	Leo	Cathy	Dave	Mike	Charles
Sex	Male	Female	Male	Male	Male
School	SNRE	SNRE	SNRE	SNRE	SPH
Year in	5th year	5 th year	3 rd year	4 th year	3 rd year
school					
Subject	PhD	PhD	PhD student,	PhD student,	PhD student
specialty	student in	student in	Wetland	streamside riparian	in
	Resource	water	restoration	wetlands and their role	Environment
	Policy &	resources	and mitigation	in river ecosystems;	Health
	Behavior;		consulting in		Science
		Just	a firm;	Generally familiar	
	Master	finished	river systems;	with aspects of river	Master of
	degree in	her	water level	ecosystems and their	public health
	computer	dissertation	fluctuation	influence on	
	science.		and water	water quality, Taught	Water quality
			source in	basic water chemistry	management.
	Works in		wetlands in	to graduate and	
	GIS lab;		southeastern	undergraduate	
	T	D	Michigan.	students.	
Modeling	Taught	Diagram	Used	Created GIS-based	Modeling
experience	how to use	models	modeling	models in	drinking
	STELLA	from her	programs:	publications.	water
	for living.	dissertation	ArcView;		distribution
		obtained	Arcinto GIS;		systems;
			and HEC		Computer
			(<u>http://www</u> .		applications,
			dodson-		modeling and
			hydro.com/).		computer-
					assisted
					real time data
					acquisition
					and control
			1		methods.

Aı	opendix	1-1	Profiles	ofex	perience	learners
	penan		11011105	01 0/1	perionee	rearrents

Note: SNRE--School of Natural Resources and Environment; SPH--School of Public Health; GIS--Geographic Information System; ArcView--method of look at digital map HEC--Hydro Engineer C.

Appendix 1-2 Profiles of novice learners: 7th grade science students during school year 99-00 Water quality unit I

Student	LM & EB	DA & PA	AC & CD	AT & RN	RF &	KN & WR
pair	Lisa (G)	Don (B)	Alan (B)	Arno (B)	AW	Katy (G)
	Elena (G)	Pat (B)	Carla (G)	Rose (G)	Ron (B)	Wyne (B)
					Abby (G)	
Class	В	В	С	С	D	D
period						
Teacher	Alice	Alice	Carol	Carol	Jack	Jack
Characte	The are	Don	Both are	Rose is an	Both are	Both students
ristic of	both	seemed to	above	average	about	are above
this pair	average	proposed	average	student, while	average.	average. Katy
	students	more ideas	students.	Arno is a little	Abby	made more
	and equally	than Pat.	Cathy	bit below	contribut	suggestions
	contributed	Both are	contributed	average. Both	ed more	while Wyne's
	to their	average	more ideas.	contribute	than Ron.	ideas were
	model	students.		equally.		more accepted.

Note: G = Girl; B = Boy

Appendix 1-3 Profiles of novice learners: 7th grade science students during school year 99-00 Decomposition Unit

Student	GM & KV	AS & BJ	AT & LP	AS & RN	RF & AW	KN & WR
pair	George (B)	Alex (B)	Arno (B)	Ash (B)	Ron (B)	Katy (G)
	Ken (B)	Ben (B)	Laura (G)	Rose (G)	Abby (G)	Wyne (B)
Class	В	В	С	С	D	D
period						
Teacher	Alice	Alice	Carol	Carol	Jack	Jack
Charact	George is	Both are	Laura is	Ash was	Both are	Both students
eristic	below	active and	about	similar to	about	are above
of this	average	average	average.	Arno. Both	average.	average.
pair	while Ken	students.	Arno	contribute	Abby	Katy made
	is a better	Equally	proposed	equally.	contributed	more
	student.	contributed	most ideas		more than	suggestions
	Ken made	to their	while Laura		Ron	while
	most the	model.	critiqued			Wyne's ideas
	decisions.		more.			were more
						accepted.

Note: G = Girl; B = Boy

Appendix 2 Coding scheme for modeling practices

	Modeling practices are scientific practices in modeling. They are actions and conversations that reflect students' reasoning processes.
4.1 Planning	Planning include statements or actions in which students identify important components of phenomena they are going to model; decide relationships, patterns that variables are going to be connected, or in which they attempt to predict on their model's behavior.
4.1.1 Generating ideas	Students talk about what they are going to model, e.g. I am going to model the water quality in the stream behind our school; I am going to model the decomposition of daily garbage of my house.
4.1.2 Stating goals	Students decide what their driving question and sub-questions, e.g. how clean is the stream in my community; does street runoff affects the water quality of the stream? Students articulate what kind of model they should have, e.g. I want a simple model; I
	want the model to be as complex as I can to include all the factors that I have.
4.1.3 Identifying factors/objects	Students specify an entity as an object or a factor without further discussion or explanation. For example, "Let's have more animals", "We need a factory in our model".
4.1.4 Specifying relationships	Students talk about between what factors they need to create relationships and what the relationship should look like. For example, one student suggested "I think we need build relationship between the amount of cars and water quality because cars bring salt from the bridge into Huron River. It should be "more and more" because the more cars run across the bridge the more salt is brought into the water."
4.1.5 Discussing factors/objects	Students talk about/share ideas on the meanings of objects/factors, fill in description boxes; discuss what objects/factors are relevant (or not relevant) to their driving questions or modeling goals; they discuss factors' initial values.
4.2 Searching	Searching includes talking and actions of getting more inputs in terms of any questions students have when they are creating models.
4.2.1 Seeking information	Students ask either their teacher or their peers for answer of content knowledge, or modeling ideas. For example, a student asks "do you know how to delete a factor?", or "how can I change the initial value?"
4.2.2 Gathering resources	Students check their note, search online resources or go to library to gain more information about their project and model.
4.3 Synthesizing	Synthesizing are statements or actions related to viewing the content, behavior, or form of a model as a whole, or to making connections between previously unconnected ideas.
4.3.1 Discussing relationships	Students discuss correlation or cause and effect relationships. For example, one pair of students decided to delete the relationship between biological contaminants and ground water quality because there are not so many biological contaminants in ground water.
4.3.2 Making connections	Students make explanation or argument with the support from their experience or what they have learned, e.g. we did not find pH value change too much from 7 in our investigation so that it is not the major factor that affects water quality.
4.4 Analyzing	Analyzing involves students' statements or actions to decompose the large system that they are going to model into sub-systems or components. The purpose is selecting the appropriate objects, factors and relationships to reflect the most important characteristics of the model. It may also involve students' meta-cognition or reflective behavior so that they can decide what they should do next.
4.4.1 Deciding about course of action	Students state what they are going to do next, e.g. "let's go to build mode because we have already had enough factors". "Let's add a factor on animal population"
4.4.2 Recognizing the need of test	Students state their need for test so that they can analyze the model's behavior in test model. For example, Student says "The model is too complex, let's test it now". "I want to see how factory emission affects water quality."
4.5 Explaining	Explaining is associated with students' talking or writing to show others about their ideas and the reasons of their thinking.
4.5.1 Explaining	Students explain relationship between factors; make cause and effect statements. For

why/how	example, Students say "As acid rain increases water quality decreases more and more because acid rain contain pollutants" "It's more and more because acid rain can be disastrous to plants, animal, building as well as people while it increases to some degree".
4.5.2 Justifying arguments	Students try to make a logical argument to support an idea or explanation. They may either give examples or state evidence.
4.5.3 Elaborating ideas	Students restate an idea, demonstrate it to others. For example, One student say that he want to use "liquid effluent' to replace "factory waste" because liquid waste is the main pollutant source in his "water quality model".
4.6 Evaluating	Students talk about the quality of their model; present their model to others to get feedback or test the model in order to improve their model.
4.6.1 Predicting what should happen	Students say things like "it should dowhen we run it" or "it's going to"; or, they say "it did not do what I thought it should do".
4.6.2 Identifying anomalies	Students have some unexpected findings. For example, one student found that they could not change the slide bar in the meter of dependent variable. Another student found that when acid rain increases water quality did not change that much as he predicted. A third student found that the colorful graph line of one factor does not show up because this one's initial value was set the same as another factor's. A fourth student found that when they run their model nothing happened.
4.6.3 Critiquing/interpreting the results	Students make comments on the test results when they run their models, such as "when turbidity goes high water quality goes down" "it's working" "something is wrong her"
4.6.4 Identifying/proposing solutions	Students suggest ways to correct anomalies. "I know, X goes down because we have the relationship going the wrong way".
4.6.5 Carrying out solutions	Students actually do their proposed solution. For example, students create a stream quality factor after the teacher point out that is something they missed in their water quality model. This generally occurs after students propose solutions. (not all changes get this code)
4.7 Other	Used only for interesting items, no code covers.

Appendix 3 Table 4-1 The frequency of modeling practices during novice students' "Water quality" modeling processes

	Plan	Plan Mode Build Mode		Test 1	Total instances		
Name	Number of	Instances	Number of	of Instances	Number of	f Instances	of each practice $AO(A + 1)$.
LM &	26		21		19		Decide course of
EB	1(4 1 2)	1(4 2 2)	3(4 1 3)	3(4 3 1)	1(4 1 2)	1(4 5 1)	action
	8(4 1 3)	4(4 4 1)	2(4 1 4)	5(4 4 1)	1(4 1 5)	2(4 5 3)	39 (4 1 5):
	7(4 1 5)	2(4 5 1)	2(4 1 5)	3(4 5 3)	4(4 2 1)	5(4 6 3)	Discussing
	2(4 2 1)	1(4 5 3)	2(4 2 1)	1(4 6 5)	4(4 4 1)	1(4 6 4)	fac/obj
DA &	11		29		10	1(1.5.0)	37 (4 5 1):
PA	$1(4 \ 1 \ 1)$	$1(4 \ 4 \ 1)$	$1(4 \ 1 \ 1)$	3(4 3 2)	2(4 1 5)	1(4 5 3)	Explain why/h.
	5(4 3)	1(4 5 1)	8(4 1 4)	4(4 4 1)	$1(4 \ 4 \ 1)$	$1(4 \ 6 \ 2)$	32 (4 6 3)
	5(415)		$3(4 \ 1 \ 5)$ $1(4 \ 2 \ 1)$	$1(4 \ 4 \ 2)$ $2(4 \ 5 \ 1)$	2(4 5 1)	$2(4 \ 0 \ 3)$	Crit.&Interp.
			$1(4 \ 2 \ 1)$ $2(4 \ 3 \ 1)$	$3(4 \ 5 \ 1)$ $3(4 \ 6 \ 5)$		1(4 0 4)	Resul.
AC &	18		11	3(4 0 5)	17		32 (4 1 3):
CD	$2(4\ 1\ 1)$	1(4 3 1)	1(4 1 5)	$1(4 \ 4 \ 2)$	5(4,6,2)	5(4 6 4)	Identifying
02	$4(4 \ 1 \ 3)$	1(4 3 2)	1(422)	2(451)	7(463)		object/factor
	$2(4\ 1\ 5)$	3(4 4 1)	3(4 3 1)	2(465)	,(100)		$31(4 \ 3 \ 1)$:
		5(4 5 1)	1(4 3 2)				27(4,2,1)
AT &	12		21		20		Seek info
RN	2(4 1 1)	2(4 2 1)	1(4 1 3)	2(4 4 1)	1(4 1 5)	1(4 5 3)	16(4 6 4)
	5(4 1 3)	1(4 4 1)	1(4 1 4)	2(4 4 2)	3(4 2 1)	3(4 6 2)	Iden./Prop.
	1(4 1 5)	1(4 5 1)	5(4 2 1)	7(4 5 1)	1(4 4 1)	6(4 6 3)	Solutions
			3(4 3 1)		4(4 5 1)	1(4 6 4)	15(4 5 3)
RF &	13		11		17		Elab. Ideas
AW	2(4 1 3)	$3(4 \ 4 \ 1)$	$1(4 \ 1 \ 1)$	2(4 3 1)	$1(4 \ 1 \ 5)$	$2(4 \ 4 \ 1)$	15(4 1 4)
	$1(4 \ 1 \ 5)$	2(451)	$1(4 \ 1 \ 2)$	$1(4 \ 4 \ 1)$	$1(4\ 2\ 1)$	2(451)	Specifying
	2(4 2 1)	2(4 5 3)	$1(4 \ 1 \ 5)$ $1(4 \ 2 \ 1)$	4(4 5 1)	$1(4 \ 3 \ 1)$ $2(4 \ 2 \ 2)$	$2(4 \ 6 \ 1)$ $2(4 \ 6 \ 2)$	relationships
			1(4 2 1)		2(4 5 2)	$2(4 \ 0 \ 2)$ $4(4 \ 6 \ 3)$	10(4 6 2)
KN &	16		32		32	4(4 0 5)	Iden. Anomalies
WR	$1(4 \ 1 \ 2)$	$1(4 \ 4 \ 1)$	2(4 1 4)	$7(4 \ 4 \ 1)$	$2(4\ 1\ 5)$	4(4,6,2)	8(4 6 5)
,,,,,,	$2(4 \ 1 \ 3)$	1(4 5 3)	2(415)	1(451)	2(4 2 1)	8(4 6 3)	carrying out
	9(4 1 5)	1(4 6 4)	$1(4\ 2\ 1)$	3(4 5 3)	$1(4\ 3\ 1)$	6(4 6 4)	$7(4 \ 1 \ 1)$
	1(4 2 1)	~ /	15(4 3 1)	1(4 6 4)	3(4 3 2)	2(4 6 5)	Generate ideas
					3(4 4 1)		5(4 3 2)
					1(4 5 3)		Making
Summary	95		116		103		connection
	5(4 1 1)	1(4 3 1)	2 (4 1 1)	28 (4 3 1)	7(4 1 5)	5(4 5 3)	3(4 1 2)
	2(4 1 2)	1(4 3 2)	1(4 1 2)	4(4 3 2)	10 (4 2 1))	10 (4 6 2)	Stating goals
	26 (4 1 3)	13 (4 4 1)	4(4 1 3)	19 (4 4 1)	2(4 3 1)	32 (4 6 3)	2(4 2 2)
	$23(4 \ 1 \ 5)$	11(451)	15 (4 1 4)	3(4 4 2)	8(4 4 1)	14 (4 6 4)	Gathering
	$7(4\ 21)$	4(453)	9(4 1 5)	17(451)	9(4 5 1)	2(4 6 5)	resoucrces
	1(4 2 2)	1(4 6 4)	$10(4 \ 2 \ 1)$ $1(4 \ 2 \ 2)$	0(4 5 3) 1(4 6 4)			
			1(4 2 2)	$1(4 \ 0 \ 4)$ $6(4 \ 6 \ 5)$			
Note:	RF& AW was	s absent on day	RF& AW wa	s absent on day	On Day 1 LM	A&FR did not	-
1000.	2 On day 3	only AT&RN	2. On day 3	AC&CD did	have test m	ode activity.	
	KN&WR had	d some activity	not engage r	any modeling	RF&AW was	absent on day	
	in play	n mode;	pra	ctices	2. On day 3.	AC&CD did	
		,	Pre		not engage n	any modeling	
					prac	tices	

	Plan 1	Mode	Buil	Build Mode		Model	Total instances
Name	Number of	Instances	Number	of Instances	Number o	f Instances	of each practice $A7(4 5 1)$.
Leo	20		18		7		Explain why/h.
	1(4 1 1)	3(4 2 1)	1(4 1 1)	2(4 4 1)	2(4 2 1)	1(4 6 4)	36 (4 1 5):
	1(4 1 2)	1(4 4 1)	2(4 1 2)	1(4 5 1)	2(4 6 2)	1(4 8 4)	Discussing
	7(4 1 5)	7(4 5 1)	2(4 1 5)	1(4 8 1)	2(4 6 3)		fac/obi
			7(4 3 1)	2(4 8 4)			-29(431):
Cathy	13		18		4		Discu. Relation
	1(4 1 2)	4(4 5 1)	3(4 1 2)	5(4 3 1)	1(4 2 1)		24 (4 2 1):
	4(4 1 5)	3(4 8 1)	3(4 1 5)	3(4 5 1)	2(4 6 3)		Seek info.
	1(4 3 1)		3(4 2 1)	1(4 8 1)	1(4 8 4)		12(4 1 2)
Dave	17		17		15		Stating goals
	1(4 1 1)	5(4 3 1)	3(4 1 5)	1(4 4 1)	1(4 1 3)	4(4 6 2)	12(4 6 3)
	1(4 1 3)	5(4 5 1)	3(4 2 1)	5(4 5 1)	2(4 2 1)	2(4 6 3)	Crit.&Interp.
	5(4 1 5)		5(4 3 1		2(4 3 1)	3(4 6 4)	Resul.
					1(4 4 1)		12(4 8 1)
Mike	27		16		14		Refer phenomena
	1(4 1 1)	4(4 2 1)	2(4 2 1)	4(4 8 1)	1(4 1 2)	3(4 6 2)	11(4 1 2)
	2(4 1 2)	8(4 5 1)	2(4 3 1)	1(4 8 4)	1(4 2 1)	5(4 6 3)	Stating Goals
	4(4 1 3)	3(4 8 1)	$1(4 \ 4 \ 1)$		2(4 4 1)	2(4 6 4)	10(4 6 2)
	3(4 1 5)	2(4 8 4)	6(4 5 1)				Iden. Anomalies
Charles	28		11	0(4.0.1)	7	1(1.5.0)	9(4 8 4)
	2(4 1 1)	2(4 2 1)	1(4 1 1)	2(4 3 1)	$1(4 \ 1 \ 1)$	1(4 6 2)	Refer literature
	$1(4 \ 1 \ 2)$	10(451)	$1(4 \ 1 \ 2)$	$1(4 \ 4 \ 1)$	$1(4\ 2\ 1)$	$1(4 \ 6 \ 3)$	8(4 1 1):
	3(4 1 5)	2(4 8 4)	$1(4 \ 1 \ 5)$	4(4 5 1)	2(4 4 1)	1(4 6 4)	Generate ideas
C	8(4 1 5)		1(4 2 1)		47		8(4 1 3):
Summary	104 5(4,1,1)	G(1, 2, 1)	09 2(4,1,1)	21(4,2,1)	4 / 1(4,1,1)	$5(4 \ 4 \ 1)$	Identifying
	5(4 1 1) 5(4 1 2)	$0(4 \ 5 \ 1)$ $1(4 \ 4 \ 1)$	2(4 1 1) 6(4 1 2)	$21(4 \ 5 \ 1)$ $12(4 \ 5 \ 1)$	$1(4 \ 1 \ 1)$ $1(4 \ 1 \ 2)$	3(4 4 1) 10(4 6 2)	object/factor
	J(4 1 2)	1(4 4 1) 24 (4 5 1)	$0(4 \ 1 \ 2)$ $0(4 \ 1 \ 5)$	$13(4 \ 3 \ 1)$	$1(4 \ 1 \ 2)$ $1(4 \ 1 \ 2)$	$10(4 \ 0 \ 2)$ $12(4 \ 6 \ 2)$	/(4 6 4)
	$7(4 \ 1 \ 5)$	$54(4 \ 5 \ 1)$	$9(4 \ 1 \ 3)$ $9(4 \ 2 \ 1)$	$0(4 \ 0 \ 1)$ $2(4 \ 8 \ 4)$	$1(4 \ 1 \ 3)$ $6(4 \ 2 \ 1)$	7(4 6 3)	Iden./Prop.
	$27(4 \ 1 \ 3)$ $0(4 \ 2 \ 1)$	$0(4 \ 8 \ 1)$	9(4 2 1)	3(4 8 4)	0(421) 2(431)	7(4 0 4) 2(4 8 4)	solutions
	9(421)	4(4 8 4)			2(4 5 1)	2(4 8 4)	0(4 4 1):
							Decide course of
Note							A(A 7 1)
note							4(4 / 1) Evaluring
							3(4,5,3)
							Flah Ideas
							Liau. Iucas

Table 4-2 The frequency of modeling practices during PhD students' "Water quality" modeling processes

Appendix 5 Mode movement charts

Appendix 6 Detailed frequency of mode movement

Name	Plan	Build	Test	Shift-	Tech.	Off-	Total	Note		
				ing	Problem	task				
WR&KN	10	12	8	1	0	0	32/32			
RF&AW	2	6	4	0	0	0	13/13	Missed 2 nd day		
AC&CD	3	7	9	1	0	3	20/23	*		
AT&RN	11	20	17	2	0	2	40/42			
LM&EB	6	12	5	0	3	0	23/26			
DA&PA	10	13	13	0	4	0	36/40			

Table 5-1 Novices water quality unit

Table 5-2 Novices decomposition unit

Name	Plan	Build	Test	Shift-	Tech.	Off-	Total	Note
				ing	Problem	task		
WR&KN	3	8	6	0	0	0	17/17	
RF&AW	4	5	2	0	0	0	11/11	
RN&AS	2	2	1	0	0	0	5/5	Missed 2 nd day
AT&LP	5	8	3	0	0	0	16/16	
AS&BJ	2	3	2	0	0	0	7/7	
GM&KN	2	2	3	0	1	0	7/8	

Table 5-3 Expert water quality

Experts	Plan	Buil	Test	Shift-	Tech.	Off-	Total	Note
WQ		d		ing	Problem	task		
Chris	7	6	1	1	0	0	15/15	Not used to utility
Matt	1	4	4	0	0	0	9/9	
David	4	6	5	1	0	0	16/16	More build&test for trouble-
								shooting utility
Christine	3	3	1	0	1	0	7/8	She lost her model at the end
Luis	2	2	1	0	0	0	5/5	He is very familiar w/
								STELLA

* Since technical problems and off-tasks were not modeling activities, the occurrence(s) was not counted. For example, 20/23 means students were on task 20 out of 23 moves.

Appendix 7 Model layouts analysis

Note: For technical reason, the powerpoint file was not included in this paper. Please contact the first author if you are interested in the file (**Email:** bhzhang@umich.edu)