# TOTALLY REAL POINTS IN THE MANDELBROT SET 

XAVIER BUFF AND SARAH KOCH


#### Abstract

Recently, Noytaptim and Petsche proved that the only totally real parameters $c \in \overline{\mathbb{Q}}$ for which $f_{c}(z):=z^{2}+c$ is postcritically finite are $0,-1$ and -2 [NP]. In this note, we show that the only totally real parameters $c \in \overline{\mathbb{Q}}$ for which $f_{c}$ has a parabolic cycle are $\frac{1}{4},-\frac{3}{4},-\frac{5}{4}$ and $-\frac{7}{4}$.


## Introduction

Consider the family of quadratic polynomials $f_{c}: \mathbb{C} \rightarrow \mathbb{C}$ defined by

$$
f_{c}(z):=z^{2}+c, \quad c \in \mathbb{C}
$$

The Mandelbrot set $M$ is the set of parameters $c \in \mathbb{C}$ for which the orbit of the critical point 0 under iteration of $f_{c}$ remains bounded:

$$
M:=\left\{c \in \mathbb{C} \mid \forall n \geq 1, f_{c}^{\circ n}(0) \in \bar{D}(0,2)\right\} .
$$

Definition 1. A parameter $c \in \mathbb{C}$ is postcritically finite if the orbit of 0 under iteration of $f_{c}$ is finite.

Definition 2. A parameter $c \in \mathbb{C}$ is parabolic if $f_{c}$ has a periodic cycle with multiplier a root of unity.

Postcritically finite parameters and parabolic parameters are algebraic numbers contained in $M$. More precisely, $c \in \mathbb{C}$ is a postcritically finite parameter if and only if $c$ is an algebraic integer whose Galois conjugates all belong to $M$ (see [M] and $[\mathrm{Bu}])$. In addition, if $c \in \mathbb{C}$ is a parabolic parameter, then $4 c$ is an algebraic integer (see [Bo]); moreover, $4 c$ is an algebraic unit in $\overline{\mathbb{Z}} / 2 \overline{\mathbb{Z}}$ (see [M, Remark 3.2]).
Definition 3. An algebraic number $c \in \overline{\mathbb{Q}}$ is totally real if its Galois conjugates are all in $\overline{\mathbb{Q}} \cap \mathbb{R}$.

Recently, Noytaptim and Petsche [NP] completely determined the totally real postcritically finite parameters.
Proposition 1 (Noytaptim-Petsche). The only totally real parameters $c \in \overline{\mathbb{Q}}$ for which $z \mapsto z^{2}+c$ is postcritically finite are $-2,-1$ and 0 .

Their proof relies on the fact that the Galois conjugates of a postcritically finite parameter are also postcritically finite parameters, thus contained in $M$, and on the fact that $M \cap \mathbb{R}=\left[-2, \frac{1}{4}\right]$ has small arithmetic capacity. In this note, we revisit their proof. We then determine the totally real parabolic parameters.
Proposition 2. The only totally real parameters $c \in \overline{\mathbb{Q}}$ for which $z \mapsto z^{2}+c$ has a parabolic cycle are $\frac{1}{4},-\frac{3}{4},-\frac{5}{4}$ and $-\frac{7}{4}$.
Acknowledgments. We thank Valentin Huguin for useful discussions, and Curtis McMullen for introducing us to these questions.

[^0]
## 1. Postcritically Finite Parameters

We first revisit the proof of Noytaptim and Petsche [NP].
Proof of Proposition 1. Assume that $c$ is a totally real postcritically finite parameter. Then, $c$ and all of its Galois conjugates are real postcritically finite parameters, thus lie in the interval $[-2,0]$. Indeed,

- for $c \in\left(0, \frac{1}{4}\right)$, the orbit of 0 under iteration $f_{c}$ is infinite, converging to an attracting fixed point of $f_{c}$;
- for $c=\frac{1}{4}$ the orbit of 0 under iteration $f_{c}$ is infinite, converging to a parabolic fixed point of $f_{c}$ at $z=\frac{1}{2}$;
- for $c \in(-\infty,-2) \cup\left(\frac{1}{4},+\infty\right)$ the orbit of 0 under iteration $f_{c}$ is infinite, converging to $\infty$.
Let $a$ be a solution of $a+1 / a=c$; that is, $a^{2}-c a+1=0$. Then $a$ is an algebraic integer of modulus 1 with nonpositive real part, and all of its Galois conjugates also have modulus 1 and nonpositive real part.

By Kronecker's theorem, $a$ is a root of unity. And since the Galois conjugates of $a$ all have nonpositive real part, the only possibilities are the following:

- $a=-1$, which is mapped to $c=-2$;
- $a=\mathrm{e}^{ \pm \mathrm{i} 2 \pi / 3}$, which is mapped to $c=-1$;
- $a= \pm \mathrm{i}$, which is mapped to $c=0$.

Therefore, the only postcritically finite parameters that are totally real are $-2,-1$, and 0 .

## 2. Parabolic parameters

We now present the proof of Proposition 2. Note that $c=\frac{1}{4}, c=-\frac{3}{4}, c=-\frac{5}{4}$ and $c=-\frac{7}{4}$ are indeed parabolic parameters. Indeed,

- $f_{\frac{1}{4}}$ has a fixed point with multiplier 1 at $z=\frac{1}{2}$;
- $f_{-\frac{3}{4}}$ has a fixed point with multiplier -1 at $z=-\frac{1}{2}$;
- $f_{-\frac{5}{4}}$ has a cycle of period 2 with multiplier -1 consisting of the two roots of $4 z^{2}+4 z-1$;
- $f_{-\frac{7}{4}}$ has a cycle of period 3 with multiplier 1 consisting of the three roots of $8 z^{3}+4 z^{2}-18 z-1$.

Proof of Proposition 2. Assume that $c$ is a totally real parabolic parameter. Then, the Galois conjugates of $c$ also are parabolic parameters. Either $c=\frac{1}{4}, c=-\frac{3}{4}$, $c=-\frac{5}{4}$, or $c$ and all of its Galois conjugates lie in the interval $\left[-2,-\frac{5}{4}\right)$. Indeed, a parabolic cycle must attract the orbit of 0 under iteration of $f_{c}$. However,

- for $c \in\left(-\frac{3}{4}, \frac{1}{4}\right)$, the orbit of 0 under iteration $f_{c}$ converges to an attracting fixed point of $f_{c}$;
- for $c \in\left(-\frac{5}{4},-\frac{3}{4}\right)$ the orbit of 0 under iteration $f_{c}$ converges to an attracting cycle of period 2 of $f_{c}$;
- for $c \in(-\infty,-2) \cup\left(\frac{1}{4},+\infty\right)$ the orbit of 0 under iteration $f_{c}$ converges to $\infty$.
Let us assume that $c \in\left[-2,-\frac{5}{4}\right)$. Then, $b:=4 c+6$ and all of its Galois conjugates lie in the interval $[-2,1)$. Let $a$ be a solution of $a+1 / a=b$; that is, $a^{2}-b a+1=0$.

Then $a$ is an algebraic integer of modulus 1 with real part less than $\frac{1}{2}$, and all of its Galois conjugates also have modulus 1 and real part less than $\frac{1}{2}$.

By Kronecker's theorem, $a$ is a root of unity. And since the Galois conjugates of $a$ all have real part less than $\frac{1}{2}$, the only possibilities are the following:

- $a=-1, b=-2$ and $c=-2$; this is not a parabolic parameter;
- $a=\mathrm{e}^{ \pm \mathrm{i} 2 \pi / 3}, b=-1$ and $c=-\frac{7}{4}$; this is indeed a parabolic parameter;
- $a= \pm \mathrm{i}, b=0$ and $c=-\frac{3}{2}$; in that case $4 c=-6$ is not an algebraic unit in $\overline{\mathbb{Z}} / 2 \overline{\mathbb{Z}}$ and so, $c$ is not a parabolic parameter;
- $a=\mathrm{e}^{ \pm \mathrm{i} 2 \pi / 5}, b=2 \cos \left(\frac{2 \pi}{5}\right)$ and $c=\frac{\sqrt{5}-13}{8}$; in this case, $f_{c}$ has an attracting cycle of period 4 and so, $c$ is not a parabolic parameter;
- $a=\mathrm{e}^{ \pm \mathrm{i} 4 \pi / 5}, b=2 \cos \left(\frac{4 \pi}{5}\right)$ and $c=\frac{-\sqrt{5}-13}{8}$; then the Galois conjugate $\frac{\sqrt{5}-13}{8}$ is not a parabolic parameter and so, $c$ is not a parabolic parameter. This completes the proof of the proposition.

Remark: the following proof that $-\frac{3}{2}$ is not a parabolic parameter was explained to us by Valentin Huguin. It follows from [Bo] that for all $n \geq 1$,

$$
\operatorname{discriminant}\left(f_{c}^{\circ n}(z)-z, z\right)=P_{n}(4 c) \quad \text { with } \quad P_{n}(b) \in \mathbb{Z}[b] \quad \text { and } \quad \pm P_{n} \text { monic. }
$$

As an example,

$$
P_{1}(b)=-b+1, \quad P_{2}(b)=(b-1)(b+3)^{3}, \quad P_{3}(z)=(b-1)(b+7)^{3}\left(b^{2}+b+7\right)^{4}
$$

and

$$
P_{4}(z)=(b-1)(b+3)^{3}(b+5)^{6}\left(b^{3}+9 b^{2}+27 b+135\right)^{4}\left(b^{2}-2 b+5\right)^{5} .
$$

Note that this yields an alternate proof that $c=\frac{1}{4}, c=-\frac{3}{4}, c=-\frac{5}{4}$ and $c=-\frac{7}{4}$ are parabolic parameters. In addition,

$$
P_{n}(0)=\operatorname{discriminant}\left(z^{2^{n}}-z, z\right) \equiv 1(\bmod 2)
$$

As a consequence

$$
P_{n}(-6) \equiv 1(\bmod 2)
$$

Thus, for all $n \geq 1$, the roots of $f_{-\frac{3}{2}}^{\circ n}(z)-z$ are simple, which shows that $f_{-\frac{3}{2}}$ has no parabolic cycle.

## References

[Bo] T. Bousch, Les racines des composantes hyperboliques de $M$ sont des quarts d'entiers algébriques, Frontiers in Complex Dynamics: a volume in honor of John Milnor's 80th birthday, A. Bonifant, M. Lyubich, S. Sutherland, editors. Princeton University Press 2014, 25-26.
[Bu] X. Buff, On Postcritically Finite Unicritical Polynomials, New York J. Math. 24 (2018) 1111-1122.
[M] J. Milnor, Arithmetic of unicritical polynomial maps, Frontiers in Complex Dynamics: a volume in honor of John Milnor's 80th birthday, A. Bonifant, M. Lyubich, S. Sutherland, editors. Princeton University Press 2014, 15-24.
[NP] C. Noytaptim \& C. Petsche, Totally real algebraic integers in short intervals, Jacobi polynomials, and unicritical families in arithmetic dynamics, Preprint (2022).

Email address: xavier.buff@math.univ-toulouse.fr
Institut de Mathématiques de Toulouse, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex, France

Email address: kochsc@umich.edu

Department of Mathematics, 530 Church Street, East Hall, University of Michigan, Ann Arbor MI 48109, United States


[^0]:    The research of the second author was supported in part by the NSF.

