Counting nilpotent extensions

Peter Koymans

University of Michigan

Number Theory Web Seminar
4 May 2023

Malle's conjecture

Conjecture (Malle's conjecture)

Let G be a finite, non-trivial group. Then there exist numbers $a(G) \in \mathbb{Q}_{>0}, b(G) \in \mathbb{Z}_{\geq 0}$ and $c(G)>0$ such that

$$
\#\left\{K / \mathbb{Q}: D_{K} \leq X, \operatorname{Gal}(K / \mathbb{Q}) \cong G\right\} \sim c(G) X^{a(G)}(\log X)^{b(G)} .
$$

Malle's conjecture

Conjecture (Malle's conjecture)

Let G be a finite, non-trivial group. Then there exist numbers $a(G) \in \mathbb{Q}_{>0}, b(G) \in \mathbb{Z}_{\geq 0}$ and $c(G)>0$ such that

$$
\#\left\{K / \mathbb{Q}: D_{K} \leq X, \operatorname{Gal}(K / \mathbb{Q}) \cong G\right\} \sim c(G) X^{a(G)}(\log X)^{b(G)} .
$$

This is a generalization of the inverse Galois problem.

Malle's conjecture

Conjecture (Malle's conjecture)

Let G be a finite, non-trivial group. Then there exist numbers $a(G) \in \mathbb{Q}>0, b(G) \in \mathbb{Z}_{\geq 0}$ and $c(G)>0$ such that

$$
\#\left\{K / \mathbb{Q}: D_{K} \leq X, \operatorname{Gal}(K / \mathbb{Q}) \cong G\right\} \sim c(G) X^{a(G)}(\log X)^{b(G)} .
$$

This is a generalization of the inverse Galois problem.

As phrased above, this conjecture is widely believed to be correct.

Malle's conjecture

Conjecture (Malle's conjecture)

Let G be a finite, non-trivial group. Then there exist numbers $a(G) \in \mathbb{Q}_{>0}, b(G) \in \mathbb{Z}_{\geq 0}$ and $c(G)>0$ such that

$$
\#\left\{K / \mathbb{Q}: D_{K} \leq X, \operatorname{Gal}(K / \mathbb{Q}) \cong G\right\} \sim c(G) X^{a(G)}(\log X)^{b(G)} .
$$

This is a generalization of the inverse Galois problem.
As phrased above, this conjecture is widely believed to be correct.
Malle proposed some explicit values $a_{\text {Malle }}(G)$ and $b_{\text {Malle }}(G)$. Malle's $b_{\text {Malle }}(G)$ is known to be wrong in general.

Malle's conjecture

Conjecture (Malle's conjecture)

Let G be a finite, non-trivial group. Then there exist numbers $a(G) \in \mathbb{Q}>0, b(G) \in \mathbb{Z}_{\geq 0}$ and $c(G)>0$ such that

$$
\#\left\{K / \mathbb{Q}: D_{K} \leq X, \operatorname{Gal}(K / \mathbb{Q}) \cong G\right\} \sim c(G) X^{a(G)}(\log X)^{b(G)} .
$$

This is a generalization of the inverse Galois problem.
As phrased above, this conjecture is widely believed to be correct.
Malle proposed some explicit values $a_{\text {Malle }}(G)$ and $b_{\text {Malle }}(G)$. Malle's $b_{\text {Malle }}(G)$ is known to be wrong in general.

Sometimes $c(G)$ is an Euler product. This is expected to be true for S_{n} (Malle-Bhargava principle).

Known cases

Malle's conjecture is known in the following cases:

Known cases

Malle's conjecture is known in the following cases:

- abelian G by Wright;

Known cases

Malle's conjecture is known in the following cases:

- abelian G by Wright;
- S_{3} by Davenport-Heilbronn (with much follow-up work);

Known cases

Malle's conjecture is known in the following cases:

- abelian G by Wright;
- S_{3} by Davenport-Heilbronn (with much follow-up work);
- S_{4}, S_{5} by Bhargava;

Known cases

Malle's conjecture is known in the following cases:

- abelian G by Wright;
- S_{3} by Davenport-Heilbronn (with much follow-up work);
- S_{4}, S_{5} by Bhargava;
- $S_{3} \subseteq S_{6}$ by Bhargava-Wood;

Known cases

Malle's conjecture is known in the following cases:

- abelian G by Wright;
- S_{3} by Davenport-Heilbronn (with much follow-up work);
- S_{4}, S_{5} by Bhargava;
- $S_{3} \subseteq S_{6}$ by Bhargava-Wood;
- $D_{4} \subseteq S_{4}$ by Cohen-Diaz y Diaz-Olivier (with follow-up work by Bucur-Florea-Serrano López-Varma);

Known cases

Malle's conjecture is known in the following cases:

- abelian G by Wright;
- S_{3} by Davenport-Heilbronn (with much follow-up work);
- S_{4}, S_{5} by Bhargava;
- $S_{3} \subseteq S_{6}$ by Bhargava-Wood;
- $D_{4} \subseteq S_{4}$ by Cohen-Diaz y Diaz-Olivier (with follow-up work by Bucur-Florea-Serrano López-Varma);
- generalized quaternion groups and some wreath products by Klüners;

Known cases

Malle's conjecture is known in the following cases:

- abelian G by Wright;
- S_{3} by Davenport-Heilbronn (with much follow-up work);
- S_{4}, S_{5} by Bhargava;
- $S_{3} \subseteq S_{6}$ by Bhargava-Wood;
- $D_{4} \subseteq S_{4}$ by Cohen-Diaz y Diaz-Olivier (with follow-up work by Bucur-Florea-Serrano López-Varma);
- generalized quaternion groups and some wreath products by Klüners;
- any nilpotent group G such that all elements of order p are central, where p is the smallest prime dividing $\# G$ by K.-Pagano;

Known cases

Malle's conjecture is known in the following cases:

- abelian G by Wright;
- S_{3} by Davenport-Heilbronn (with much follow-up work);
- S_{4}, S_{5} by Bhargava;
- $S_{3} \subseteq S_{6}$ by Bhargava-Wood;
- $D_{4} \subseteq S_{4}$ by Cohen-Diaz y Diaz-Olivier (with follow-up work by Bucur-Florea-Serrano López-Varma);
- generalized quaternion groups and some wreath products by Klüners;
- any nilpotent group G such that all elements of order p are central, where p is the smallest prime dividing $\# G$ by K.-Pagano;
- nonic Heisenberg extensions by Fouvry-K.;

Known cases

Malle's conjecture is known in the following cases:

- abelian G by Wright;
- S_{3} by Davenport-Heilbronn (with much follow-up work);
- S_{4}, S_{5} by Bhargava;
- $S_{3} \subseteq S_{6}$ by Bhargava-Wood;
- $D_{4} \subseteq S_{4}$ by Cohen-Diaz y Diaz-Olivier (with follow-up work by Bucur-Florea-Serrano López-Varma);
- generalized quaternion groups and some wreath products by Klüners;
- any nilpotent group G such that all elements of order p are central, where p is the smallest prime dividing $\# G$ by K.-Pagano;
- nonic Heisenberg extensions by Fouvry-K.;
- direct products $S_{n} \times A$ for $n \in\{3,4,5\}$ and A abelian by Wang (with \#A coprime to some values) and later by Masri-Thorne-Tsai-Wang.

An exercise about hyperbolas

We have

$$
\begin{aligned}
\sum_{a b^{2} \leq x} 1 & =\sum_{b \leq \sqrt{X}} \sum_{a \leq x / b^{2}} 1=\sum_{b \leq \sqrt{X}}\left(\frac{X}{b^{2}}+O(1)\right) \\
& =X \sum_{b=1}^{\infty} \frac{1}{b^{2}}+O(\sqrt{X})
\end{aligned}
$$

An exercise about hyperbolas

We have

$$
\begin{aligned}
\sum_{a b^{2} \leq x} 1 & =\sum_{b \leq \sqrt{X}} \sum_{a \leq x / b^{2}} 1=\sum_{b \leq \sqrt{X}}\left(\frac{X}{b^{2}}+O(1)\right) \\
& =X \sum_{b=1}^{\infty} \frac{1}{b^{2}}+O(\sqrt{X})
\end{aligned}
$$

Observations:

- main contribution comes from $b<\log \log \log \log X$;

An exercise about hyperbolas

We have

$$
\begin{aligned}
\sum_{a b^{2} \leq x} 1 & =\sum_{b \leq \sqrt{X}} \sum_{a \leq x / b^{2}} 1=\sum_{b \leq \sqrt{X}}\left(\frac{X}{b^{2}}+O(1)\right) \\
& =X \sum_{b=1}^{\infty} \frac{1}{b^{2}}+O(\sqrt{X})
\end{aligned}
$$

Observations:

- main contribution comes from $b<\log \log \log \log X$;
- every given b contributes a positive proportion to the main term.

An exercise about hyperbolas

We have

$$
\begin{aligned}
\sum_{a b^{2} \leq x} 1 & =\sum_{b \leq \sqrt{X}} \sum_{a \leq x / b^{2}} 1=\sum_{b \leq \sqrt{X}}\left(\frac{X}{b^{2}}+O(1)\right) \\
& =X \sum_{b=1}^{\infty} \frac{1}{b^{2}}+O(\sqrt{X})
\end{aligned}
$$

Observations:

- main contribution comes from $b<\log \log \log \log X$;
- every given b contributes a positive proportion to the main term.

An exercise about hyperbolas

We have

$$
\begin{aligned}
\sum_{a b^{2} \leq x} 1 & =\sum_{b \leq \sqrt{X}} \sum_{a \leq x / b^{2}} 1=\sum_{b \leq \sqrt{X}}\left(\frac{X}{b^{2}}+O(1)\right) \\
& =X \sum_{b=1}^{\infty} \frac{1}{b^{2}}+O(\sqrt{X})
\end{aligned}
$$

Observations:

- main contribution comes from $b<\log \log \log \log X$;
- every given b contributes a positive proportion to the main term.

Compare instead with

$$
\sum_{a b \leq X} 1=\sum_{b \leq X} \sum_{a \leq X / b} 1=\sum_{b \leq X}\left(\frac{X}{b}+O(1)\right)=X \log X+O(X)
$$

An exercise about hyperbolas

We have

$$
\begin{aligned}
\sum_{a b^{2} \leq x} 1 & =\sum_{b \leq \sqrt{X}} \sum_{a \leq x / b^{2}} 1=\sum_{b \leq \sqrt{X}}\left(\frac{X}{b^{2}}+O(1)\right) \\
& =X \sum_{b=1}^{\infty} \frac{1}{b^{2}}+O(\sqrt{X})
\end{aligned}
$$

Observations:

- main contribution comes from $b<\log \log \log \log X$;
- every given b contributes a positive proportion to the main term.

Compare instead with

$$
\sum_{a b \leq X} 1=\sum_{b \leq X} \sum_{a \leq X / b} 1=\sum_{b \leq X}\left(\frac{X}{b}+O(1)\right)=X \log X+O(X)
$$

Both observations fail now.

Ramification theory

Let K / \mathbb{Q} be a Galois extension and suppose that p does not divide $[K: \mathbb{Q}]$. Then

$$
v_{p}\left(D_{K}\right)=[K: \mathbb{Q}] \cdot\left(1-\frac{1}{\left|\mathcal{I}_{p}\right|}\right)
$$

where \mathcal{I}_{p} is an inertia subgroup.

Ramification theory

Let K / \mathbb{Q} be a Galois extension and suppose that p does not divide $[K: \mathbb{Q}]$. Then

$$
v_{p}\left(D_{K}\right)=[K: \mathbb{Q}] \cdot\left(1-\frac{1}{\left|\mathcal{I}_{p}\right|}\right)
$$

where \mathcal{I}_{p} is an inertia subgroup.

Counting by discriminant has some strong similarities with counting under the hyperbola.

Ramification theory

Let K / \mathbb{Q} be a Galois extension and suppose that p does not divide $[K: \mathbb{Q}]$. Then

$$
v_{p}\left(D_{K}\right)=[K: \mathbb{Q}] \cdot\left(1-\frac{1}{\left|\mathcal{I}_{p}\right|}\right)
$$

where \mathcal{I}_{p} is an inertia subgroup.
Counting by discriminant has some strong similarities with counting under the hyperbola.

Heuristically: almost all ramified primes p in a typical field K / \mathbb{Q} are such that $\left|\mathcal{I}_{p}\right|$ equals the smallest prime divisor of $[K: \mathbb{Q}]$.

Ramification theory

Let K / \mathbb{Q} be a Galois extension and suppose that p does not divide $[K: \mathbb{Q}]$. Then

$$
v_{p}\left(D_{K}\right)=[K: \mathbb{Q}] \cdot\left(1-\frac{1}{\left|\mathcal{I}_{p}\right|}\right)
$$

where \mathcal{I}_{p} is an inertia subgroup.
Counting by discriminant has some strong similarities with counting under the hyperbola.

Heuristically: almost all ramified primes p in a typical field K / \mathbb{Q} are such that $\left|\mathcal{I}_{p}\right|$ equals the smallest prime divisor of $[K: \mathbb{Q}]$.

Moral: inertia subgroups tend to "typically" be as small as possible when counting by discriminant.

An example

Example (Non-Galois quartic D_{4})

If L / \mathbb{Q} is quartic D_{4} with quadratic subfield K, then for all $p \neq 2$
$v_{p}\left(D_{L}\right)= \begin{cases}3 & \text { if } p \text { is totally ramified } \\ 2 & \text { if } p \text { is in all other cases } \\ 1 & \text { if } p \text { is unramified in } K / \mathbb{Q} \text { but ramifies in the biquadratic } \\ 0 & \text { if } p \text { is unramified. }\end{cases}$

An example

Example (Non-Galois quartic D_{4})

If L / \mathbb{Q} is quartic D_{4} with quadratic subfield K, then for all $p \neq 2$

$$
v_{p}\left(D_{L}\right)= \begin{cases}3 & \text { if } p \text { is totally ramified } \\ 2 & \text { if } p \text { is in all other cases } \\ 1 & \text { if } p \text { is unramified in } K / \mathbb{Q} \text { but ramifies in the biquadratic } \\ 0 & \text { if } p \text { is unramified. }\end{cases}
$$

Thus, when we count quartic D_{4}-extensions, the discriminant has the shape $a b^{2} c^{3}$.

An example

Example (Non-Galois quartic D_{4})

If L / \mathbb{Q} is quartic D_{4} with quadratic subfield K, then for all $p \neq 2$
$v_{p}\left(D_{L}\right)= \begin{cases}3 & \text { if } p \text { is totally ramified } \\ 2 & \text { if } p \text { is in all other cases } \\ 1 & \text { if } p \text { is unramified in } K / \mathbb{Q} \text { but ramifies in the biquadratic } \\ 0 & \text { if } p \text { is unramified. }\end{cases}$

Thus, when we count quartic D_{4}-extensions, the discriminant has the shape $a b^{2} c^{3}$.

Observations:

- main contribution comes from quadratic fields K with $D_{K}<\log \log \log \log X$;

An example

Example (Non-Galois quartic D_{4})

If L / \mathbb{Q} is quartic D_{4} with quadratic subfield K, then for all $p \neq 2$
$v_{p}\left(D_{L}\right)= \begin{cases}3 & \text { if } p \text { is totally ramified } \\ 2 & \text { if } p \text { is in all other cases } \\ 1 & \text { if } p \text { is unramified in } K / \mathbb{Q} \text { but ramifies in the biquadratic } \\ 0 & \text { if } p \text { is unramified. }\end{cases}$

Thus, when we count quartic D_{4}-extensions, the discriminant has the shape $a b^{2} c^{3}$.

Observations:

- main contribution comes from quadratic fields K with $D_{K}<\log \log \log \log X$;
- a positive proportion of the quartic D_{4}-extensions have a given quadratic field K as their subfield.

Difficulties with discriminant counting

Group theoretic properties greatly influence how difficult it is to count by discriminant, heavily exploited in previous works.

Difficulties with discriminant counting

Group theoretic properties greatly influence how difficult it is to count by discriminant, heavily exploited in previous works. Difficult example:

Example $\left(L / \mathbb{Q}\right.$ Galois with $\left.\operatorname{Gal}(L / \mathbb{Q}) \cong D_{2^{n}}\right)$
Note that $D_{2^{n}}=\mathbb{Z} / 2^{n} \mathbb{Z} \rtimes \mathbb{Z} / 2 \mathbb{Z}$. The elements of minimal order are $(k, 1)$ (reflections) and ($\left.2^{n-1} k, 0\right)$ (rotations with order dividing 2).

Difficulties with discriminant counting

Group theoretic properties greatly influence how difficult it is to count by discriminant, heavily exploited in previous works. Difficult example:

Example $\left(L / \mathbb{Q}\right.$ Galois with $\left.\operatorname{Gal}(L / \mathbb{Q}) \cong D_{2^{n}}\right)$
Note that $D_{2^{n}}=\mathbb{Z} / 2^{n} \mathbb{Z} \rtimes \mathbb{Z} / 2 \mathbb{Z}$. The elements of minimal order are $(k, 1)$ (reflections) and ($\left.2^{n-1} k, 0\right)$ (rotations with order dividing 2).

Difficulties with discriminant counting

Group theoretic properties greatly influence how difficult it is to count by discriminant, heavily exploited in previous works. Difficult example:

Example $\left(L / \mathbb{Q}\right.$ Galois with $\left.\operatorname{Gal}(L / \mathbb{Q}) \cong D_{2^{n}}\right)$

Note that $D_{2^{n}}=\mathbb{Z} / 2^{n} \mathbb{Z} \rtimes \mathbb{Z} / 2 \mathbb{Z}$. The elements of minimal order are $(k, 1)$ (reflections) and ($\left.2^{n-1} k, 0\right)$ (rotations with order dividing 2).

Positive proportion of extensions have $L^{\left\langle\left(2^{n-1}, 0\right)\right\rangle} / \mathbb{Q}(\sqrt{a b})$ unramified. So at least as hard as getting distribution of $\mathrm{Cl}(\mathbb{Q}(\sqrt{d}))\left[2^{\infty}\right]$.

Fair counting functions

Ordering by discriminant has some undesirable features: leading constant need not be an Euler product and subfields may occur a positive proportion of the time.

Fair counting functions

Ordering by discriminant has some undesirable features: leading constant need not be an Euler product and subfields may occur a positive proportion of the time.

Wood (2010) introduced a class of "fair counting functions".

Fair counting functions

Ordering by discriminant has some undesirable features: leading constant need not be an Euler product and subfields may occur a positive proportion of the time.

Wood (2010) introduced a class of "fair counting functions".
Important examples of fair counting functions are the conductor and the product of ramified primes.

Fair counting functions

Ordering by discriminant has some undesirable features: leading constant need not be an Euler product and subfields may occur a positive proportion of the time.

Wood (2010) introduced a class of "fair counting functions".
Important examples of fair counting functions are the conductor and the product of ramified primes.

Mäki (1993): Malle's conjecture for abelian extensions ordered by conductor.

Fair counting functions

Ordering by discriminant has some undesirable features: leading constant need not be an Euler product and subfields may occur a positive proportion of the time.

Wood (2010) introduced a class of "fair counting functions".
Important examples of fair counting functions are the conductor and the product of ramified primes.

Mäki (1993): Malle's conjecture for abelian extensions ordered by conductor.

Wood (2010): Malle's conjecture for abelian extensions ordered by any fair counting function with local conditions.

Fair counting functions

Ordering by discriminant has some undesirable features: leading constant need not be an Euler product and subfields may occur a positive proportion of the time.

Wood (2010) introduced a class of "fair counting functions".
Important examples of fair counting functions are the conductor and the product of ramified primes.

Mäki (1993): Malle's conjecture for abelian extensions ordered by conductor.

Wood (2010): Malle's conjecture for abelian extensions ordered by any fair counting function with local conditions.

Altug-Shankar-Varma-Wilson (2017): Malle's conjecture for D_{4} by Artin conductor.

Main result

A group G is called nilpotent if it is a direct product of p-groups.

Main result

A group G is called nilpotent if it is a direct product of p-groups.

Theorem (K.-Pagano)

Assume GRH. Let G be a nilpotent group with \#G odd. Then

$$
\liminf _{X \rightarrow \infty} \frac{\#\left\{K / \mathbb{Q}: \prod_{p: I_{p} \neq\{\mathrm{id}\}} p \leq X, \operatorname{Gal}(K / \mathbb{Q}) \cong G\right\}}{c^{\prime}(G) X(\log X)^{b^{\prime}(G)}} \geq 1
$$

where $c^{\prime}(G)$ is the expected Euler product and where $b^{\prime}(G)$ is the naïve analogue of Malle's $b(G)$ in this situation.

Main result

A group G is called nilpotent if it is a direct product of p-groups.

Theorem (K.-Pagano)

Assume GRH. Let G be a nilpotent group with \#G odd. Then

$$
\liminf _{X \rightarrow \infty} \frac{\#\left\{K / \mathbb{Q}: \prod_{p: I_{p} \neq\{\mathrm{id}\}} p \leq X, \operatorname{Gal}(K / \mathbb{Q}) \cong G\right\}}{c^{\prime}(G) X(\log X)^{b^{\prime}(G)}} \geq 1
$$

where $c^{\prime}(G)$ is the expected Euler product and where $b^{\prime}(G)$ is the naïve analogue of Malle's $b(G)$ in this situation.

Surprisingly, the corresponding asymptotic

$$
\lim _{x \rightarrow \infty} \frac{\#\left\{K / \mathbb{Q}: \prod_{p: I_{p} \neq\{\mathrm{id}\}} p \leq X, \operatorname{Gal}(K / \mathbb{Q}) \cong G\right\}}{c^{\prime}(G) X(\log X)^{b^{\prime}(G)}}=1
$$

is not true in general. Counterexamples exist for nilpotency class 2.

Applications

Theorem (K.-Pagano)
Let $G_{2}, G_{3} \rightarrow G_{1}$ be p-groups with p odd. TFAE:

Applications

Theorem (K.-Pagano)
Let $G_{2}, G_{3} \rightarrow G_{1}$ be p-groups with p odd. TFAE:
(i) For every diagram

Applications

Theorem (K.-Pagano)
Let $G_{2}, G_{3} \rightarrow G_{1}$ be p-groups with p odd. TFAE:
(i) For every diagram

(ii) For every place v and for every diagram

Applications II

By a result of Iwasawa, the last condition in the previous theorem is equivalent to:

Applications II

By a result of Iwasawa, the last condition in the previous theorem is equivalent to:

For every $g_{1} \in G_{1}-\{i d\}$, every $h_{1} \in G_{1}$ and every α coprime to p satisfying $h_{1} g_{1} h_{1}^{-1}=g_{1}^{\alpha}$, we have
where $\overline{g_{i}}$ and $\overline{h_{i}}$ are lifts of g_{1} and h_{1} respectively.

Applications II

By a result of Iwasawa, the last condition in the previous theorem is equivalent to:

For every $g_{1} \in G_{1}-\{$ id $\}$, every $h_{1} \in G_{1}$ and every α coprime to p satisfying $h_{1} g_{1} h_{1}^{-1}=g_{1}^{\alpha}$, we have
where $\overline{g_{i}}$ and $\overline{h_{i}}$ are lifts of g_{1} and h_{1} respectively.
A non-trivial example is $\left(G_{1}, G_{2}, G_{3}\right)=\left(\mathbb{F}_{p}^{n}, U(n+1, p) / Z, U(n+1, p)\right)$.

Applications II

By a result of Iwasawa, the last condition in the previous theorem is equivalent to:

For every $g_{1} \in G_{1}-\{$ id $\}$, every $h_{1} \in G_{1}$ and every α coprime to p satisfying $h_{1} g_{1} h_{1}^{-1}=g_{1}^{\alpha}$, we have

$$
\left(\exists \overline{g_{2}}, \overline{h_{2}} \in G_{2}: \overline{h_{2}} \overline{\bar{g}_{2}}{\overline{h_{2}}}^{-1}={\overline{g_{2}}}^{\alpha}\right) \Rightarrow\left(\exists \overline{g_{3}}, \overline{h_{3}} \in G_{3}: \overline{h_{3}} \overline{\bar{g}_{3}}{\overline{h_{3}}}^{-1}={\overline{g_{3}}}^{\alpha}\right)
$$

where $\overline{g_{i}}$ and $\overline{h_{i}}$ are lifts of g_{1} and h_{1} respectively.
A non-trivial example is $\left(G_{1}, G_{2}, G_{3}\right)=\left(\mathbb{F}_{p}^{n}, U(n+1, p) / Z, U(n+1, p)\right)$.
This is known as the Massey vanishing conjecture (recently proven by Harpaz-Wittenberg for all p and all number fields).

Inverse Galois problem

The assumption that $|G|$ is odd corresponds to the substantial difference in our understanding of the inverse Galois problem.

Inverse Galois problem

The assumption that $|G|$ is odd corresponds to the substantial difference in our understanding of the inverse Galois problem.

If $|G|$ is odd and nilpotent, the inverse Galois problem was solved by Scholz-Reichardt.

Inverse Galois problem

The assumption that $|G|$ is odd corresponds to the substantial difference in our understanding of the inverse Galois problem.

If $|G|$ is odd and nilpotent, the inverse Galois problem was solved by Scholz-Reichardt.

For 2-groups, the situation is much more involved. The only known proof is a famous result of Shafarevich (inverse Galois for solvable groups).

Scholz-Reichardt sketch I

Every nilpotent group can be built up from repeated central extensions, so we argue inductively.

Scholz-Reichardt sketch I

Every nilpotent group can be built up from repeated central extensions, so we argue inductively.

Let H be a p-group and let G be a central \mathbb{F}_{p}-extension of H, i.e.

$$
1 \rightarrow \mathbb{F}_{p} \rightarrow G \rightarrow H \rightarrow 1
$$

Scholz-Reichardt sketch I

Every nilpotent group can be built up from repeated central extensions, so we argue inductively.

Let H be a p-group and let G be a central \mathbb{F}_{p}-extension of H, i.e.

$$
1 \rightarrow \mathbb{F}_{p} \rightarrow G \rightarrow H \rightarrow 1
$$

Suppose that we have a H-extension $\pi: G_{\mathbb{Q}} \rightarrow H$, and consider

Scholz-Reichardt sketch I

Every nilpotent group can be built up from repeated central extensions, so we argue inductively.

Let H be a p-group and let G be a central \mathbb{F}_{p}-extension of H, i.e.

$$
1 \rightarrow \mathbb{F}_{p} \rightarrow G \rightarrow H \rightarrow 1
$$

Suppose that we have a H-extension $\pi: G_{\mathbb{Q}} \rightarrow H$, and consider

It is well-known that we have a local-to-global for the above diagram, which means that we have to control $\pi\left(\right.$ Frob $\left._{v}\right)$ for all v.

Scholz-Reichardt sketch II

Note that H also fits in an exact sequence

$$
1 \rightarrow \mathbb{F}_{p} \rightarrow H \rightarrow H^{\prime} \rightarrow 1
$$

Therefore we may twist our H-extension $\pi: G_{\mathbb{Q}} \rightarrow H$ by $\chi: G_{\mathbb{Q}} \rightarrow \mathbb{F}_{p}$ to get $\pi+\chi: G_{\mathbb{Q}} \rightarrow H$.

Scholz-Reichardt sketch II

Note that H also fits in an exact sequence

$$
1 \rightarrow \mathbb{F}_{p} \rightarrow H \rightarrow H^{\prime} \rightarrow 1
$$

Therefore we may twist our H-extension $\pi: G_{\mathbb{Q}} \rightarrow H$ by $\chi: G_{\mathbb{Q}} \rightarrow \mathbb{F}_{p}$ to get $\pi+\chi: G_{\mathbb{Q}} \rightarrow H$.

Idea: we take χ_{ℓ} to be of prime conductor ℓ, unramified in π, and use it to fix the Frobenius elements at all primes ramified in π.

Scholz-Reichardt sketch II

Note that H also fits in an exact sequence

$$
1 \rightarrow \mathbb{F}_{p} \rightarrow H \rightarrow H^{\prime} \rightarrow 1
$$

Therefore we may twist our H-extension $\pi: G_{\mathbb{Q}} \rightarrow H$ by $\chi: G_{\mathbb{Q}} \rightarrow \mathbb{F}_{p}$ to get $\pi+\chi: G_{\mathbb{Q}} \rightarrow H$.

Idea: we take χ_{ℓ} to be of prime conductor ℓ, unramified in π, and use it to fix the Frobenius elements at all primes ramified in π.

The resulting map $\pi+\chi_{\ell}: G_{\mathbb{Q}} \rightarrow \mathbb{F}_{p}$ also ramifies at ℓ, so we need to check local-to-global also at ℓ.

Scholz-Reichardt sketch II

Note that H also fits in an exact sequence

$$
1 \rightarrow \mathbb{F}_{p} \rightarrow H \rightarrow H^{\prime} \rightarrow 1
$$

Therefore we may twist our H-extension $\pi: G_{\mathbb{Q}} \rightarrow H$ by $\chi: G_{\mathbb{Q}} \rightarrow \mathbb{F}_{p}$ to get $\pi+\chi: G_{\mathbb{Q}} \rightarrow H$.

Idea: we take χ_{ℓ} to be of prime conductor ℓ, unramified in π, and use it to fix the Frobenius elements at all primes ramified in π.

The resulting map $\pi+\chi_{\ell}: G_{\mathbb{Q}} \rightarrow \mathbb{F}_{p}$ also ramifies at ℓ, so we need to check local-to-global also at ℓ.

Here we use that p is odd in an essential way: $\chi_{\ell}\left(\operatorname{Frob}_{q}\right)$ and $\chi_{q}\left(\operatorname{Frob}_{\ell}\right)$ are independent.

Step 1a: parametrization

To give an idea how the techniques work, we will (unconditionally!) give an overview for the proof of the asymptotic for the number of Galois D_{4}-extensions by product of ramified primes.

Step 1a: parametrization

To give an idea how the techniques work, we will (unconditionally!) give an overview for the proof of the asymptotic for the number of Galois D_{4}-extensions by product of ramified primes.

We have a central exact sequence

$$
0 \rightarrow \mathbb{F}_{2} \rightarrow D_{4} \xrightarrow{q} \mathbb{F}_{2}^{2} \rightarrow 0
$$

and a bijection

$$
\operatorname{Epi}\left(G_{\mathbb{Q}}, \mathbb{F}_{2}^{2}\right) \leftrightarrow\left\{(a, b) \in\left(\mathbb{Q}^{*} / \mathbb{Q}^{* 2}\right)^{2}: a, b \text { lin. ind. }\right\} .
$$

Step 1a: parametrization

To give an idea how the techniques work, we will (unconditionally!) give an overview for the proof of the asymptotic for the number of Galois D_{4}-extensions by product of ramified primes.

We have a central exact sequence

$$
0 \rightarrow \mathbb{F}_{2} \rightarrow D_{4} \xrightarrow{q} \mathbb{F}_{2}^{2} \rightarrow 0
$$

and a bijection

$$
\operatorname{Epi}\left(G_{\mathbb{Q}}, \mathbb{F}_{2}^{2}\right) \leftrightarrow\left\{(a, b) \in\left(\mathbb{Q}^{*} / \mathbb{Q}^{* 2}\right)^{2}: a, b \text { lin. ind. }\right\} .
$$

Given $\pi \in \operatorname{Epi}\left(G_{\mathbb{Q}}, \mathbb{F}_{2}^{2}\right)$, this leads to the central embedding problem

Step 1a: parametrization

To give an idea how the techniques work, we will (unconditionally!) give an overview for the proof of the asymptotic for the number of Galois D_{4}-extensions by product of ramified primes.

We have a central exact sequence

$$
0 \rightarrow \mathbb{F}_{2} \rightarrow D_{4} \xrightarrow{q} \mathbb{F}_{2}^{2} \rightarrow 0
$$

and a bijection

$$
\operatorname{Epi}\left(G_{\mathbb{Q}}, \mathbb{F}_{2}^{2}\right) \leftrightarrow\left\{(a, b) \in\left(\mathbb{Q}^{*} / \mathbb{Q}^{* 2}\right)^{2}: a, b \text { lin. ind. }\right\} .
$$

Given $\pi \in \operatorname{Epi}\left(G_{\mathbb{Q}}, \mathbb{F}_{2}^{2}\right)$, this leads to the central embedding problem

It is well-known that a \mathbb{F}_{2}^{2}-extension $\mathbb{Q}(\sqrt{a}, \sqrt{b})$ of \mathbb{Q} is contained in a D_{4}-extension if and only if $x^{2}=a y^{2}+b z^{2}$ has a non-trivial point.

Step 1b: parametrization

If $\rho \in \operatorname{Epi}\left(G_{\mathbb{Q}}, D_{4}\right)$ is a lift of $\pi \in \operatorname{Epi}\left(G_{\mathbb{Q}}, \mathbb{F}_{2}\right)$ and $q: D_{4} \rightarrow \mathbb{F}_{2}^{2}$, then

$$
\left\{f \in \operatorname{Epi}\left(G_{\mathbb{Q}}, D_{4}\right): f \circ q=\pi\right\}=\left\{\rho \cdot \chi: \chi \in \operatorname{Hom}\left(G_{\mathbb{Q}}, \mathbb{F}_{2}\right)\right\} .
$$

Step 1b: parametrization

If $\rho \in \operatorname{Epi}\left(G_{\mathbb{Q}}, D_{4}\right)$ is a lift of $\pi \in \operatorname{Epi}\left(G_{\mathbb{Q}}, \mathbb{F}_{2}\right)$ and $q: D_{4} \rightarrow \mathbb{F}_{2}^{2}$, then

$$
\left\{f \in \operatorname{Epi}\left(G_{\mathbb{Q}}, D_{4}\right): f \circ q=\pi\right\}=\left\{\rho \cdot \chi: \chi \in \operatorname{Hom}\left(G_{\mathbb{Q}}, \mathbb{F}_{2}\right)\right\} .
$$

Therefore we have a bijection
$\operatorname{Epi}\left(G_{\mathbb{Q}}, D_{4}\right) \leftrightarrow\left\{(a, b, c) \in\left(\mathbb{Q}^{*} / \mathbb{Q}^{* 2}\right)^{3}: a, b\right.$ ind., $x^{2}=a y^{2}+b z^{2}$ sol. $\}$.

Step 1b: parametrization

$$
\text { If } \rho \in \operatorname{Epi}\left(G_{\mathbb{Q}}, D_{4}\right) \text { is a lift of } \pi \in \operatorname{Epi}\left(G_{\mathbb{Q}}, \mathbb{F}_{2}\right) \text { and } q: D_{4} \rightarrow \mathbb{F}_{2}^{2} \text {, then }
$$

$$
\left\{f \in \operatorname{Epi}\left(G_{\mathbb{Q}}, D_{4}\right): f \circ q=\pi\right\}=\left\{\rho \cdot \chi: \chi \in \operatorname{Hom}\left(G_{\mathbb{Q}}, \mathbb{F}_{2}\right)\right\} .
$$

Therefore we have a bijection

$$
\operatorname{Epi}\left(G_{\mathbb{Q}}, D_{4}\right) \leftrightarrow\left\{(a, b, c) \in\left(\mathbb{Q}^{*} / \mathbb{Q}^{* 2}\right)^{3}: a, b \text { ind., } x^{2}=a y^{2}+b z^{2} \text { sol. }\right\} .
$$

Under this parametrization, the product of ramified primes maps to $\operatorname{rad}(|a b c|)$ (ignoring minor issues with ramification at 2).

Step 1b: parametrization

$$
\text { If } \rho \in \operatorname{Epi}\left(G_{\mathbb{Q}}, D_{4}\right) \text { is a lift of } \pi \in \operatorname{Epi}\left(G_{\mathbb{Q}}, \mathbb{F}_{2}\right) \text { and } q: D_{4} \rightarrow \mathbb{F}_{2}^{2} \text {, then }
$$

$$
\left\{f \in \operatorname{Epi}\left(G_{\mathbb{Q}}, D_{4}\right): f \circ q=\pi\right\}=\left\{\rho \cdot \chi: \chi \in \operatorname{Hom}\left(G_{\mathbb{Q}}, \mathbb{F}_{2}\right)\right\} .
$$

Therefore we have a bijection

$$
\operatorname{Epi}\left(G_{\mathbb{Q}}, D_{4}\right) \leftrightarrow\left\{(a, b, c) \in\left(\mathbb{Q}^{*} / \mathbb{Q}^{* 2}\right)^{3}: a, b \text { ind., } x^{2}=a y^{2}+b z^{2} \text { sol. }\right\}
$$

Under this parametrization, the product of ramified primes maps to $\operatorname{rad}(|a b c|)$ (ignoring minor issues with ramification at 2).

It turns out to be more convenient to work with seven variables α_{S} for $\emptyset \subset S \subseteq\{a, b, c\}$, where α_{S} is the product over all primes p dividing the variables in S and not dividing the variables in $\{a, b, c\}-S$.

Step 1b: parametrization

$$
\text { If } \rho \in \operatorname{Epi}\left(G_{\mathbb{Q}}, D_{4}\right) \text { is a lift of } \pi \in \operatorname{Epi}\left(G_{\mathbb{Q}}, \mathbb{F}_{2}\right) \text { and } q: D_{4} \rightarrow \mathbb{F}_{2}^{2} \text {, then }
$$

$$
\left\{f \in \operatorname{Epi}\left(G_{\mathbb{Q}}, D_{4}\right): f \circ q=\pi\right\}=\left\{\rho \cdot \chi: \chi \in \operatorname{Hom}\left(G_{\mathbb{Q}}, \mathbb{F}_{2}\right)\right\} .
$$

Therefore we have a bijection

$$
\operatorname{Epi}\left(G_{\mathbb{Q}}, D_{4}\right) \leftrightarrow\left\{(a, b, c) \in\left(\mathbb{Q}^{*} / \mathbb{Q}^{* 2}\right)^{3}: a, b \text { ind., } x^{2}=a y^{2}+b z^{2} \text { sol. }\right\} .
$$

Under this parametrization, the product of ramified primes maps to $\operatorname{rad}(|a b c|)$ (ignoring minor issues with ramification at 2).

It turns out to be more convenient to work with seven variables α_{S} for $\emptyset \subset S \subseteq\{a, b, c\}$, where α_{S} is the product over all primes p dividing the variables in S and not dividing the variables in $\{a, b, c\}-S$.

The variables α_{S} are squarefree and pairwise coprime, and we have $\operatorname{rad}(|a b c|)=\prod_{\emptyset \subset S \subseteq\{a, b, c\}}\left|\alpha_{S}\right|$.

Step 2: character sums

Define $T(a)$ to be the subsets of $\{a, b, c\}$ containing a. Then we have

$$
a=\prod_{S \in T(a)} \alpha_{S}
$$

and similarly for b, c.

Step 2: character sums

Define $T(a)$ to be the subsets of $\{a, b, c\}$ containing a. Then we have

$$
a=\prod_{S \in T(a)} \alpha_{S}
$$

and similarly for b, c. So to count D_{4}-extensions, must evaluate
$\sum_{\substack{\prod_{\emptyset \subset S \subseteq\{a, b, c\}}\left|\alpha_{S}\right| \leq X \\ a, b \text { lin. ind. }}} \mu^{2}\left(\prod_{S}\left|\alpha_{S}\right|\right) \cdot \mathbf{1}_{x^{2}=\alpha_{a} \alpha_{a, b}, b \alpha_{a, c} \alpha_{a, b, c} y^{2}+\alpha_{b} \alpha_{a, b} \alpha_{b, c} \alpha_{a, b, c} z^{2}}$ sol..

Step 2: character sums

Define $T(a)$ to be the subsets of $\{a, b, c\}$ containing a. Then we have

$$
a=\prod_{S \in T(a)} \alpha_{S}
$$

and similarly for b, c. So to count D_{4}-extensions, must evaluate

$$
\sum_{\substack{\Pi_{\mathscr{C}} \subset\{\subseteq\{a, b, c\} \\ \text { a,b lin. ind. }}} \mu^{2}\left(\prod_{S}|\leq X| \alpha_{S} \mid\right) \cdot \mathbf{1}_{x^{2}=\alpha_{a} \alpha_{a, b}, \alpha_{a, c} \alpha_{a, b, c} y^{2}+\alpha_{b} \alpha_{a, b} \alpha_{b, c}, \alpha_{a, b, c} z^{2}} \text { sol. } .
$$

Hasse-Minkowski: detect solubility of conic locally at primes dividing α_{S}.

Step 2: character sums

Define $T(a)$ to be the subsets of $\{a, b, c\}$ containing a. Then we have

$$
a=\prod_{S \in T(a)} \alpha_{S}
$$

and similarly for b, c. So to count D_{4}-extensions, must evaluate

Hasse-Minkowski: detect solubility of conic locally at primes dividing α_{S}.
Now rewrite the above sum as a sum over Legendre symbols involving the variables α_{S}.

Step 3: equidistribution

Evaluate the resulting character sum using Chebotarev and the large sieve.

Step 3: equidistribution

Evaluate the resulting character sum using Chebotarev and the large sieve.

How does this process generalize?

Step 3: equidistribution

Evaluate the resulting character sum using Chebotarev and the large sieve.

How does this process generalize?

- Build a nilpotent extension by iterated central extensions. This yields a parametrization of G-extensions by tuples of squarefree integers satisfying central embedding problems.

Step 3: equidistribution

Evaluate the resulting character sum using Chebotarev and the large sieve.

How does this process generalize?

- Build a nilpotent extension by iterated central extensions. This yields a parametrization of G-extensions by tuples of squarefree integers satisfying central embedding problems.
- These central embedding problems get much more complicated, but still satisfy local-to-global and are certainly determined by Frob_{p} for p dividing the variables of the parametrization.

Step 3: equidistribution

Evaluate the resulting character sum using Chebotarev and the large sieve.

How does this process generalize?

- Build a nilpotent extension by iterated central extensions. This yields a parametrization of G-extensions by tuples of squarefree integers satisfying central embedding problems.
- These central embedding problems get much more complicated, but still satisfy local-to-global and are certainly determined by Frob p_{p} for p dividing the variables of the parametrization.
- In our chosen ordering, a typical extension is a rather large twist of a "minimally ramified central extension". Getting equidistribution of Frobenius in minimally ramified extensions is very hard. The key idea of the proof is to exploit the twisting.

Step 3: equidistribution

Evaluate the resulting character sum using Chebotarev and the large sieve.

How does this process generalize?

- Build a nilpotent extension by iterated central extensions. This yields a parametrization of G-extensions by tuples of squarefree integers satisfying central embedding problems.
- These central embedding problems get much more complicated, but still satisfy local-to-global and are certainly determined by Frob p_{p} for p dividing the variables of the parametrization.
- In our chosen ordering, a typical extension is a rather large twist of a "minimally ramified central extension". Getting equidistribution of Frobenius in minimally ramified extensions is very hard. The key idea of the proof is to exploit the twisting.
- Proof can most likely be made unconditional with a suitably strong large sieve for nilpotent extensions.

Questions?

Thank you for your attention!

