1 Connected and path-connected topological spaces

Definition 1.1. (Path-connected spaces). Let (X, \mathcal{T}) be a topological space, and let $x, y \in X$. Recall that a path from x to y is a continuous function $\gamma:([0,1]$, Euclidean $) \rightarrow(X, \mathcal{T})$ such that $\gamma(0)=x$ and $\gamma(1)=y$. A space (X, \mathcal{T}) is path-connected if, given any two points $x, y \in X$, there exists a path from x to y.

Example 1.2. Sierpiński space is the space $\mathbb{S}=\{0,1\}$ with the topology $\mathcal{T}=\{\varnothing,\{0\},\{0,1\}\}$. Is \mathbb{S} path-connected?

In-class Exercises

1. In this problem, we will prove the following result:

Theorem (Connectivity of product spaces). Let X and Y be nonempty topological spaces. Then the product space $X \times Y$ (with the product topology) is connected if and only if both X and Y are connected.

Hint: See Worksheet \#15, Problem 6(b).
(a) Suppose that $X \times Y$ is nonempty and connected in the product topology $\mathcal{T}_{X \times Y}$. Prove that X and Y are connected.
(b) Suppose that $\left(X, \mathcal{T}_{X}\right)$ and $\left(Y, \mathcal{T}_{Y}\right)$ are nonempty, connected spaces, and suppose that $(a, b) \in X \times Y$. Prove that $(X \times\{b\}) \cup(\{a\} \times Y)$ is a connected subset of the product $X \times Y$ with the product topology $\mathcal{T}_{X \times Y}$.
(c) Suppose that $\left(X, \mathcal{T}_{X}\right)$ and $\left(Y, \mathcal{T}_{Y}\right)$ are nonempty, connected spaces. Prove that $X \times Y$ is connected in the product topology $\mathcal{T}_{X \times Y}$.
2. Let X be a (nonempty) topological space with the indiscrete topology. Is X necessarily pathconnected?
3. Prove the following.

Theorem (Path-connected \Longrightarrow connected). Let (X, \mathcal{T}) be a topological space. If X is path-connected, then X is connected.

Hint: You may use the result from Homework $\# 11$ that the interval $[0,1]$ is connected.
4. Let $f: X \rightarrow Y$ be a continuous map of topological spaces. Prove that if X is path-connected, then $f(X)$ is path-connected. In other words, the continuous image of a path-connected space is path-connected.
5. (Optional). Recall that $\mathcal{C}(0,1)$ denotes the set of continuous functions from the closed interval $[0,1]$ to \mathbb{R}, and that $\mathcal{C}(0,1)$ is a metric space with metric

$$
\begin{aligned}
d_{\infty}: \mathcal{C}(0,1) \times \mathcal{C}(0,1) & \longrightarrow \mathbb{R} \\
d(f, g) & =\sup _{x \in[0,1]}|f(x)-g(x)|
\end{aligned}
$$

Show that this metric space is path-connected, and therefore connected.

Page 1

6. (Optional). This problem shows that the converse to Problem 3 fails.

Let X be the following subspace of \mathbb{R}^{2} (with topology induced by the Euclidean metric)

$$
X=\{(1,0)\} \cup \bigcup_{n \in \mathbb{N}} L_{n},
$$

where L_{n} is the closed line segment connecting the origin $(0,0)$ to the point $\left(1, \frac{1}{n}\right)$.
(a) Show that X is connected.
(b) (Challenge). Show that X is not pathconnected.
(c) Would the space be path-connected if we added in the line segment from $(0,0)$ to $(1,0)$?

7. (Optional).

Definition (Local connectedness). Let (X, \mathcal{T}) be a topological space. Then X is locally connected at a point $x \in X$ if every neighbourhood U_{x} of x contains a connected open neighbourhood V_{x} of x. The space X is locally connected if it is locally connected at every point $x \in X$.

Definition (Local path-connectedness). Let (X, \mathcal{T}) be a topological space. Then X is locally connected at a point $x \in X$ if every neighbourhood U_{x} of x contains a path-connected open neighbourhood V_{x} of x. The space X is locally path-connected if it is locally path-connected at every point $x \in X$.
(a) Let (X, \mathcal{T}) be a topological space, and let $x \in X$. Show that if X is locally path-connected at x, then it is locally connected at x. Conclude that locally path-connected spaces are locally connected.
(b) Let $X=(0,1) \cup(2,3)$ with the Euclidean metric. Show that X is locally path-connected and locally connected, but is not path-connected or connected.
(c) Let X be the following subspace of \mathbb{R}^{2} (with topology induced by the Euclidean metric)

$$
X=\bigcup_{n \in \mathbb{N}}\left(\left\{\frac{1}{n}\right\} \times[0,1]\right) \quad \bigcup \quad(\{0\} \times[0,1]) \quad \bigcup \quad([0,1] \times\{0\}) .
$$

Show that X is path-connected and connected, but not locally connected or locally pathconnected.
(d) (Challenge). Consider the natural numbers \mathbb{N} with the cofinite topology. Show that \mathbb{N} is locally connected but not locally path-connected.

