1 The interior and the closure of a set

Definition 1.1. (Interior of a set.) Let (X, d) be a metric space, and $A \subseteq X$ a subset. Then the *interior of* A, denoted Int(A) or \mathring{A} , is defined to be the set

$$\operatorname{Int}(A) = \{ a \in A \mid a \text{ is an interior point of } A \}.$$

Note that $Int(A) \subseteq A$. We will see in the exercises that Int(A) is an open set, and it is in a sense the largest open subset of A.

Definition 1.2. (Closure of a set.) Let (X, d) be a metric space, and $A \subseteq X$ a subset. Then the *closure of* A, denoted \overline{A} , is defined to be the set

$$\overline{A} = \{x \in X \mid \text{ for every } r > 0 \text{ the ball } B_r(x) \text{ contains a point of } A\}.$$

We will see that \overline{A} is a closed set, and that in a sense it is the smallest closed set containing A.

Example 1.3. What is the closure of the open set $B_1(0,0) \subseteq \mathbb{R}^2$?

In-class Exercises

1. For this problem we introduce the following terminology.

Definition 1.4. (Neighbourhood of a point x.) Let (X, d) be a metric space, and $x \in X$. Then any open set U containing x is called an *open neighbourhood of* x, or simply a neighbourhood of x.

(a) Prove the following.

Theorem 1.5. (Equivalent definition of interior point.) For a subset V of a metric space X, a point $x \in V$ is an interior point of V if and only if there exists an open neighbourhood U of x that is contained in V.

(b) Prove the following.

Theorem 1.6. (Equivalent definition of closure.) For a subset A of a metric space X, the closure of A is equal to the set

 $\overline{A} = \{x \in X \mid every \ neighbourhood \ U \ of \ x \ contains \ a \ point \ of \ A\}.$

2. Prove the following theorem.

Theorem 1.7. Let (X,d) be a metric space, and $A \subseteq X$ a subset.

- (i) $Int(A) \subseteq A$
- (ii) A is open if and only if A = Int(A)
- (iii) If $A \subseteq B$ then $Int(A) \subseteq Int(B)$
- (iv) Int(Int(A)) = Int(A)

- (v) Int(A) is open in X
- (vi) Int(A) is the largest open subset of A in the following sense: If $U \subseteq A$ is any open subset of A, then $U \subseteq Int(A)$

3. Prove the following theorem.

Theorem 1.8. Let (X,d) be a metric space, and $A \subseteq X$ a subset.

- (i) $A \subseteq \overline{A}$
- (ii) If $A \subseteq B$ then $\overline{A} \subseteq \overline{B}$
- (iii) A is closed if and only if $A = \overline{A}$
- $(iv) \overline{\overline{A}} = \overline{A}$

- (v) \overline{A} is closed in X
- (vi) \overline{A} is the smallest closed set containing A, in the following sense: If $A \subseteq C$ for some closed set C, then $\overline{A} \subseteq C$
- 4. (Optional). Let A be a subset of a metric space (X,d). Explore the relationships between the sets

$$\operatorname{Int}(X \setminus A)$$
 $X \setminus \operatorname{Int}(A)$ $\overline{X \setminus A}$ $X \setminus \overline{A}$

Determine which of these sets are necessarily equal or necessarily subsets of one another. Give counterexamples to show where equality or containment fails.

- 5. (Optional). Let A_i , $i \in I$, be a collection of subsets of a metric space (X,d). For each of the following statements, either prove the statement, or construct a counterexample.
 - (a) Int $\left(\bigcup_{i\in I} A_i\right) \subseteq \bigcup_{i\in I} \operatorname{Int}(A_i)$

(c)
$$\operatorname{Int}\left(\bigcap_{i\in I}A_i\right)\subseteq\bigcap_{i\in I}\operatorname{Int}(A_i)$$

(b) Int
$$\left(\bigcup_{i\in I} A_i\right) \supseteq \bigcup_{i\in I} \operatorname{Int} A_i$$

$$(b) \operatorname{Int} \left(\bigcup_{i \in I} A_i \right) \supseteq \bigcup_{i \in I} \operatorname{Int} A_i$$

$$(d) \operatorname{Int} \left(\bigcap_{i \in I} A_i \right) \supseteq \bigcap_{i \in I} \operatorname{Int} (A_i)$$

$$(e) \overline{\bigcup_{i \in I} A_i} \subseteq \bigcup_{i \in I} \overline{A_i}$$

$$(f) \overline{\bigcup_{i \in I} A_i} \supseteq \bigcup_{i \in I} \overline{A_i}$$

$$(g) \overline{\bigcap_{i \in I} A_i} \subseteq \bigcap_{i \in I} \overline{A_i}$$

$$(h) \overline{\bigcap_{i \in I} A_i} \supseteq \bigcap_{i \in I} \overline{A_i}$$

(e)
$$\overline{\bigcup_{i \in I} A_i} \subseteq \bigcup_{i \in I} \overline{A_i}$$

(f)
$$\overline{\bigcup_{i \in I} A_i} \supseteq \bigcup_{i \in I} \overline{A_i}$$

(g)
$$\overline{\bigcap_{i \in I} A_i} \subseteq \bigcap_{i \in I} \overline{A_i}$$

(h)
$$\overline{\bigcap_{i \in I} A_i} \supseteq \bigcap_{i \in I} \overline{A_i}$$

6. (Optional). Prove the following equivalent definition of continuity.

Theorem (An equivalent definition of continuity). Let (X, d_X) and (Y, d_Y) be metric spaces. Then a map $f: X \to Y$ is continuous if and only if

$$f(\overline{A}) \subseteq \overline{f(A)}$$
 for every subset $A \subseteq X$.

7. (Optional). For a metric (X,d), let $x_0 \in X$ and r > 0. You proved on the homework that the set

$$C_r(x_0) = \{x \in X \mid d(x, x_0) \le r\}$$

is closed. Explain why $C_r(x_0)$ always contains the closure of the ball $B_r(x_0)$. Give an example of a metric space where $C_r(x_0)$ is equal to $B_r(x_0)$ for every r>0 and x_0 , and give an example of a metric space and x_0 , r such that $C_r(x_0)$ is a strict subset of $B_r(x_0)$.