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 The Road to Chaos is Filled with
 Polynomial Curves

 Richard D. Neidinger and R. John Annen, III

 1. INTRODUCTION The bifurcation diagram (Figure 1) is much like an aerial
 photograph there are many interesting things revealed but it's hard to see the
 detail or to interpret the features. By superimposing a family of polynomial curves
 (Figure 2), this picture turns into a road map marking trails, boundaries, mile-
 stones, and labeling points of interest. Both the curves and the diagram are
 generated by iterating the function x2 + c as the parameter ranges across a
 horizontal c-axis from 0 to -2. The initial iterates form the curves with the nth
 curve being the nth iterate of the critical value zero as a function of c. The
 bifurcation diagram (also known as the orbit diagram, the Feigenbaum diagram, or
 the road to chaos) is a plot of later iterates, showing the eventual state of the
 system.

 2 k W * , J , , X , X , g ,

 iD >'t

 -2 w * X i t \ # X I I t | s 1 X
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 Parameter c

 Figure 1. The bifurcation diagram of t(x) - Z2 + C.

 In the first half of the paper, curve intersections provide insight into the
 dynamics of the system. The roots of the curves are shown to mark periodic
 windows in the bifurcation diagram, usually of invisible width, indicating a remark-
 able preponderance of attracting periodic phenomena that contrasts with the
 seeming chaos in the diagram. Other intersections mark parameter values where
 the iteration is chaotic. A brief detour into the complex plane yields a simple
 algorithm that color codes the Mandelbrot set to indicate the periods of the
 attracting phenomena. The second half of the paper studies how curve inequalities
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 Figure 2. The first six Q-curves reveal dynamics and shapes within tbe diagram.

 describe the shapes seen in the bifurcation diagram. We show why the high-num-

 bered iterates condense along the polynomial curves. The curves also form en-

 velopes that bound embedded, self-similar copies of the bifurcation diagram.

 Cunre intersections specify the exact beginning and ending parameters for eveIy
 envelope found in the diagram and, thus, mark where each window ends. Finally,

 Sarkovshl's ordering can be seen in the order in which the curves first cross the

 ans. The ordering is argued without using Sarkovshl's theorem.

 Let's begin by defining terms and notation. For the standard dynamical system

 tc(x) = x2 + c, the iterates are defined by xi+s = tc(xi), or equivaiently xi = tci(xo)

 for some fixed xO. A sequence of such iterates is usually called an orbit and the

 dynamics of the system refers to the behavior of orbits. The bifurcation diagram, in
 Figure 1, displays the dynamics for different values along the horizontal c-s by

 vertically plotting iterates, numbered 300 to 900, in the orbit of zero.

 Define the nth polynomial Q,t(c) =fct(O) to be the nth iterate °f tC starting
 from zero. Specifically, Ql(c) = c, Q2(c) = c2 + c, and Q3(C) - (C2 + C)2 + C. In

 general, Q,t + 1(C) = (Q,t(c))2 + C. Thus, each Q,t(c) is a 2Zt - 1 degree polynomial.

 The graph of any Q,t as a function of c will be called a Q4urue. The first six

 Q-curves are displayed in Figure 2 and portions of these curves are visible as a
 relative densitr of points in Figure 1.

 Q-curves are iterates of the critical value (in [PJS], p. 633, they are called
 critical-value lines). The important role of the critical value is found in Fatou's

 Theorem: Every attracting cycle for a polynomial attracts at least one critical point

 [Br]. Even if the iteration for a bifurcation diagram starts from a different x0, the
 eventual state reveals the same Q-cursres. Indeed, the bifurcation diagram in the

 background of Figure 2 uses x0 - 0.2, while the curves are iterates of the critical
 value zero. Typically, even bifurcation diagrams start with zero in order to avoid

 isolated values where x0 may be a repelling periodic point.

 2. CURVE INTERSECTIONS REVEAL SYSTEM DYNAMICS

 2.1 Roots and windows. In the bifurcation diagram, the gray haze of iterates
 contains fascinating gaps, or vertical strips of white space, usually called windows.
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 The wmdows are formed whenever the iteration abruptly changes from a wide
 spread of values to periodic oscillation. Each window can be associated with the
 lowest period of oscillation that occurs within that parameter range. A few
 windows are visible in Figure 1 but the Q-curves mark many windows that are too
 narrow to be visible.

 A quick observation from Figure 2 is that the curve Q3 crosses the axis in the
 region usually called the window of period 3. Likewise, Q5 and Q6 cross in
 windows of period 5 and 6, respectively. The natural conjecture is true: whenever a
 Q-curve meets the axis, it marks a periodic window in the diagram (with period of
 the lowest numbered Q-cune that crosses there) and all windows are marked in
 this way. Actually, each root is a parameter value with a superattracting periodic
 cycle. Recall that p is a periodicpointofperiod n if fcl(p) =P but fi(p) + p for
 O < j < n. This p is repelling if l(fCI)'(P)l > 1, attracting if l(fCI)'(P)l < 1, and
 superattrseting if l(fcl)'(p)I = °

 Superattracting Root Theorem. Let n E FJ. The parameterrsatisMies Q,l(r) = O and
 Qj(r) + O for O < j < n if and only if iteration of fr(x) has a superattracting periodic
 point of period n.

 Proof: Fix r. By definition, Q,l(r) =tr'l(O). Thus, Q,t(r) = O and Qj(r) + O for
 O < j < n if and only if zero is a periodic point of period n. In general, a periodic
 point is superattracting if and only if a critical point belongs to the cycle. Indeed,
 by the chain rule, (t't)'(Xo)= llil=oltt(xi) and the product is O if and only if
 f'(xi) = O for some i [Br]. Since zero is the only critical point of fr, the theorem
 follows. r

 Such parameter values do mark windows. Indeed, continuity implies that eveiy
 parameter with superattracting period n is contained in an open interval of
 parameter values with attracting period n. Conversely, any maximal interval of
 attracting period n will contain a superattracting value. In fact, more is true: the
 derivative of the nth composition at a cycle point ranges from 1 to -1 across an
 interval of attracting period n. This statement follows from the more general
 complex result of Douady, Hubbard, and Sullivan ([Br], p. 85) and can be observed
 in the diagrams of Devaney [D2]. A window of period n in the bifurcation diagram
 is an interval of attracting period n that is augmented on the left by a region of
 bounded iterates that we identify as an envelope in Section 3.2.

 The roots of the Q-curves indicate many windows that are not visible in the
 -

 bifurcation diagram (Figure 1) or even in zooms on the diagram [D2]. In Figure 3,
 the graph of Q,, alone marks a tremendous number of windows of period 11.
 Curve Q has no roots (except O) to the right of-1.5, but the zoom shows how
 roots, and therefore windows, are concentrated near -2.

 2.2 Roots and Mandelbrot buds. The Superattracting Root Theorem can be used
 in the complex c-plane to mark components of period n. This is analogous to
 marking windows on the c-axis. The polynomials Q,t(c) =tcl(O) make sense for
 complex c-values, even though the term "curve"is not appropriate in this context.
 At complex roots where these polynomials are zero, the system has a superattract-
 ing periodic point of period n. Around each root, the region of attracting period n
 is a hyperbolic component of the Mandelbrot set [Br], and appears as a bud
 sprouting off a larger component or as a cardioid of a (mini-)Mandelbrot set. We
 can color neighborhoods of the roots, where ItC'l(0)l < , in order to show the
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 Figure 3. Every root of Qll marks a period 11 window.

 period of the corresponding components.
 A program for plotting the Mandelbrot set is easily adapted to perform the
 color-coding of components. For each pixel c, the typical Mandelbrot set algorithm
 starts with z0 = 0 and iterates tc until lZnl > 2s sO that c is outside the Mandel-
 brot set, or n exceeds some maximum iteration, so that c is assumed to be in the
 Mandelbrot set. We simply add a third bail-out option whenever lZnl < E, and
 n < the number of colors to be used in period-labeling, stop and color the pixel
 with color n. Choose solid colors, for the original two stopping tests (as opposed to
 the usual practice of coloring according to n when lZnl > 2). A fairly large E, such
 as 0.2, is recommended to color "disks" that very roughly cover the buds that are
 being labelled. More importantly, it will label (the period of points in the main
 cardioid of) mini-Mandelbrot sets near the boundary that would not be visible and
 could even be smaller than a pixel.
 This might by called a quick and dirtr algorithm. It's quick because it's simple to

 program and actually provides an early exit for many pixels that would otherwise
 reach the maximum iteration. It's dirty becaus¢ it's difficult to say anything
 rigorous about colored pixels for arbitrarily or aesthetically chosen E'S. It is usually
 easy to identit the component that goes with a colored disk, or vice versa, but
 colors can extend into adjacent components. Colored disks can be smaller or larger
 than the corresponding components, even for the same n and E. Other algoxithms,
 such as direct period detection from iteration or the spider algorithm, are more

 .

 rlgorous.
 Two examples of the beautiful and intriguing color figures that are pro-

 duced by this algorithm can be viewed through the World Wide Web at
 http://www.davidson.edu/academic/math/neidinger/road.html. Fascinating
 patterns appear in the sequence of periods found in the geometric patterns. Of
 course, zooms near the boundaty are as entertaining as ever. A period-n bud, off
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 the main cardioid, is crowned by a decoration consisting of n spokes and each
 spoke contains a sequence of periods (covering cardioids of mini-Mandelbrot sets)
 from an equivalence class mod n.

 2.3 The intersection dichotomy. We now leave the complex detour and return to
 the road map where every intersection is interesting. There are only two types of
 intersections between Q-curves and they imply different system dynamics for the
 corresponding parameter values. Figure 4 shows many intersections of the first
 eight Q-curves on [- 2, -1.8] and labels one of each type. A tangency occurs at a
 superattracting root r, and a non-tangent intersection occurs at a Misiurewicz
 point s, which has chaotic dynamics. While the implications of a root are relatively
 straight-forward, the implications of a Misiurewicz point rely on references in the
 literature.

 -2 { | J ' ^ s | * . , | , , ] , J ] | _

 -2 r -1.9 s -1.8

 Figure 4. The two types of intersections: all curves tangent or none tangent, with periodic or chaotic
 dynamics, respectively.

 A Misiurewicz point is a c-value where the orbit of the critical value zero is
 strictly pre-periodic, i.e., it eventually falls onto a periodic orbit not including zero.
 The proof that the corresponding dynamics is chaotic is veiy involved and uses the
 definition of chaos from ergodic theoxy (see references in the proof below).
 However, the following intuitive argument, from [CE], p. 34, yields some insight
 into the chaotic behavior: At a Misiurewicz point, the eventual periodic orbit of
 zero is repelling and, by Fatou's Theorem, no periodic attractor can exist. We now
 argue sensitive dependence on initial conditions, meaning that nearby points are
 eventually "pulled apart" through the iteration. This condition is hardest to fulfill
 for points near x = O, since the derivative of fc(x) at zero is zero, and, hence, tC
 contracts points near zero. But eventually zero itself is mapped onto a repelling
 periodic orbit. Ihus, the orbits of points near zero may initially move closer (to the
 orbit of zero) but will eventually come near the repelling periodic orbit and be
 pushed away.

 Intersection llichotomy. At any intersection of two Q-curves, the c-value is either:

 (1) a root of some Q,l (let n be the smallest such positive number), where every
 intersection of Q-curves is a tangency at one of n distinct points (in equivalence
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 classes mod n), and where the system fc has a superattractingperiodic point of
 period n, or

 (2) a Misiurewiczpoint, where no intersection of Q-curves is a tangency, and where
 the system fc is chaotic.

 Proof: Let c be the value at the intersection of two Q-curves. By definition of Qi,
 the orbit of zero is Qi(c). If c is not the root of any Q-curve, then the orbit never
 returns to zero but the intersection implies that the orbit is eventually periodic, so
 c is a Misiurewicz point. Thus, c is either a root or a Misiurewicz point.

 The claims about system dynamics are found, in case (1), in the previous
 Superattracting Root Theorem and, in case (2), in results of M. Misiurewicz found
 in [CE] (p. 155 and supporting text). There, it is shown that if c is a Misiurewicz
 point, then fc has an ergodic, invariant, probability measure that is absollltely
 continuous with respect to Lebesgue measure. This measure-theoretic condition is
 one way to define a chaotic dynamical system. The proof in [CE] applies to a class
 of functions, including g = tc/c for a Misiurewicz point c < - 0.5. Ergodic theory
 techniques are used to construct an invariant measure v (meaning v(E)=
 v(g-l(E)) for every measurable set E) which is absolutely continuous. Such a
 measure is shown to be unique and, hence, ergodic. Readers unfamiliar with this
 characterization of chaos might want to consider how an attracting periodic orbit
 would prohibit the existence of an absolutely continuous invariant measure.

 To prove the claims about tangency, observe that: an intersection and its
 tangency or non-tangency can be propagated to the next iterate (and hence all
 subsequent iterates) by the recurrence relations Qi+1(c) = (Qi(c))2 + c and

 Qi+l(C) = 2Qi(C)Qi'(c) + 1.
 First, consider a root c = r where Q,l(r) = O and no smaller numbered curve is

 zero at r. Then, Q,l+l(r) = o2 + r = Q1(r) and Q,'l+l(r) = 2QZI(r)Qtl(r) + 1 =
 1 = Q1(r). By the recurrence relations, Q,l+i(r) = Qi(r) and Q,l+i(r) = Qi'(r) for
 all i 2 1. So all these intersections are tangencies at one of the n points
 Q1(r), . . ., Q,l(r). There are no other intersections of Q-curves at r since these n
 points are distinct (otherwise, forward propagation would yield Qj(r) = Q,l(r) = O
 for some j < n which contradicts the assumption on n).

 Now, assume that c = s is a Misiurewicz point. Then, since zero is not itself
 periodic, s is not the root of any Q-curve. Let k be the smallest number such that
 Qk intersects another Q-curve at s, and let n be the smallest number such that
 Qk(s)= Qk+,l(s). This is not a tangency, by the following argument. By the
 recurrence relation, (Qk-l(S))2= (Qk+,l-l(S))2 and, hence, Qk-l(S)=
 -Qk+l-l(s) In particular, k 2 2 (otherwise, the argument of the previous sen-
 tence would yield O'= Qk+t-l(S) which contradicts no root at s). Now, define
 G(c) = Qk+,t_l(c) + Qk_l(c) In the next paragraph, we will show that G'(s) 9& O.
 Then

 Qk+,t(s) - Qk(S) = 2Qk+,l-1 (S)Qk+,l-l (S) 2Qk - l(s)Qk-l(s)

 = -2Qk_l(s)G'(s) + O.

 We conclude that Qk+l(S) + Qk(S) so the intersection is not a tangency. By
 the recurrence relations, Q,l+i(s) = Qi(s) and Q,l+i(s) + Qi'(s) for all i 2 k.
 (We can propagate the non-tangency since s is not the root of any Q-curve.) Thus,
 all these intersections are non-tangencies at one of the n distinct points
 Qk(S)i...Qk+l-l(S) There are no other intersections of Q-curves at s by the
 assumptions of "smallest" for k and n.
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 The following algebraic argument, from p. 333 of [DH], shows that G'(s) $ 0:
 By the recurrence relation, G'(s)/2 = Qk+n-2(5)Qk+t-2(5) + Qk-2(S)Qk-2(S) + 1
 To show that this ewression cannot be zero, the rough idea is to show that the
 combination of Q and Q' values has a positive power of 2 as a type of factor and,
 thus, cannot be -1. Specifically, each rational number has a 2-adic valuation given
 by the power of 2 in the natural factorization of the fraction. The field of rationals
 and the valuation can be extended to include the number s. Let A be the set of
 elements of the extension field with non-negative valuation and let m be the set of
 elements with positive valuation. Then, m is a maximal ideal in the ring A. Using
 obvious valuations, such as 1 0 m and 2A c m, we work with arithmetic mod m.
 Since s is the root of a monic polynomial with integer coefficients (i.e., an
 algebraic integer), s and all integer coefficient polynomials of s (including all Q
 and Q' values) are in A. In fact, evety Qi(s) - 1 modm, since Q'(s) =
 2Qi_l(s)Ql_l(s) + 1. Thus,

 Qk+n-2(5)Qk+s1-2(5) + Qk-2(S)Qk-2(S) - Qk+,l 2(S) + Qk_2(s) mod m.

 A property of s, from the previous paragraph, is that Qk+n-l(S) + Qk-l(S) = °
 By the recurrence, Q2+,1-2(S) + Q2_2(s) = -2S E m. It follows that (Qk+n-2(5) +
 Qk 2(S))2 ands hence Qk+n-2(5) + Qk-2(S) are in m. By the preceding modular
 equivalence, Qk+n-2(5)Qk+Z1-2(5) + Qk-2(S)Qk_2(5) is in m and cannot be -1
 (which has valuation 0). Thus, G'(s) + 0. -

 Now, one can literally see periodic and chaotic phenomena mixed throughout
 parameter ranges where the bifurcation diagram just shows a gray haze. Look at
 the curves to the left of the point marked r in Figure 4; there is superattracting
 periodic dynamics at eveIy intersection with the axis, while there is chaotic
 dynamics at evety non-tangent intersection of curves. Natural questions arise about
 the density and/or measure of the attracting periodic and chaotic parameters. The
 known answers are deep results in the field. Recently, Swia5tek showed that the
 union of the attracting periodic parameters is an open, dense set in the interval [S
 and, yet, Jakobson's theorem shows that the set of chaotic parameters has positive
 Lebesgue measure [R]!

 3. CURVE INEQUALITIES SEPE TIIE DIAGRAM

 3.1 VVhy curves appear in the bifurcation diagram. In the bifurcation diagram,
 Figure 1, the first few Q-curves appear as pathways that are well-traveled by later
 iterates. Once the iterates spread across a vertical range (for c < the Feigenbaum
 point -1.401155..., [e], p. 141), they seem to cluster around curves, particularly
 on one side of each curve. This density of iterates is especially clear in the
 histograms of [D4], p. 127, and [PJS], p. 632. Why do the Q-curves, formed by
 initial iterates of zero, emerge from these later iterates, even when x0 $ 0?

 One way to ewlain this phenomenon is to show how iterates in a relatively wide
 band around the axis must map into narrow bands around the first few Q-curves.
 These bands are shown in Figure 5, between solid Q-curves and corresponding
 dashed curves, for c in [-2, -1]. The dashed curves are given by P,t(c) = fen(e)
 (for e = 0.15 in Figure 5), correspondingto Q"(c) =tcn(°) If anyiterate xi falls in
 the band of width 2 e around the c-axis, then the next iterate will be in the band of
 width R2 between Q1 and P1, which condenses iterates above Q1. Specifically, if
 0 < lxil < , then, by squaring and adding c to each side, Ql(c) < xi+l < Pl(c).
 Assuming Pl(c) < 0 and again applying tcs yields Q2(c) 2 xi+2 2 P2(C). Since
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 P2(c) 2 0 for all c < -1.4, we can "propagate the bounds" to the next iterate,
 Q3(c) 2 xi+3 2 P3(c); so that the density of points will occur below Q3. In the
 range of c-values where Q3(c) < 0, the next iterate xi+4 will fall above Q4 but, in
 the c-range where P3(c) 2 0, it falls below Q4. The bands should appear con-
 densed when the width IQi(c) - Pi(c)l is smaller than the initial 2e, which happens
 for low i and small , though the width can grow as c approaches -2. We can
 estlmate IQi+l - Pi+ll = IQ' - Pi | < (lQil + gPil)lQi - Pil < 41Qi - Pil. By induc-
 tion, IQi+l - Pi+ll < 4is2. This phenomenon emphasizes one side of low-order
 Q-curves (lower should be darker); it can be observed in the bifurcation diagram in
 Figure 1.

 2 | g l

 1,\'X'
 o ' 'Q :::57=:

 -2 -, . . . . . .
 -2 -1.S -1

 Figure 5. Iterates near the aYis are mapped into concentrated bands around curves.

 A geometrical view of the dynamical system can explain why the whole region
 below Q3 is darker than the region above it, as c ranges between about -1.8 to
 - 1.4. The bifurcation diagram on [- 2, - 1] can be divided into two regions, in the
 (c, x)-plane, depending on whether or not Ixl < Q2(c). If (c, x) satisfies 0 < Ixl <
 Q2(c), applying fC yields Ql(c) < tc(x) < Q3(c); i.e., it maps the symmetric region
 by folding it over along the axis, stretching the axis down to Ql, and stretching Q2
 down to Q3. Tlle remaining portion of the bifurcation diagram satisfies Ql(c) < x
 < -Q2(c), so that ,applying fC yields Q2(c) > tc(x) > Q3(c); flipping it over and
 filling in above Q3. In the range between about -1.8 to -1.4, this motion
 condenses the first region and expands the second.

 3.2 Envelopes bound copies of the diagram. On the road map given by curves on
 top of the bifurcation diagram (Figure 2), Q-curves form boundary lines separating
 regions that contain iterates from those that don't. In fact, these curves bound the
 shape and identify the location of all embedded, self-similar copies of the diagram.
 In general, whenever a curve Q,l crosses the axis, the curves Qn and Q2n bound a
 self-similar copy of the bifurcation diagram consisting of every nth iterate. The
 other iterates fall in similar envelopes, also bounded by Q-curves.

 Figure 6 shows three such sets of envelopes. First, the entire diagram is
 bounded by Ql below and Q2 above. Second, all the even iterates are bounded
 between Q2 and Q4, from the root of Q2 to the point where Q4 meets -Q2. In
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 this parameter range, the odd iterates fall between Ql and Q3. Finally, a quarter
 of the iterates are bounded between Q4 and Q8, from the root of Q4 to the point
 where Qg meets-Q4. Four envelopes can be seen in this parameter range.

 2 R > ¢ , . * . , . *

 - --__-QI

 -1

 -2

 -2 -1.5 -1 -0.5 0

 Figure 6. Q-curves bound nested copies of the diagram.

 Figure 7 zooms in on the period three window around the axiss to show an
 envelope formed when Q3 crosses the ais. The envelope abruptly ends at the
 Misiurewicz point where - Q3 meets Q6. Within this range, every third iterate fallsW
 between Q3 and Q6 while the other iterates are constrained to the region between
 Q1 and Q4 or the region between Q2 and Q5. This containment is being obsened
 when people speak of a "period 3 window.' This is different from the interval of
 attrading period 3. Actually, if the envelope is on the interval (s, r) and the
 interval of attracting period 3 is (a, b), then the window is the union (s b). (The
 right endpoint, b of the attracting intewal is a point not described by Q--cuwe
 intersections.) Each of the tiny nested windows seen in Figure 7 contains even
 smaller envelopes of Q-curves.

 0.3 w , § W , | | . .. .
 fi . . e

 k >_ ,_

 -02-t -

 -1.79 -1.78 -1.77 -1.76 - 1.H

 Figure 7* A zoom into the period 3 window shows an envelope of Q-curves.
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 The following theorem describes all such envelopes. The phrase x lies between y
 andz means y <x <z orz <x <y.

 Envelope Theorem. If Q,1(r) = O and Qj(r) + O for O < j < n, let s =
 max{c < r: Q2,1(c) = -Q,1(c)}. If c E [s,r] and lxol < IQn(c)l then xkn+m lies
 between Qm and Qm+n for all m E {1, 2, . . ., n} and k E {O, 1, 2, . . . }. In particular,
 Qk,1+m lies between Qm and Qm+,1 on [s, r]. The regions between these pairs of curves,
 Qm and Qm+Z1 for each m E {1, 2, . . ., n}, are disjoint from each other on (s, r]. For
 later application, we also note that, if m + n, the region between Qm and Qm +n never
 meets the axis on [s, r].

 To prove the Envelope Theorem, we "propagate the bounds" from one iterate
 to the next. However, this requires either that the iterate must fall between -QZ1
 and + QZ1 or that both the upper and lower bounds must have the same sign. This
 will be reduced to the requirement that IQ2nl < IQnl a fact that is fairly obvious in
 the graphs. This and other essential properties of the "horn shape" formed by the
 graphs of Q2,1 and Q,1 (see Figures 6 and 7) are summariged in the following
 lemma. The claims following "moreover"are used in the next section.

 Horn Lemma. If Q,1(r) = O and Qj(r) + O for O < j < n, then there exists s < r
 such that Q2,1(s) = -Q,1(s) and IQ2Z11 < IQz11 on (s,r). Moreover, there exists
 r' E (s, r) such that Q2,1(r') = O, Q2,1Q,1 < O on [s, r') and Q2,1Q,1 > O on (r', r).

 This lemma is deceptively innocent-looking it embodies deep properties of the
 quadratic map that we will not prove. The "horn shape" is a real-parameter
 consequence of Douady and Hubbard's mini-Mandelbrot sets for the complex
 parameter [DH]; they prove that only complete (not partial) copies of the set occur.
 The horn shape is also equivalent to a pattern observed in graphical analysis (used
 to produce web-diagrams), as described in the following paragraph.

 Consider the graph of Y = tc1(x) near the origin in the xy-plane. If Q,1(r) = 0,
 zero is a superattracting periodic point of period n for fr, so that y = tr'1(x) has an
 extreme value at the origin. In fact, for a range of c-values near r, the graph
 resembles a parabola in a small region around the origin. We examine the
 concave-upward case shown in Figure 8. As c decreases from r to a value that we
 call s, the vertex moves monotonically downward until it becomes as large, in
 absolute value,-as the coordinates of the intersection with the diagonal in the first
 quadrant. This diagonal intersection is a repelling point that forms the corner of a
 square of trapped iterates, as in [Dl], p. 132. The properties of the Horn Lemma
 can now be deduced from this family of graphs. On each graph of Y = tc1(x) the
 y-intercept is Q,1(c) = fc (O). Now, Q2,1(c) = fc (Q,1(c)) is visualized by taking
 the y-intercept horizontally to the diagonal and then vertically to the curve. In
 Figure 8, the resulting values of Q2,1(c) are connected, creating a curve parameter-
 ized by x = Q,1(c) and y = Q2,1(c) for c in [s, r]. This parametric curve displays all
 of the properties stated in the Horn Lemma. This is not a proof, but merely shows
 that the lemma is equivalent to the claim that the parabola-shape always moves
 monotonically until reaching the edge of the trapping box. Graphical analysis also
 shows the dynamical significance of the parameter s beyond s, the parabola
 pokes out of the box and the containment (or envelope) of iterates ends. We now
 return to the c-axis for the proof of the containment between Q-curves.
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 Figure 8. Five graphs of Y = tC (x) lead to the Horn Lemma as shown in the thick curve parametenzed
 by x = Qn(c) and y = Q2n(c).

 Proof of the Envelope Theorem: (Assuming the Horn Lemma.) Fix r and n such
 that Q,1(r) = 0 and Qj(r) + 0 for 0 <j < n. By the Horn Lemma, let s < r
 such that Q2,1(s) = -Q,1(s) and IQ2,1(c)l < IQn(c)l for c E (s,r). Clearly, s =
 max{c < r: Q2,1(c) = - Q,1(c)}.

 Fix any c E [s, r] and consider the orbit from any lxol < IQ,1(c)1. Apply fc to
 ° < lxol < IQ,1(c)1 to get Q1(c) < x1 < Q,1+1(c). The containment asserted by the
 theorem continues because of two propagation principles. (1) If x lies between Qm
 and Qm+,1 for some m E {1,2,...,n - 1}, then tc(x) lies between Qm+l and
 Qm+1+Z1 (2) If x lies between QZ1 and Q2n then tc(x) lies between Q1 and Ql+n
 The second principle uses the fact that IQ2n(c)l < IQ,1(c)1 for c E [s, r]. If x lies
 between QZ1 and Q2Z1 then 0 < Ixl < IQ,1(c)1 and, again by applying fc Q1(c) <
 fc(x) < Qz1+l(c). To prove the first principle, suppose x lies between Qm and
 Qm+,1. One possibility (out of two) is that Qm(c) < x < Qm+n(c). In the following
 paragraph, we show that Qm(c) and Qm+,1(c) agree in sign. If they are both
 positive, then Qm+1(c) vfc(x) < Qm+1+n(c). If they are both negative, then
 Qm+1(c) 2tc(x) 2 Qm+l+Z1(c) In either case, tc(x) lies between Qm+l and
 Qm+1+Z1. The other possibility is that the original containment was Qm+n(C) < x <
 Qm(c), and the argument is identical. To complete the proof of containment, it
 remains to show that Qm and Qm+,1 are nonzero and agree in sign on [s, r]. We
 will show a bit more as a bonus.

 We claim that the curves Q1 Q2 . . . m Q2Z1-1 never meet the axis in (s, r) and
 that none of the curves Q1 Q2Z. . Z Q2Z1 intersect in (s, r). At the root r, the curves
 pair up, mod n, at the n distinct points (by the Intersection Dichotomy). Thus, the
 claim implies that the regions between these pairs of curves, Qm and Qm+n for
 each m E {1, 2, . . ., n}, are disjoint from each other on (s, r]. The claim also
 implies that, for each m E {1, 2, . . ., n - 1}, the pair Qm and Qm+,1 are nonzero
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 and agree in sign throughout (s, r]. Since s is a Misiurewicz point, it can't be a root
 Of Qm or Qm+,l. So, in fact, Qm and Qm+n are nonzero and agree in sign
 throughout [s,r]. We prove the claim by contradiction. Let B be the set of
 counterexamples, i.e., B = {c E (s, r): Qi(c) = Qj(c) for some i < j < 2n, or 0 =
 Qj(c) for some j < 2n}, and suppose B is not empty. B is finite, since every Qi is a
 distinct polynomial, so we can let b = max(B). Since Qi(b) = Qj(b) or 0 = Qj(b),
 propagate (apply gb) until Qk(b) = Q2n(b) for some k < 2n. Now, consider the
 continuous curves IQk(c)l and IQn(c)l on (b, r). At b, IQk(b)l = IQ2,l(b)1 < IQn(b)l
 By this inequality, k + n. At r, IQk(r)l > 0 = IQZI(r)l. By the Intermediate Value
 Theorem, there exists some d in (b, r), such that IQk(d)l = IQn(d)l Propagate this
 equality once to get Qk+l(d) = Q,l+l(d). Thus d E B, which contradicts the
 assumed maximality of b. E

 The Envelope Theorem's hypothesis that lxol < IQ,I(c)l is necessary to have
 containment for all c in [s, r] but, in practice, is not needed for most c-values. The
 bifurcation diagram, in the background of Figure 7, was created with x0 = 0 to
 satisfy this hypothesis, which essentially requires 'that the iteration start inside an
 envelope. For other x0 values, the diagram looks almost the same but there can be
 isolated exceptions where iterates leak out of the envelopes. Outside the en-
 velopes, an x0 value can be, for instance, in a repelling periodic orbit for various
 values of c (with different periods) in the range of the envelope. At such c values,
 the iteration never enters the envelopes; nearby, it enters only after many itera-
 tions. Still, for most c-values, the iteration is rapidly attracted down into the
 envelopes. In fact, for a given c in the range of an envelope, the set of those values
 of x0 with bounded orbits that are not attracted into the envelopes is a set of
 Lebesque measure zero.

 -

 3.3 Sarkovskil's ordering. The Q,l curves also reveal the pattern known as
 Sarkovshl's ordering. This ordering of 1%1 is as follows:

 3D5D7D *% D2 * 3D2 * 5D2 * 7D *% D22 * 3D22 * 5D *% D23 * 3D23 * 5D *%

 D ... D24 D23 D22 D2D 1.

 Sarkovshl's theorem [D2] applies to any continuous F: 1R 1R and states that if F

 has a periodic point of period n and if n D m, then F also has a periodic point of
 period m. Although this theorem applies to fc for a fixed parameter c, it's not
 immediately clear how this relates to Q,l across a range of c-values. We will not
 use Sarkovshl's theorem but will establish a relationship by directly studying the
 Q-curves.

 Root Ordering Theorem. Define r,l = max{r: Q,l(r) = 0 and Qj(r) + O for
 O < j < n}. Then r,l < rm if and onlyifnDm.

 Proof: Every r,l exists since, for n > 2, Q,1(-2) = 2 and Qn < Q2 < O on (r2, rl).
 By bifurcation theory (or the Horn Lemma and the Envelope Theorem),
 *n < r8 < r4 < r2 < r1 and if i is not a power of 2, then ri is to the left of this list.
 For each power of two, p = 2i, there is a corresponding sp < rp described by the
 Horn Lemma. Also, sp < 52p < r2p < rp. These inequalities follow from the Horn
 Lemma; sp can't be in (52p, r2p) since on this interval IQ4pl < IQ2pl and yet, at sp, it
 can be argued that Q4p(5p) = Q2p(5p) We conclude that s1 < s2 < s4 < s8 <
 *i < r8 < r4 < r2 < r1. To complete the proof, we now prove that, for each power
 of two p = 2j, Sp < r3p < r5p < r7p < * j < s2p. The reader can use -Figure 9 to
 follow along for p = 1.
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 o W)s -

 S1 Sz S4 r4 r2 rl

 Figure 9. Sarkovshl's ordering appears as odd cuntes (shown in black) cross the axis between sl and s2.

 Let k E {3, 5, 7, . . . }. First, we have already argued that bifurcation theory (or

 the Horn Lemma and the Envelope Theorem) ensures that rkp < r2p. On [S2p, r2p]s

 the Envelope Theorem for n = 2p says that Qkp lies between Qp and Q3p and the
 region never meets the axis. Thus, rkp < s2p. We now establish that the roots do

 occur in the interval (sp, S2p). We will repeatedly use the fact that, at s2p, the sign

 of each Qkp agrees with the sign of Qp, a fact implied by the observed containment

 of Qkp curves.
 By the Horn Lemma for n = p, Qp and Q2p have opposite signs throughout

 [sps r2p), in particular throughout [sp, S2p]. At sp, - Qp(Sp) - Q2p(sp) and iteration
 yields Q2p(5p) = Q3p(5p) Thus, the sign of Q3p changes from the sign Of Q2p at sp

 to the sign of Qp at s2p. By the Intermediate Value Theorem, there exists a largest
 root r3p of Q3p in (sp, S2p). Now, at r3p, Q5p(r3p) = Q2p(r3p). The sign of Q5p

 changes from the sign of Q2p at r3p to the sign of Qp at S2p. By the Intermediate

 Value Theorem, there exists a largest root r5p of Q5p in (r3p, s2p). Again, at r5p,

 Q7p(r5p) = Q2p(r5p)s SO that the sign of Q7p changes on (r5p, s2p). By induction,

 sp < r3p < r5p < r7p < *p < s2p. p

 4. CONCLUSION. Many of the most intriguing features along the road to chaos

 are clarified by looking at the road map showing Q-curves. For years, people have
 studied the wonders of the bifurcation diagram: there appears to be a region of

 chaos that is interrupted by windows of periodic attraction and that has shadowy
 curves from varying density of iterates; the entire diagram appears in smaller,

 similar copies nested within the diagram. Each of these phenomena is better

 understood if one also studies the Q-curves. The roots of Q-curves show that

 periodic windows are much more prevalent than the diagram suggests. On the
 other hand, the non-tangent intersections of Q-curves point out at least some

 points where one can confidently say that the system is chaotic. The Q-curves are
 the curves that appear in the diagram, both as the shadowy curves of higher

 density and as the boundaries of the diagram and the nested copies. Indeed, any

 root of a Q-curve begins, and a corresponding intersection ends, a nested copy of

 the diagram. Even Sarkovshl's ordering and a color-coded (according to period)
 Mandelbrot set arise from this study of Q-curves.
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 Most of our proofs use only elementary mathematics and most of our arguments
 remain on the parameter axis, rather than switch to web diagrams on the graph of
 the quadratic. The key ideas are very accessible periodic attraction at roots uses
 the chain rule, tangencies and envelopes use elementary algebra on equalities and
 inequalities, and SarkovskS's ordering uses the Intermediate Value Theorem.
 However, the properties of Misiurewicz points and the Horn Lemma do rely on
 more advanced work in ergodic theory, algebra, and complex analysis. There is
 ample graphical evidence for the Horn Lemma, which plays a crucial role in the
 Envelope Theorem and Sarkovshl's ordering.
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