint properties (e.g. the quality or variance of the
estimated treatment effect) of the resulting treatment rules.
Another example of budgeted bandit problem is described in
Antos et al. [9]. There, a problem of learning the mean values
of distributions associated with a finite number of options was
considered, with a similar goal of reducing the variances of
the estimated mean values. One major difference between their
work and ours is that the criterion we consider imposes a group
structure among the options for the same subpopulation (see
below for specifics).

In the machine learning literature, active learning or adap-
tive sampling refers to a methodology for guiding the data ac-
quisition, by parsimoniously querying some unknown aspects
of existing data, or collecting new data based on the examples
that the learning algorithm has seen so far. Traditionally, active
learning [10,12]–[14,16,20,22]. has been studied in the context
of supervised machine learning and classification problems.
Active learning also has a long history in the statistics liter-
ature, which is generally referred to as optimal experimental
design; see [11,23]–[25] for some recent work and review.
The main objective of this line of research is to reduce the
variance of prediction over parameter estimates, while control-
ling the bias of the prediction at the same time. Our problem
shares some similarity with the above problems in that our
goal is to minimize the maximal variance of the estimated
treatment effects. The possibility of active learning also arises
in other domains, such as in the unsupervised learning task of
density estimation. For example, [15] presented a framework
for actively learning parameters in Bayesian networks. It is
assumed in this framework that some subset of the variables
are controllable, so a query has the form of these variables
taking specified values, and the result of such a query is
a randomly sampled instance conditioned on the controlled
variables. If we think of subpopulation type, treatment and
response as variables in a Bayesian network, our problem
could be be framed as such a parameter estimation problem.
Finally, there are a number of RL approaches that also use



active learning such as [1]–[5]; the main difference is that these
algorithms deal with infinite horizon and cumulative reward
functions, and mostly focus on exploring either state or action,
whereas we are interested in balancing exploration of actions
over different subsets of the state space.

III. METHODS AND ALGORITHMS

This problem is formally described as follows: there are
C bandits (corresponding to the C subpopulations), each
equipped with K arms (corresponding to K treatments; here
K = 2). At each time step, corresponding to the recruitment
of a patient, we are only allowed to pick one bandit. For that
bandit, we need to further choose an arm to pull. There will
be a total of N pulls overall. We assume that the response
of the jth arm of the ith bandit, denoted as (i, j), follows
the distribution Dij , with mean µij (corresponding to the
primary response of treatment (i, j)) . At each time point n,
the estimated mean response of arm (i, j) is µ̂n

ij , and the error
of the estimate is measured with the mean squared loss:

L
n
ij = E[(µ̂n

ij − µij)
2] = Var[µ̂n

ij ].

The loss for bandit i is measured by the summation of the
squared losses:

L
n
i =

�

j={1,2}

L
n
ij ,

which is the variance of the estimated treatment effect for the
i-th subpopulation, discussed earlier. (Note for convenience,
our slight abuse of symbol j as a dummy variable for the
summation index). The overall loss of an online active learning
policy π is measured by the worst-case loss over the K

bandits:
L
n(π) = max

1≤i≤C
L
n
i .

We would like to design π such that the loss Ln(π) is small.
As mentioned earlier, a similar worst-case loss is considered
by [9]; using our notation, the loss considered in [9] is
max1≤i≤C; j=1,2 L

n
ij . However the loss Ln(π) makes more

sense in the context of the clinical trial since the focus is
on a relative comparison between mean responses (e.g. the
treatment effect), as opposed to the mean responses them-
selves. The Ln(π) loss is motivated by our preference for an
ITR whose uncertainty of treatment effect is bounded in the
worst case over the different subpopulations. In the clinical
setting, the ITR is most useful if it provides a high quality
recommendation for each subpopulation.

To derive active learning policies for this problem, it is
helpful to first consider an optimal “oracle” allocation policy
O, that has been endowed with the knowledge of the variances
σ2
ij of the responses. Note that if an arm (i, j) has been pulled

Tij times, then Var[µ̂ij ] =
σ2
ij

Tij
. Recall that there are a total

of N pulls. The loss of the optimal allocation policy O can
be computed by solving the following convex optimization
problem, ignoring integer constraints on Tij :

minimize
Tij

maxi
�

j
σ2
ij

Tij
(1)

s.t.
�

i

�
j Tij = N

Tij ≥ 0 i ∈ {1, ..., C}, j ∈ {1, ...,K}

The optimal allocation for the ith bandit and jth arm,
ignoring integer constraints, is

T
∗
ij =

σij
�

j σij�
i(
�

j σij)2
N (2)

To see this, note that the above convex optimization problem
can be restated as:

minimize
Tij ,r

r

s.t.
�

j
σ2
ij

Tij
≤ r ∀i ∈ {1, ..., C}

�
i

�
j Tij = N

−Tij ≤ 0 ∀i ∈ {1, ..., C}, j ∈ {1, ...,K}

The full Lagrangian is

L(Tij , r,λij ,α,βij) = r +
�

i

λi(
�

j

σ2
ij

Tij
− r)

+ α(
�

i

�

j

Tij −N)

+
�

i

�

j

βij(−Tij)

By the KKT condition, βij = 0 as Tij has to be strictly positive
; ∂L

∂Tij
= 0 yields

α =
λiσ

2
ij

T 2
ij

for all i and j; ∂L
∂r = 0 yields

1−
�

i

λi = 0,

and finally, α(
�

i

�
j Tij − N) = 0. It’s easy to verify that

T ∗
ij in (2) and r∗ =

�
i(
�

j σij)
2

N are solutions.
Thus, the oracle would recruit T ∗

ij subjects from subpop-
ulation i and assign them treatment j. T ∗

ij is proportional
to the quantity σij

�
j σij , which is an indicator of the

uncertainties of both treatment (i, j) and subpopulation i. As
a matter of fact,

�
σij

�
j σij�

i(
�

j σij)2
; i ∈ {1, ..., C}, j ∈ {1, ...,K}

�

forms a proper probability distribution, so if an active learning
algorithm samples according to this distribution at each of the
N decision points, it will end up allocating in expectation T ∗

ij

for each arm (i, j). Of course, the values of σij are unknown
in an online setting, however they can be estimated via the
sample standard deviation, σ̂ij , when there is sufficient data.
Also, according to (2), when either σij or

�
j σij is large,

arm (i, j) or bandit j should be pulled more often, which
intuitively makes sense. Our proposed active learning pol-
icy called AREOA(Adaptive Randomization with Estimated



TABLE I
DATASETS FOR THE EXPERIMENT

dataset subpopulation/ distributions means variances
treatments

DS1 4/2





.25

.25

.25

.25









1 4
2 2
4 1
2 2









1000 1000
100 100
100 100
100 100





DS2 4/2





.1

.3

.3

.3









1 4
2 2
4 1
2 2









1000 1000
100 100
100 100
100 100





DS3 8/2





.125

.125
...

.125









2 2
2 2
... ...
2 2









5 5
10 10
... ...
640 640





DS4 4/2





.25

.25

.25

.25









1 4
2 2
4 1
2 2









100 1000
100 1000
100 1000
100 1000





DS-CBASP 3/2




1/3
1/3
1/3








10.9 16.2
9.3 19.4
12.9 15.8








99.3 79.7
110.7 55.9
103.5 78.6





Optimal Allocation), directly exploits this insight by using
this criterion as the basis for selecting selecting subjects and
assigning treatments.

IV. EXPERIMENTS

In this section we evaluate our proposed strategy, AREOA,
on a number of synthetic datasets. AREOA is an �-greedy
active learning policy that is based on the oracle allocation
Tij derived above; here the frequency that the subpopulation
and treatment (i, j) will be picked is roughly proportional to
the σ̂ij

�
j σ̂ij where σ̂ij are estimated standard deviation of

the treatment response on subpopulation i under treatment j.
Throughout the experiments, we fixed the tuning parameter
� = 0.1 for AREOA.

We compare AREOA’s performance with two alternative
active learning policies. The first alternative, denoted AARan-
dom, recruits subjects from the subpopulation according to
the subpopulation fraction in the general population and as-
signs the treatment among uniformly at random. The second
alternative, denoted GAFS-MAX, is an active learning policy
proposed in [9]; this policy deterministically selects the next
(subpopulation, treatment) pair with the highest estimated
sample variance but forcing a revisiting of (subpopulation,
treatment) pairs that haven’t been visited for some time.

All of them start by first picking each arm of each bandit
for a fixed number of times, defined by parameter B, and then
proceed to a loop of actively selecting the next subpopulation
and treatment pair (i, j) until the budget (e.g. N ) runs out.
Full algorithmic details of all three methods are provided in
Figure 1.

To illustrate the different behaviors of the three active
learning policies, we consider the five synthetic data sources
described in table IV. The response for each subpopulation
i under treatment j is modeled using a normal distribution
N (µ,σ). The means and the variances of these normal distri-
butions are detailed in the table. The maximum budget N was
set to be 200 in all experiments, each algorithm was repeated
100 times with different random initializations of the data
sources, so the results reported below are averaged over 100
runs.

1: Choose each treatment for each subpopulation B times in
the first B × C ×K trials

2: Set Tij = 1 and n = BCK + 1
3: while n < N do
4: Compute the standard error estimate σ̂

(n)
ij for treatment

(i, j) at time point n
5: Option 1:AREOA.
6: if

�
i

��
j σ̂

(n)
ij

�2
�= 0 then

7: Let τij =
σ̂(n)
ij

�
j σ̂(n)

ij

Tij
�

j TijZ
where Z is chosen such that�

i

�
j τij = 1

8: else
9: let τij = 1

CK
10: end if

Pick the next subpopulation and treatment pair (i, j)
with probability (1− �)τij + � ∗ 1

CK
11: Option 2:AARandom.

Randomly pick a subpopulation i according to its its
composition in the general population, and then pick a
treatment j uniformly at random.

12: Option 3:GAFS-MAX.
Assume some arbitrary but fixed ordering for the set of
all (i, j) pairs.
Let Un = {(k, l) : Tn

k,l <
√
n+ 1}

Let

In+1 =

�
minUn if Un �= ∅

argmax
(σ̂(n)

ij )2

Tn
ij

otherwise

Choose option In+1 and update T
n+1
ij accordingly

13: n = n+ 1
14: end while

Fig. 1. Algorithm Framework

We have chosen these settings to demonstrate the behaviors
of the various policies under different scenarios. For dataset
DS1, subpopulation c1 has a large treatment effect variance
relative to the other subpopulations. For dataset DS2, the sub-
population distribution is non-uniform in that subpopulation
c1 is rare compared to the other subpopulations. For dataset
DS3, we consider a scenario where there are 8 subpopulations
with moderate to large variances across subpopulations. For
dataset DS4, we consider a scenario where all subpopulations
have the same variance in treatment effect, but within each
subpopulation there is a large difference in variance between
the estimated mean responses to each treatment. For dataset
DS-CBASP, the mean and variances are taken from a real
clinical trial for chronic depression [32]. In this case, the
treatment variances of each subpopulations are very similar.

For each dataset, we first plotted the loss of a policy as
the number of recruited subjects increases (Figure 2). In this
set of plots, we fixed the number of initial recruitments per
treatment to B = 5. In the figures, the dotted lines at the
bottom correspond to the optimal loss of the oracle allocation
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(c) DS3
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20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

recruitment

lo
ss

 

 
RandomAssignmentPolicy
AREOAPolicy 0.1
GAFS−MAX
Ideal Baseline

(e) DS-CBASP

Fig. 2. Simulation results
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Fig. 3. Algorithm AREOA on DS3
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Fig. 4. Algorithm GAFS-MAX on DS3, subfigure (a), (b) are the subpopulation allocations and variances, subfigure (c) uses the same dataset as DS3, with
ordering of the subpopulations reversed



policy (i.e.
�

i(
�

j σij)
2

N with N varying from 1 to 200).
As shown in Figure 2, for DS1, both AREOA and GAFS-

MAX converge, but AREOA is able to utilize the data more
efficiently. For DS2, due to the nonuniform distribution of
the subpopulation distribution, random assignment performs
significantly worse than algorithms that make use of the
estimated treatment variances. For DS3, the performance of
GAFS-MAX is worse than random, which is suspicious; we
discuss this further below. For DS4, we notice that even in
cases where there are no significant differences in treatment
variance across subpopulations, AREOA still performs quite
well; note that as the budget is spent, AREOA approaches
the baseline (optimal oracle allocation) slightly more quickly
than the other two active learning policies. We included the
dataset DS-CBASP, as there are no big differences in estimated
variances across subpopulations, and across treatments, for
which the random allocation policy AARandom is perhaps
the right choice; we observe that AREOA converges slowly
at the beginning but approaches the baseline as quickly as
AARandom as the budget runs out. It is reassuring to see
that AEROA performs in a reasonable manner, even for cases
which it wasn’t specifically designed to handle.

Focusing further on the performance of AREOA with
dataset DS3, we see in Figure 3 how the allocations and
variances of each subpopulation evolve as the budget is
spent. We can clearly see that the recruitment rates across
subpopulations correlate with the subpopulation variance, and
thus also the amount of exploration needed. For the same
dataset, and method GAFS-MAX, we plotted the allocations
and variances of each subpopulation in Figure 4. As is
shown in subfigure (a), (b), there are many plateauing regions
for certain high variance subpopulations, which are severely
under-explored, due to the fact that resources (allocations)
have been devoted to other subpopulations. We think there
are a couple of causes behind this behavior. First, when there
are many subpopulations, GAFS-MAX still will spend time
revisiting subpopulations whose treatment variance is well
estimated. This can be problematic, especially if the budget
is small and there exists some subpopulations that have much
larger variances and thus still need more exploration. Another
problem with using GAFS-MAX in our setting is the fixed
ordering for picking the next rarely visited arm, which may
also delay a high variance arm being revisited in the short
term. To confirm that the algorithmic behavior of GAFS-MAX
is dependent on the ordering of subpopulations, we reversed
their ordering in DS3, and we see now in subfigure (c) of
Figure 4 that the performance of GAFS-MAX has changed
significantly.

One of the key parameters of our framework, common to all
three methods considered, is the initial number of allocations
for each treatment per subpopulation B. We varied B from 1
to 10 and we confirmed that in general, most results presented
above are robust to the choice of B, however in some cases
using an initial sample that is too small may lead to problems.
As shown in Figure 5, when using B = 2 for the DS4 dataset,
the AREOA approach tends to start converging too early and

converge slowly (compare this to the Figure 2(d), where B =
5). It is standard practice in any adaptive trial to reserve a
significant portion (up to 50%) of the trial population to be
fully randomized in order to avoid such problems.

V. DISCUSSION

We presented an active learning problem for use in clinical
trials that aims to construct an informative, yet well-balanced,
ITR. In this section, we discuss open issues and possible future
work.

1. We demonstrated the potential of an active learning
policy (AREOA) in comparison with a completely randomized
patient–treatment allocation policy, and with the GAFS-MAX
active learning policy from the bandit literature. Our AREOA
strategy is shown to be consistent empirically, but a formal
proof that it will asymptotically converge to the optimal is
required. We could also consider more advanced algorithms,
for example algorithms that take into account the knowledge
of total budget. Another possible improvement is to develop a
strategy that further considers the heterogeneity within each
subpopulation by considering bandit with covariates. This
would require some prior knowledge, or parametric modeling,
to capture how these covariates are relevant to the treatment
response.

2. When there are more than two arms (K >= 3), our
original formulation of minimizing maximal variances across
subpopulations require generalization. The problem is that
our approach relies on pairwise comparisons, which do not
translate readily to multi-arm cases. In cases where there is a
control arm (e.g. a well known standard treatment) for each
bandit, whose mean and variance is given, then perhaps we can
proceed by bounding the maximal uncertainty of the treatment
effects compared to this arm. This has not been explored in
detail. Another possibility, which is closer to what we want,
is to minimizing the maximal variances of the (true) top 2
treatments, albeit their indentity needs to be discovered by the
algorithm as well with high probability.

3. If the variance in one of the subpopulations is much
larger than the variance in the other subpopulations, an active
learning policy such as AREOA would devote the most
resources to this high variance subpopulation. This behavior
is expected, as it is due to the goal of minimizing the max-
imal treatment variances. For cases where the discrepancy in
treatment variance between subpopulations is extremely high,
this could turn out to be problematic; ideally, we may prefer
a stopping rule for excessively high variance subpopulations.
This stopping rule would tell us to ”give up” on minimizing
the variance of the treatment effect for these subpopulations.
Note, however, since the variance of the estimated mean
is decreasing at rate 1/n, that the subpopulation variance
would have to be grossly bigger than the other subpopulation
variances. Also, if we know from prior knowledge that certain
subpopulations have high variance treatment effect, another
possible solution is to reweight the importance of the corre-
sponding terms in objective function by linear or logarithmic
scaling. For instance, (1) could become maxi

�
j αij

σ2
ij

Tij
, with



αij being the scaling factors. This variation can also be used
to accommodate nonuniform cost models where the costs of
treating certain subpopulations are significantly different from
treating other subpopulations.

4. The above remark motivates a different choice of reward
function. For each subpopulation, we want to know whether a
treatment is significantly better than the others. Once we can
answer this question (accept or reject the null hypothesis) with
high probablity, the trial should stop for that subpopulation.
In other words, a more important reward pertains to the
type 1 and type 2 error rates, instead of just minimizing
the variance. In this regard, we think a bayesian formulation
that incrementally updates our belief regarding these questions
would be natural.

5. Finally, the problem that we discussed is a one-stage
RL problem, which doesn’t involve state changes. In the
literature, “dynamic treatment regimes” or “adaptive treatment
strategies” [28]–[31] naturally generalize the idea of ITRs to
multiple stages by constructing a sequence of decision rules,
one for each disease stage. How to extend the ideas of this
paper to such time-varying settings is also an open question.
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