1 Bases for topological spaces

Definition 1.1. (Basis of a topology.) Let (X, \mathcal{T}) be a topological space. We say that a collection \mathcal{B} of subsets of X is a *basis* for the topology \mathcal{T} if

- $\mathcal{B} \subseteq \mathcal{T}$, that is, every basis element is open, and
- every element of \mathcal{T} can be expressed as a union of elements of \mathcal{B} .

We say that the basis \mathcal{B} generates the topology \mathcal{T} .

Remark 1.2. By convention, we say that the empty set \varnothing is the union of an empty collection of open sets. So a basis \mathcal{B} does not need to include \varnothing .

Example 1.3. Let X be a set.

- (a) Find a basis for the discrete topology on X.
- (b) Find a basis for the indiscrete topology on X.

In-class Exercises

- 1. (The basis criteria). Let (X, \mathcal{T}) be a topological space. Show that a collection \mathcal{B} of subsets of X is a basis for \mathcal{T} if and only if it satisfies the following two conditions:
 - (i) Every basis element is an **open** set, that is, $\mathcal{B} \subseteq \mathcal{T}$.
 - (ii) For every open set $U \in \mathcal{T}$, and every $x \in U$, there exists some element $B \in \mathcal{B}$ such that $x \in B$ and $B \subseteq U$.
- 2. Let (X, d) be a metric space. Show that the set of open balls

$$\mathcal{B} = \{ B_r(x_0) \mid x_0 \in X, r \in \mathbb{R}, r > 0 \}$$

is a basis for the topology induced by d.

3. Let (X, d_X) and (Y, d_Y) be metric spaces. Recall that $X \times Y$ is then a metric space with metric

$$d_{X\times Y}: (X\times Y)\times (X\times Y) \longrightarrow \mathbb{R}$$
$$d_{X\times Y}\Big((x_1,y_1),(x_2,y_2)\Big) = \sqrt{d_X(x_1,x_2)^2 + d_Y(y_1,y_2)^2}.$$

(a) Show that the set

$$\mathcal{B} = \{ U \times V \mid U \subseteq X \text{ is open, } V \subseteq Y \text{ is open } \}$$

forms a basis for the topology induced by $d_{X\times Y}$.

- (b) Does every open set in $X \times Y$ have the form $U \times V$, where $U \subseteq X$ and $V \subseteq Y$ are open?
- 4. An advantage of identifying a basis for a topology is that many topological statements can be reduced to statements about the basis. As an example, prove the following theorem.

Theorem 1.4. (Equivalent definition of continuity). Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces, and let \mathcal{B}_Y be a basis for \mathcal{T}_Y . Prove that a map $f: X \to Y$ is continuous if and only if for every open set $U \in \mathcal{B}_Y$, the preimage $f^{-1}(U) \subseteq X$ is open.

5. In our definition of a basis, we began with a space with a given topology, and defined a basis to be a collection of open subsets satisfying certain properties. In many cases, however, we will wish to topologize our set X by first specifying a basis, and using the basis to define a topology on X. Prove the following theorem, which gives conditions on a collection of subsets \mathcal{B} of X that ensure it will generate a valid topology on X.

Theorem 1.5. (An extrinsic definition of a basis). Let X be a set and let \mathcal{B} be a collection of subsets of X such that

$$\bullet \bigcup_{B \in \mathcal{B}} B = X$$

• If $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \cap B_2$ then there is some $B_3 \in \mathcal{B}$ such that $x \in B_3 \subseteq (B_1 \cap B_2)$.

Let

$$\mathcal{T} = \{ U \mid U \text{ is a union of elements of } \mathcal{B} \}.$$

Then \mathcal{T} is a topology on X, and \mathcal{B} is a basis for \mathcal{T} . We say that \mathcal{T} is the topology generated by the basis \mathcal{B} .

- 6. (Optional).
 - (a) Consider the topology on \mathbb{R}^n induced by the Euclidean metric. Prove that the following set is a basis for \mathbb{R}^n .

$$\mathcal{B} = \{ B_{\epsilon}(x) \mid \epsilon > 0, \epsilon \text{ is rational}; x \in \mathbb{R}^n, \text{ all coordinates } x_i \text{ of } x \text{ are rational.} \}$$

- (b) Show that \mathbb{R}^n has uncountably many open sets, but that the basis \mathcal{B} is countable.
- 7. (Optional). Let (X, d) be a metric space, and \mathcal{B} a basis for the topology \mathcal{T}_d induced by d.
 - (a) Let $S \subseteq X$ be a subset, and $s \in S$. Show that s is an interior point of S if and only if there is some element $B \in \mathcal{B}$ such that $s \in B$ and $B \subseteq S$.
 - (b) Deduce that $Int(S) = \bigcup_{B \in \mathcal{B}, B \subseteq S} B$.
- 8. (Optional). Definition (Subbases). Let X be a set, and let S be a collection of subsets of X whose union is equal to X. Then the topology generated by the subbasis S is the collection of all arbitrary unions of all finite intersections of elements in S. Remark: In contrast to a basis, we are permitted to take finite intersections of sets in a subbasis.
 - (a) Show that the set \mathcal{T} generated by a subbasis \mathcal{S} really is a topology, and is moreover the coarsest topology containing \mathcal{S} .
 - (b) Verify that $S = \{(a, \infty) \mid a \in \mathbb{R}\} \cup \{(-\infty, a) \mid a \in \mathbb{R}\}$ is a subbasis for the standard topology on \mathbb{R} .
 - (c) Prove the following proposition.

Proposition. Let $f: X \to Y$ be a function of topological spaces, and let S be a subbasis for Y. Then f is continuous if and only if $f^{-1}(U)$ is open for every subbasis element $U \subseteq S$.