1 Open and closed sets

Going forward, we will implicitly assume \mathbb{R}^{n} has the Euclidean metric unless otherwise stated.

Definition 1.1. (Open ball of radius r about x_{0}.) Let (X, d) be a metric space, and $x_{0} \in X$. Let $r \in \mathbb{R}, r>0$. We define the open ball of radius r about x_{0} as the subset of X

$$
B_{r}\left(x_{0}\right)=\left\{x \in X \mid d\left(x_{0}, x\right)<r\right\} \subseteq X .
$$

Example 1.2. Let $X=\mathbb{R}$ with the usual Euclidean metric $d(x, y)=|x-y|$. What is $B_{1}(0)$? What is $B_{2}(-6)$?

Example 1.3. Let $X=\mathbb{R}^{2}$ with the usual Euclidean metric.
Draw $B_{2}(1,0)$.

Definition 1.4. (Interior points; open sets in a metric space.) Let (X, d) be a metric space, and let $U \subseteq X$ be a subset of X. A point $x \in U$ is called an interior point of U if there is some radius $r_{x} \in \mathbb{R}, r_{x}>0$, so that $B_{r_{x}}(x) \subseteq U$.

The set $U \subseteq X$ is called open if every point $x \in U$ is an interior point of U.

Example 1.5. Show that the interval $[0,1) \subseteq \mathbb{R}$ is not open.

Example 1.6. Show that the interval $(0,1) \subseteq \mathbb{R}$ is open.

Proposition 1.7. Let (X, d) be a metric space, $x_{0} \in X$ and $0<r \in \mathbb{R}$. Then the ball $B_{r}\left(x_{0}\right)$ is an open subset of X.

Proof.

Definition 1.8. (Closed sets in a metric space.) A subset $C \subseteq X$ is closed if its complement $X \backslash C$ is open.

Warning: Despite the English connotations of the words 'closed' and 'open', mathematically, 'closed' does not mean "not open", and vice versa.

In-class Exercises

1. Let (X, d) be a metric space. Solve (with justification) the following:
(a) Is X open?
(b) Is \varnothing open?
(c) Is X closed?
(d) Is \varnothing closed?
2. Consider \mathbb{R} with the Euclidean metric. Find an example of a subset of \mathbb{R} that is ...
(a) open and not closed,
(c) both open and closed,
(b) closed and not open,
(d) neither open nor closed.
3. Let $X=\mathbb{R}^{2}$. Sketch the balls $B_{1}(0,0)$ and $B_{2}(0,0)$ for each of the following metrics on \mathbb{R}^{2}. Denote $\bar{x}=\left(x_{1}, x_{2}\right)$ and $\bar{y}=\left(y_{1}, y_{2}\right)$.
(a) $d(\bar{x}, \bar{y})=\|\bar{x}-\bar{y}\|=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}}$
(b) $d(\bar{x}, \bar{y})=\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|$
(c) $d(\bar{x}, \bar{y})=\max \left\{\left|x_{1}-y_{1}\right|,\left|x_{2}-y_{2}\right|\right\}$
(d) $d(\bar{x}, \bar{y})= \begin{cases}0, & \bar{x}=\bar{y} \\ 1, & \bar{x} \neq \bar{y}\end{cases}$
4. Let $\left\{U_{i}\right\}_{i \in I}$ denote a collection of open sets in a metric space (X, d).
(a) Prove that the union $\bigcup_{i \in I} U_{i}$ is an open set. Do not assume that I is necessarily finite, or countable!
(b) Show by example that the intersection $\bigcap_{i \in I} U_{i}$ may not be open. (This means, give an example of a metric space (X, d) and a collection of open sets $U_{i} \subseteq X$, and prove that $\bigcap_{i \in I} U_{i}$ is not open).
(c) Now assume we have a finite collection $\left\{U_{i}\right\}_{i=1}^{n}$ of open sets in a metric space. Prove that the intersection $\bigcap_{i=1}^{n} U_{i}$ is open.
5. (Optional).
(a) Rigorously verify that the sets $\{1\},[1, \infty)$, and $\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots, \frac{1}{n}, \ldots\right\} \cup\{0\}$ are all closed subsets of \mathbb{R} (with the Euclidean metric).
(b) Consider \mathbb{R} with the Euclidean metric. Is the subset $\mathbb{Q} \subseteq \mathbb{R}$ open? Is it closed?
(c) Recall that $\mathcal{C}(0,2)$ is the set of continuous functions from the closed interval $[0,2]$ to \mathbb{R}, and that

$$
\begin{aligned}
d_{\infty}: \mathcal{C}(0,2) \times \mathcal{C}(0,2) & \longrightarrow \mathbb{R} \\
d(f, g) & =\sup _{x \in[0,2]}|f(x)-g(x)|
\end{aligned}
$$

defines a metric on $\mathcal{C}(0,2)$. Determine whether the subset $\{f(x) \in \mathcal{C}(0,2) \mid f(1)=0\}$ is closed, open, neither, or both.
6. (Optional). Let X be a finite set, and let d be any metric on X. What can you say about which subsets of X are open? Which subsets of X are closed?
7. (Optional). Let (X, d) be a metric space, and let $x \in X$. Prove that the singleton set $\{x\}$ is closed.

