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Let / be a closed real interval containing 0 in its interior, and le t / : / -> /
be a continuous function which has either one maximum or one minimum
at 0, and is strictly monotone on each component of -?\{0}. Such a
function stretches and then folds the interval into itself; that is, it 'kneads'
the interval. We shall also assume that f(dl) <=. 31. For a specified point
x e I we can study the orbit {/n(#)}n=o,i,2....- In. particular, we shall be
interested in the existence of periodic orbits.
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This question of the existence and the number of periodic orbits is of
interest whenever there is an iterative process whose mathematical
formulation takes the above form. Much of the structure of the function
is determined by its periodic orbits. For example, in a model for popula-
tion biology, f{x) could represent the size of a population of a certain
species given that one generation ago it was measured at x. This paper
does not propose a model that could be used by a population biologist.
Rather, it suggests how very complex the behaviour can be even when a
very simple iterative model is used. At the same time it will appear that
this complex behaviour evolves under perturbation of the function / with
a certain mathematical order of its own.
Proc. London Math. Soc. (3) 39 (1979) 428-450



PERIODIC ORBITS AND KNEADING INVARIANTS 429

The first theorems deal with the existence of periodic orbits. Both x
and the orbit of x are said to be periodic i£fn(x) = x for some integer n.
The smallest such n is called the minimal period of the orbit and of the
point.

Let Z+ denote the set of all integers greater than 0. We define an
ordering o on Z+ as follows. If k, I are odd and k, I ^ 3, then 2nk <i 2H
if k < 1. If k, I are odd and k, I ^ 3, and m > n, then 2nk <i 2ml. If k is odd
and k ^ 3 then 2nk o 2m. Finally, 2m <a 2n if n < m. Thus, we have

3 <1 5 <] 7 <] 9 <i ... -d 2.3 <i 2.5 «=a 2.7 <i ... <a 4.3 <J ... <i 8 *a 4 -=a 2 -o 1.

The first theorem is as follows:

THEOREM A. Let f: I -> I be a continuous function with precisely one
maximum or minimum, located at 0, and suppose f(dl) c: dl. Then, if f has
a periodic orbit of minimal period n, it has a periodic orbit of minimal period
m for every m such that n-<im.

This theorem is not new. In 1964 Sarkovskii [5] proved the theorem
for any continuous function / : R ->• R. That is, if/ has a periodic orbit
of minimal period n, then / has a periodic orbit of minimal period m for
every integer m such that w < m . A recent English account of Sarkovskii's
proof is given by Stefan in [6]. A paper by Li and Yorke [3] treats a
special case. Li and Yorke's paper gives a good indication of the method
of proof used by Sarkovskii. It is quite different from the procedure
followed below. Independently, Guckenheimer recently also obtained
Theorem A assuming / differentiable [2].

The method we use to prove this theorem and the other theorems
derives from an idea of Thurston and Milnor (see [4]) who associate
to / and also to each point of / formal power series called, respectively,
the kneading invariant and the invariant coordinates. These power series
contain information about the function. In particular, if a point is periodic,
its invariant coordinate is periodic. All the information required to
determine the existence of periodic orbits of every order is contained in
the kneading invariant of/. In fact, it gives a lower bound on the number
of periodic orbits of each order. For example,

THEOREM B. Let n and I be odd numbers such that n > I ^ 3. Suppose f
has an orbit of minimal period I. Then f has at least 2(n~/)/2 distinct orbits
of minimal period n.

I f / i s assumed to be differentiable, the method described in this paper
also allows one to determine precisely how bifurcations give rise to new
periodic orbits when the function / is perturbed.
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Theorems C and D indicate that there is a sudden jump in the complexity
of the behaviour of/ when the kneading invariant of/ reaches a certain
value A defined below. When it is greater than A there are essentially a
finite number of periodic orbits, each of minimal period 2n for some n,
and all orbits are asymptotic to one of these. As soon as the kneading
invariant of/ reaches A, there will be infinitely many orbits that are not
asymptotic to periodic orbits.

The precise formulation of Theorems C and D is given below.
The paper is divided as follows. In § 1 we give an exposition of the

relevant parts of Milnor and Thurston's theory of kneading. This material
has appeared only in handwritten form in a set of notes which is not
readily available, so it is necessary to include some of the details here.
Essentially*all of § 1 is taken from [4], as is Lemma 4.0. In § 2 we find the
precise relationship between periodic orbits and periodic kneading
invariants as expressed in the main theorem of this section (Theorem 2.4).
In §3 we find the maximal periodic or anti-periodic kneading invariant
for each period. The result is contained in Theorem 3.4 and applied in
Theorem 3.5 and the proof of Theorem B. In § 4 we study the relationship
between the asymptotic behaviour of a point x and the eventually periodic
form of its invariant coordinate. This culminates in Theorems C and D.

I am grateful to David Rand for bringing this problem to my attention
and for many helpful discussions. I would also like to thank the
Mathematics Institute at the University of Warwick for its hospitality
and the Canada Council for its financial support.

1. The theory of kneading
Given a point x e I we can describe very roughly the orbit of the point

x by indicating for each n e Z+ whether fn(x) is to the left or to the right
of 0. For convenience we assume that / has a minimum at 0. The case of a
function with one maximum can always be reduced to this one by consider-
ing o-o/o a where a is a homeomorphism of / that reverses orientation.

We let

0 if fn(x) = 0,

1 if/»(*) > 0,

[-1 iffn(x)<0.
We express this information in the formal power series e(x) = S2Lo «i W -
Essentially we are partitioning / by the sets/~n(O) for each n. The numbers
eo(x), e^x),... indicate which of the resulting intervals contains x. Let
Z[[t]] denote the set of formal power series with integral coefficients.
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Unfortunately the mapping x -> e(x) of / into Z[[t]] is not order-
preserving in any reasonable sense, precisely because/reverses orientation
on one component of/\{0}. To correct this we associate with x a second
formal power series called the invariant coordinate 6(x) of re. We do this by
composing the mapping x -*- e(x) with a mapping 6 of Z[[t]] into itself.
If « = £?Lo « / e Z[[*]] we define

6(e)= £*n(a)«»
71=0

where 8n(e) = njLofi* We will usually write 6(x) for 0(e(a;)) and 8n(x) for
0n(e(a;)). Note that the set of polynomials with integral coefficients can be
identified with the subset of Z[[£]] consisting of formal power series with
only a finite number of non-vanishing coefficients. It follows from the
definition of 9(x) that all coefficients of 6(x) equal 1, — 1, or 0. Moreover,
if 6n(x) = 0 then 6m(x) = 0 for all m ^ n, and 6(x) is a polynomial of
degree n if and only if n is the smallest integer such that fn+1{x) = 0. In
particular, if 0 is not contained in the orbit of a;, then 6(x) has no vanishing
coefficients, and conversely. Note that if d^^x) ^ 0 then

el(x) = OtW/e^ix).

The following formula will prove useful. If none of x, f(x),...,fk(x)
vanishes, then

That is,

We have that / is monotone increasing at y if and only if eo(y) = 1, and
/ is monotone decreasing at y if and only if eo(y) = — 1.

If x, y e / are distinct, let G(x, y) be the closed interval with x and y as
end points.

LEMMA 1.0. / / e(x) = e(y) (mod^) then fk\C(x,y) is a homeomorphism
onto its image for every k ^ N, and fk(x), fk{y) # 0 for all k < N. Con-
versely, if fk | C(x, y) is a homeomorphism for every k «% N, and if
fk(x), fk(y) ^ Ofor all k < N, then e{x) = s(y) (mod tN).

Proof. The proof is left to the reader.

Now suppose x < y and let n be the first non-negative integer for which
en(x) ^ en(y). Thus e(x) = e(y) {modtn). By Lemma 1.0, fn\[x,y] is a
homeomorphism and ek(x) # 0 for k < n. The homeomorphism fn\ [x,y]
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will be sense-preserving (respectively sense-reversing) if and only if

0n-i(*) = eo{xMxM*)'»e»-i{x) > ° (respectively < 0).
Thusiffl^^z) > 0 (respectively < 0) we will have en(x) < en(y) (respectively
en(x) > en(y)). In either case,

*»(«) = ^i(*K(») < °n-i(xK(y) = on-i(yK(y) = Kiv)-
Therefore, if we endow Z[[t]] with the usual lexicographical ordering we
get the following proposition:

PROPOSITION 1.1 (Milnor [4]). The function 6:1 -> Z[[t]] is monotone
increasing.

Milnor also dej&nes the kneading invariant, an invariant of the function,
as follows:

v(f) = ]imd(x).

Here and throughout the paper, we use as topology on Z[[t]] the one
induced by the metric

We define numbers vt by writing v(f) = S?Lovi^- Since for every value
of n the set/~n(0) is finite, each of these coefficients is different from zero.
Furthermore, v0 = 1.

We let 9(x + ) denote ]imy^X6(y) and we let 9(x-) denote \imy^x6{y).

PROPOSITION 1.2 (Mihior [4]). If fn(x) •£ 0 for all positive integers n,
then 6 is continuous at x. If fn{x) = 0, and n is minimal, then 6 is dis-
continuous at x with discontinuities given by

In particular, 6{x — ) = —v(f).

It follows from Proposition 1.1 that for every x el, 6(x) = 0 or else
6(x) ^ v(f) or 8(x) ^ -v(f). Applying this to fn(x) gives the following
inequality that holds for a terminal segment 2S=ra ^Ax)^ of 0{x):

either 6n(x) # 0 and
i=n

or else £ d^xft = 0.

Here | S i i n ^ / " n l denotes (sgn0n)(0n + 0n+1£ + ...). Any formal power
series or polynomial with coefficients 0, +1 , or —1 that satisfies (1) for
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every n is called a v(f)-admissible series. It follows immediately that for
every x, 6(x + ) and d(x —) are also i/(/)-admissible. The converse is also
true:

PROPOSITION 1.3 (Milnor [4]). For every v(f)-admissible series <p e Z[[t]]
there is a point x e I such that <p is equal to 6(x), 6(x — ) , or 6{x +).

Of course v = v(f) = 0(0 + ) is also admissible with respect to itself.
That is, for every integer n ^ 0,

(2) K + vn+1« + v n + 2 * 2 + . . . | ^ .

Any element of Z[[t]] with entries ± 1 satisfying (2) is called an
admissible kneading invariant. Milnor shows in [4] that every admissible
kneading invariant is the kneading invariant of a function of the type
under consideration.

EXAMPLES. The formal power series (1— t)~x is easily seen to be an
admissible kneading invariant, as is (l-t){l-t2){l-t22)...(l-t2n~1)(l-tit>)-1

for every integer n ^ 0. These particular admissible kneading invariants
will play an important role in the sequel. The formal power series
y = l + t-t2 + t3-t*+... = l + ^ l - ^ l - J 2 ) - 1 is not an admissible knead-
ing invariant, for

which is smaller than y in the lexicographical ordering, as the ^-coefficient
in \y1 + yzt + yzt

i + ...\ is le s s than the corresponding coefficient in y.
However, y does qualify as a (1— t)(l— ^J^-admissible series. On the
other hand, y is not (1 — ̂ ^-admissible.

2. Periodic orbits
In this section we look at the relationship between the periodicity of the

orbit of a point x and the periodicity of the invariant coordinate 6(x).
An element <p = 25Lo 9$ °^ Z[[£]] is periodic if there is an integer n > 0

such that <pi+n = <pi for all i $s 0. 9? is anti-periodic if there is an integer
n > 0 such that pi+n = —<pt for all i ^ 0. By the minimal period of <p we
mean the smallest n > 0, if there is one, for which <p is either periodic or
anti-periodic. If 9? is antiperiodic it is also periodic; however, the minimal
period n of <p will then be an integer for which <pi+n = —<Pi for all i ^ 0.
That is, <p is then antiperiodic (and not periodic) of minimal period n.

If an invariant coordinate 6(x), for x ^ 0, is periodic or anti-periodic,
then 9(x) has no zero terms, and thus 0 is not in the orbit of x. From the
relationship between 6(x) and e{x) it can be seen that if 6(x) has minimal
period n, then e(x) is periodic of period n, except perhaps at the first term.
5388.3.38 DD
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That is, e{(x) = ei+n(x) provided i ^ 1, and n is the smallest positive integer
with this property. Conversely, if e^x) = ei+n{x) for alH ^ 1, and if n is
the smallest positive integer with this property, and if 0 is not in the orbit
of x, then 6{x) is periodic or anti-periodic of minimal period n. In fact,
then

= e1{x)e2(x)...en{x).

We summarize this as follows:

LEMMA 2.0. Where x ^ 0, 6(x) is periodic or anti-periodic of minima
period n if and only if the orbit of x does not contain 0 and e^x) = ei+n{x) for
all i ^ 1 and n is the smallest integer for which this is true. In this case,
whether 6(x) is periodic or anti-periodic of period n is determined by the sign
ofe1{x)e2{x)...en{x).

It follows that if the orbit of x is periodic and does not contain 0, then
e(x) and 6(x) are periodic. By the minimal period of a periodic point x,
and of its orbit, we shall mean the smallest integer n such that fn(x) = x.

We consider two periodic orbits equivalent if there are representative
points x and y of the two orbits such that for all k ^ 0 the restriction of fk

to C(x,y) is a homeomorphism. When this happens we will also call the
points x and y equivalent, and write x ~ y. If 0 is a periodic orbit, we let
[0] denote the equivalence class to which it belongs.

To prove the transitivity of this equivalence relation it suffices to show
that if x ~ y, z ~ w, and C{xt y) n C(z, w) ^ 0, then x ~ y ~ z ~ w. We
prove this more general result because it will be needed again in Lemma 2.1
below. If C(x, y) n G(z, w) has a non-empty interior this follows from the
fact that for all k $s 0 the restrictions fk \ C(x, y) and fk \ C(z, w) are
monotone and that because of the overlap they must both be increasing
or both decreasing. If C(x, y) n C(z, w) consists of a single point, this must
be an end point of each interval. Suppose, then, that x < y = z < w.
Then for every k ^ 0 we have fk{C{x, y)) nfk{G{y, w)) = {fk{y)}. For
otherwise one of the intervals fk(C{x,y)) and fk(C(y,w)) is contained in
the other, say fk{C(x,y)) <= fk(C{y,w)), and then we may choose an integer
n ^ k such that fn(x) = x, fn(y) = y, and fn{w) - w, and thus obtain

C(x,y) =fn(C(x,y)) ^fn(C(y,w)) = C(y,w)-

This contradicts the assumption that C{x, y) n C{y, w) = {y}, and so
establishes the assertion that then fk{C(x,y))nfk{C(y,w)) = \fk{y)} for
every k ^ 0. It follows from this fact that /* | C(x, w) is a homeomorphism
also in this case. We have now shown that the equivalence is transitive.
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Suppose # is a periodic point. If the class of periodic points equivalent
to x contains other points as well, let [y,z] be the closed convex hull of
this equivalence class.

LEMMA 2.1. y and z are periodic and are equivalent to x. Moreover, if m
is the minimal period among the periods of points equivalent to x, then
fm I [y> z] is either a sense-preserving or a sense-reversing homeomorphism
onto [y,z]. In the first case, all the periodic points equivalent to x have
minimal period m. In the second case, there is precisely one point equivalent
to x and of minimal period m, while the remaining points in the equivalence
class have minimal period 2m.

Proof. There are sequences {y^ and (zt) such that yi ^ y,zi4i z, yt -> y,
zi -> z, and yi and zi are equivalent to x. Since fk | [yt, z j is a homeo-
morphism for every i, so is/& | [y, z]. Let m be the smallest positive integer
such that i n t j / " ! ^ ? ^ ^ ? ] } ^ . Then, for sufficiently large i,
fm(h/i> «<]) n [yif z j # 0 . That is, fm(yt) ~ fm{zt), yi ~ zit and

By the discussion preceding this lemma, this implies that

fm{yi)~fm(Zi)~yi~*i>
Therefore/m(2/i),/

m(z<) e [y,z], and so fm[y,z] <= [y,z]. If this inclusion is
strict, at least one of the yi,zi lies outside fm{[y,z]) and thus cannot be
periodic. Therefore fm([y, z]) = [y,z]. In particular, y ~ x ~ z.

Now if/m| [y,z] is sense-preserving, and u e [y,z], then either fm(u) = u
or else u,fm(u),f2m(u),... is a monotone sequence. Thus all periodic
points in [y, z] have minimal period m. If fm \ [y, z] is sense-reversing, then
there is a unique point w e (y, z) fixed under fm. Thus w has minimal
period m. Any other point u e \y,z] either is non-periodic or has period
at least 2m. However, iff2m(u) ^ u, then u,f2m(u),f*m{u),... is a monotone
sequence. Thus every periodic point other than w has period 2m in
this case.

If 0 is a periodic orbit not containing 0, we may associate to 0 the
formal power series

xeO

If 0 e 0 we let n(0) = v(f). Note that by (1) we have | %) \>v(f) for all
x e 0, x ^ 0. Therefore fx{0) ̂  v{f).

We claim that /x(0) is an invariant of the equivalence class of periodic
orbits. For suppose (P1 and O2 are distinct, but equivalent, periodic
orbits. At least one of them, say 02, will not contain 0. Choose y e (Plf



436 LEO JONKER

and z G 02 equivalent to y, and choose x e intC(y,z). Then/*(a;) ^ O for
all k ^ 0, because /* | C(y, z) is a homeomorphism for all k ^ 0. Therefore,
by Lemma 1.0, e(x) = e{z). Hence also e{fk{x)) = e{fk(z))} and so
d(f"(x)) = *(/*(*)) for aU k > 0. Thus /z(02) = inf^01 *(/*(*)) |.

If also 0j_ does not contain 0 we get /x(^j) = inffc^0| 6(fk(x)) | as well, and
thus fi{@i) = ii{Oz). Î » however, 0X does contain 0, we may assume y = 0.
Since we can let x G int (7(0, z) converge to 0, we must then have
6{x) = ±v{f). That is, \8(x)\ = v{f) for every x e int(7(0,2). Since

^ v(/) for a n y o r b i t #2 i* follows that /z(02) = v(/)

LEMMA 2.2. If (!) is a periodic orbit of period m, £faw. /LI(0) is ^enodic or
anti-periodic of period m.

Proof. First suppose 0 $ 0. Then e(a;) is periodic with period m for
every x e 0. Then, by Lemma 2.0, 6(x) is periodic or anti-periodic with
period m for every x e (P, and therefore /*(0) is periodic or anti-periodic
with period m.

If 0 e 0, then /m(0) = 0. Let N > 0 be a large integer. Then
(Jn<jv/~n(O) is a finite set, and therefore there must be intervals
Jx = [ — y, 0] and «72 = [0, y] on which/* is a homeomorphism for all k < N.
Suppose fn is the minimal period of 0. By Lemma 1.0, e(x) is constant

on both { — y, 0) and (0,y). If i is not a multiple of m, then
0, and therefore by letting xx G {0,y) and a:2 G ( — y, 0) approach 0

we see that e^O) = ci(a;1) = ^(a^) for all xx G (0, y) and x% G (— y, 0). On the
other hand, if fm(J2)

 c ( - 00,0] n / then also f^JJ <= ( - 00,0] n / , for f(Jx)
and/(J2) lie on the same side of/(0). Similarly, i f / " 1 ^) c [0,oo)n/ then
also fm(J2)

 c [0,00)nl. Thus for x e intJi} with i = 1,2,

em(a;) = e2m(aj) = . . . = ekm(x)

provided km < N.
Therefore, if x e int«72, we have £$+,̂ (2;) = e^x) if i > 1 and * + wi < ^ .

Therefore, by Lemma 2.0, 6i+m(x) = ± d^x) for * > 0 and * + m < ^ . That
is, 6{x) is periodic or anti-periodic of period m and modulo tN. Letting
x e int J2 converge to 0, we see that for x e int J2, 0(a;) = v(/) (mod tN).
Thus vi = ± viMn provided i+m < N. Since N is arbitrary, this proves that

= v(f) is periodic or anti-periodic with period m.

If (9 is a periodic orbit, then /x(0) is an admissible kneading invariant.
Since \i{0) ^ v(f), we only need to prove this for the case where
fi{0) >v{f). But then 0 £ 0. Therefore, if we let

i-o
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then by the definition

We also have the following converse:

PROPOSITION 2.3. Let 9 be a periodic admissible kneading invariant of
period m such that 9 ̂  v{f). Then there is an equivalence class [0] of
periodic orbits such thai fi(O) = 9.

Proof. It follows immediately from the definitions that if 9 is an
admissible kneading invariant and 9 ̂  v(/), then 9 is a v(/)-admissible
formal power series.

By Proposition 1.3 there is a point x e I such that 9 equals 6{x), 8(x — ) ,
or 6(x+). If we can find a point w with these properties and such that w
is also periodic, we may complete the proof as follows. If 0 is continuous
at w, 6(w) = 9 and so we choose 0 to be the orbit of w. By Proposition 1.2,
0 £ 0. Since for any I ^ 0 we have 10, + §l+1t + dt+zt

2 +...\ ^ 0, and so

19{fl(w))| = |Qi-i(w)[di(w) + di+l(w)t + di+2(iv)t2 +...]| ^ 9.

Therefore /z(0) = 0. On the other hand, if 6 is not continuous at w, then
by Proposition 1.2 we conclude that/&(w) = 0. That is, 0 is in the orbit
0 of w. 9 = 6(w ± ) implies

and thus v(f) ^ 6, since § is an admissible kneading invariant. Combining
this with v(f) < 9, we see that if 0 is in the orbit of w, then 6 = v(f) = /x(0).
Thus it suffices to find a point w such that § equals one of 9(w), 6(w—),
d(w + ) , and such that w is periodic.

If the point x, found above, is not already periodic, we find the point w
as follows. Choose a large integer N > m and a point y near x such that
B(y) = B (mod^). If 6{x) = § we may choose y = x. Then

O(fm(y)) = 0m-1(y)[dm(y) + 6m+1(y)t+-]

= 0m-i$n + d ' + - ] (mod**-)

= 8m_1.if (mod**-™).

Similarly, if km < N,

0(f*~(y)) = 9km_1[Bkm^6km+xt+...-\ (mod **•*»)

= 0 ^ . 0 (mod *"-*•)

= Qm_vd (mod ^-f c m).

Now letting y -> x and N -> oo we see that for each integer k ^ 1, one
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of 9{fkm(x)), 6(fkm(x)-), and 6{fkm{x) + ) is equal to a0, where a = §m_1.
Let K be the closed convex hull of the set {fkm(x)}k=1)2t_. I t follows from
the preceding observations together with the fact that 6 is monotone,
that for every u e intK we have 6(u) = oc§. Then e(u) is also constant on
intK. Therefore, by Lemma 1.0, fm\K is a homeomorphism on K> and
since the set {fkm{x)}k=lt2t... is invariant under fm, fm maps K onto itself.
Now let w be the smaller boundary point of K. Then w is periodic, and 8
equals one of 6(w —), d(w + ) , and 6(w).

The main theorem of this section is the following:

THEOREM 2.4. \i induces an injective map from the set of equivalence
classes of periodic orbits onto the set of periodic and anti-periodic admissible
kneading invariants greater than or equal to v(f).

Proof. Lemma 2.2, together with the remarks following it, shows that
fi maps into the set of periodic and anti-periodic admissible kneading
invariants greater than or equal to v(f). Proposition 2.3 shows that p is
surjective. I t only remains to prove that /u, is injective.

Suppose 0 and 0' are distinct periodic orbits such that JU(0) = JU.(0') = 8.
Let m be the larger of their minimal periods. At least one of them, say 0',
does not contain 0. If 0 £ 0, choose x e 0 in such a way that
16(x)| = fi((P) = 0. If 0 e 0, let x = 0. Choose y e 0' so that

For a large integer N > m, let u e I be near x and such that
\6(u)\ = (x{0) = 8 (mod tN), and such that u $ Un<iv/~n(0)- If 0 £ 0 this
can be achieved by simply putting u = x. Thus, for i < N,

Therefore, for 1 < i < N,

= 0o(yMy)/0o(y)9i.1(y) =

Therefore, by Lemma 1.0, fk\C(fm(u),fm(y)) is a homeomorphism if
0 ^ k ^ N-m. Now let u -*- x and N -» oo. Thus fk\ C{x,y) is a homeo-
morphism for all k ^ 0. This proves that 0 and 0' are equivalent.

I f / i s differentiable on / \{0} and satisfies \df/dx\ > 1, as in Fig.2, then
for any interval [x,y] there is an integer N > 0 such that 0 efN[x,y].
Hence 9N(x) # 6N(y). Thus there is no interval on which 6 is constant. In
particular, equivalent periodic orbits are identical for such functions and
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fj, is a one-to-one correspondence between periodic orbits and periodic
kneading invariants greater than or equal to v(f).

\

y

0 /
/ /

FIG. 2

By the minimal period of an equivalence class of orbits we mean the
minimum among the minimal periods of orbits belonging to the
equivalence class. In Lemma 2.1 we saw that if n is the minimal period of
an equivalence class, then either all orbits in the equivalence class have
minimal period n, or else there is one orbit with minimal period n, while
all others have minimal period 2n.

PROPOSITION 2.5. The minimal period of an equivalence class
periodic orbits is equal to the minimal period of

of

Proof. Let n be the minimal period of the equivalence class. By
Lemma 2.2, fi(O) is periodic or anti-periodic of period n. Suppose the
minimal period of (x(@) is I where n = Ir, for r > 1. Let i^ be a large
integer. Choose a point x0 e 0 and a point x near x0 in such a way that
\6(x)\ = fi(O) (mod^). Then 6i+l(x) = ±dt(x) for i + l < N. Therefore, by
Lemma 2.0, ei+l{x) = e^x) for i + l < N and i ^ 1. Hence

for 0 ^ i < N — n — I. Let y=fn{x). Then by Lemma 1.0, either
f\y) = V> o r fk\@(y>fl(y)) is a homeomorphism for all k ^ N — m — l.
Letting x -> x0 and N -»• oo, and thus also y -> x0, we conclude that either
fl(x0) = x0 orfk\C(x0,f

l(x0)) is a homeomorphism for all k. But/J(a;0) = x0

is impossible since the minimal period of x0 is no less than n > I. If
fl\C{xo>fl(xo)) preserves sense, the sequence x0, fl{x0), f®{xQ), f*{xQ), ...
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is monotone. Since x0 is periodic this is impossible. Thus fl\C{x0,f
l(x0))

reverses the sense. Therefore either /a(a;0) = x0 or else the sequence
xo> f*(xo)> / 4 / W> ••• i s monotone. I f / a ( z 0 ) = a;0 then intC(a;0,/'(z0))
contains a point equivalent to x0 of minimal period I. This contradicts
the assumption that n > I is the minimal period of the equivalence class
of periodic orbits. On the other hand, the sequence xQi /

2'(#0), /^(ZQ), ...
cannot be monotone, because x0 is periodic. Thus the assumption that
the minimal period of /A(0) is less than n leads to a contradiction.

3. Periodic admissible kneading invariants
Now that we have demonstrated a close relationship between the

existence of periodic orbits and the existence of periodic and anti-periodic
admissible kneading invariants larger than v(f), we will study the existence
of the latter. In particular, we shall be interested to find the largest
periodic or anti-periodic admissible kneading invariant of each period.

To facilitate our discussion we shall use a simpler notation for formal
power series with coefficients ± 1 . If S S K J ^ is such a power series we
shall also denote it by 6QOXB2 Thus + H 1 1—... represents the
formal power series l + t — t2 + fi — ft + t5 —1* + Furthermore, if a
represents a finite series (that is, a polynomial) then a' will denote the
infinite series produced by iterating a indefinitely. Finally, if a denotes a
series (finite or infinite), a will denote the power series obtained by changing
all the signs.

DEFINITION. We let a(|) denote the symbol 4-. Thus

We now define inductively, for n ^ 0,

Thus a(l) = + - and a(2) = H h, etc. I t is easy to check that for
n > 0, a(2n)' is an admissible kneading invariant which is anti-periodic of
minimal period 2n.

LEMMA 3.0. Suppose v is an admissible kneading invariant and suppose a
is a finite sequence of + 's and — 's beginning with a +. If v begins aa +. . . ,
then v = (oca)'.

Proof. Let k be the length of the sequence a. Suppose v = aaa...,
where a has length k. Using the fact that v is an admissible kneading
invariant we compare v with a part of itself as indicated in the following
diagram:

v = aacr...

v = aa...
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That is, we use (2) to compare v with | vk + vk+1t + vk+2t
2 +... |, and conclude

that a ^ d. That is, a ^ a. Now compare again as follows:

v = otao...}

v= a...

Since a begins with a + , we see that a ^ a. Thus a = a. It is now easy to
show by induction, using comparisons of this kind, that v consists entirely
of a pattern alternating a and d.

PROPOSITION 3.1. If v is an admissible kneading invariant such that
v > a.{2n)\ then v equals a(2m)' for some m < n. Thus for n ^ 1, a(2n)' is
the maximum element in the set of periodic or anti-periodic kneading
invariants of minimal period 2n.

Proof. For n = 0, — 1 the theorem is clearly true. We now assume the
theorem proved for n = k, and prove it for n = k + 1. If v > a(2fc)' the
result follows from the induction hypothesis, so we may assume that the
first block of 2k+1 entries of v equals a(2fc) and the next block a of length
2fc+1 is larger than a(2fc). We may assume that a begins with —, for other-
wise we can complete the proof by invoking Lemma 3.0. Now compare

a(2n)...

to obtain 5 ^ a(2n). That is, a ^ a(2n) contrary to our hypothesis.

Having shown that a(2n)' is the maximal admissible kneading invariant
of minimal period 2n we want to identify the maximal periodic or anti-
periodic admissible kneading invariants for all other periods.

DEFINITION. If k is odd and greater than 1, and n ^ 0, let

where a(2n) is repeated %{k — 3) times making 2n.k the total length of
a{2n.k). We will show in Theorem 3.4 below that <x{2n.k)' is the maximum
among periodic or anti-periodic admissible kneading invariants of
minimal period 2n.k.

LEMMA 3.2. Let v be an admissible kneading invariant and let jS = a(2fc~1).
Suppose v begins j8/?$8— Then v is entirely a succession of blocks of length
2k each equal to j8 or jS.

Proof. The proof is by induction. The theorem is certainly true if & = 0.
Suppose we have shown the theorem to be true for an admissible kneading
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invariant whose first 2fc+1 terms are yyyy where y = a(2fe~2). Note that
PPPP = yyyyyyyy. Partition v into a succession of blocks of length 2k.
Suppose a is the first such block that is not equal to jS or p. By the
induction hypothesis, a equals one of the following: yy or yy. To complete
the proof, consider four cases: a is preceded by jS]8, by PP, by jSj5, or by Pp.
In each case, two comparisons will result in a contradiction to the
assumption that v is an admissible kneading invariant.

LEMMA 3.3. Let /x be an admissible kneading invariant. Suppose
[i ^ <x(2n.k)', with k odd and greater than 1. Then either /x = a(2m)' for some
m < n, or else the first 2n(k +1) terms of fx consist of a succession of blocks
each equal to a(2n) or a(2n), while the first 4.2n terms are precisely
a(2TC-1)a(2^-1)a(2TC-1)a(2»-1).

Proof. We will assume that /x is not equal to a(2TO)' for any m ^ n and
then prove the alternative. Let jS = a(2n - 1) and a = a(2n) and
v = a(2n.k)'. We first show that fx begins jS£$3....

By Proposition 3.1, /z certainly begins with PP Let a be the next
block of length 2n. Compare

By Lemma 3.0 we know that a begins with —. Hence this comparison
shows a ^ j8. That is, a ^ j5. But combined with \i ^ v this implies
a = P and so fi begins with j8j5j5 But then, because /x ^ v, the block
consisting of the first 4.2n terms of/x must be ^ |9j5j5j3. Now Proposition 3.1
implies that /x = jSjS/JjS

If k = 3, this completes the proof of the lemma. In any case, by
Lemma 3.2, every subsequent block of length 2n equals j3 or p. Note that
the first \{k+1) blocks of length 2n+1 in v are

Let a be the first block in /x of length 2n+1 which is not equal to a or a,
and suppose a is contained within the first 2n(fc + l) terms. If a is
immediately preceded by a we look at the complete string of a's preceding
a (Case 1). Otherwise we look at the complete string of a's preceding a
(Case 2). Since /x = j3/5$8... = aa... we know that neither string includes
the initial block of length 2n+1 in /x.

Case 1. If a = PP, then cxa = PPPP, and so fx contains a succession
This is impossible, for the following comparison,
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would then imply that j5 ^ /?, which is certainly false. Thus, to avoid a
succession j5$S we must have a = $8 in this case. Now note that
v < fi ^ | ixk+fik+1t+fik+2t

2 + • • • |. Therefore, we may compare

fx = ...aaaa...aa...]

v = aaaa...aa...J
and conclude that 5 ^ a and so a ^ <x. But that contradicts a = jS/J.

Case 2 is dismissed in the same way.
THEOREM 3.4. For any integer r > 1, <x(r)' is the maximum element in the

set of all periodic and antiperiodic admissible kneading invariants of minimal
period r.

Proof. If r is a power of 2 this has already been proved in Proposition
3.1. Otherwise, r = 2n.k, with k odd and greater than 1. Suppose /x is an
admissible kneading invariant of minimal period r such that /u, > oc(2n.k)'.
Thus /x satisfies Lemma 3.3.

First suppose fj. is periodic of period r. Then the second half of the
%(k + l)th block a of length 2n+1 begins with the rth term of the series ft,
and thus equals j8 = a(2n-1). Therefore, by Lemma 3.3, a equals a where
a = oc(2n). This a is preceded by a string of a's (possibly empty), which is
preceded by an a. If this a goes back to the first term, /n and v = <x(2n.k)'
coincide on the first (k + l)2n terms, and so /x = v. To show that a must
go back to the first term, we suppose it does not. Then we note that,
since fx is periodic, a is followed by jS/3, and we compare the first terms of v
with the part of fi consisting of the succession aaa...a/fy3. That is,

v =
This comparison shows that j5 > j8, which is certainly false.

The proof is similar in the case where /x is anti-periodic of period r,
excluding this possibility altogether.

THEOREM 3.5. The maximal periodic or anti-periodic admissible kneading
invariants found in Theorem 3.4 exhibit the following order:

a(3) < a(5) < a(7) < ... < a(2.3) < a(2.5) < ... < a(22.3) < ... < a(2")

< a(2w"1) < ... < a(4) < a(2) < a(l).

Thai is, a(m) < oc{n) if and only if m<\n.

The obvious proof is left to the reader.

THEOREM A. Suppose k-^il. Iff has a periodic orbit of minimal period k
then it has one of minimal period I.



444 LEO JONKER

Proof. Note that if we can show <x{l) ^ v(f), Propositions 2.3 and 2.5
will imply the existence of an orbit of minimal period I. But by Lemma 2.1
and Proposition 2.5 if/ has an orbit 0 of period k then n(@) has minimal
period k or \k. First suppose k is not a power of 2. Then oc(k) > a (P)
and so in either case

v(f) ^ /x(0) < <x{k) < a(J).

If, on the other hand, k = 2n then k <\ I implies I = 2m, m < n, and
<x(l). Therefore also in this case v(f) ^ fi(O) ̂  a (p ) < <x(l).

The correspondence between periodic orbits and periodic and anti-
periodic admissible kneading invariants can be exploited to get estimates
on the number of periodic orbits of a given period. Theorem B is an
example of such a theorem. To prove it we need the following lemma:

LEMMA 3.6. Let <x — H— and suppose ai = a or a for each i = 1,. . . , k.
Let

y = H aa...aop
1<r2...<rfc.

r

Then y and (yy)' are admissible kneading invariants larger than a(2r +1) ' .

Proof. To prove that y is an admissible kneading invariant we have to
show that every comparison of y with itself succeeds. That is, we must
show that if y = 2i=oyA then for every n we have the inequality (2):

Since the first three terms of y are H , if ynyn+iyn+2 is one of the
sequences + + + , , + H—, 1-, H h, or — I — , the
inequality (2) is established by merely comparing these three terms with
the first three terms of y . Thus the only values of n for which the in-
equality (2) could conceivably fail are those for which ynyn+iyn+2 = "̂
or —I- + . The same goes for the series (yy)'• From now on we will only
consider comparisons for such values of n.

Note that the first 4r + 2k + 5 terms of y may be written as

y = + a...a<71...<rfcorife+1...fffc+f+1...,

where crk+1 = a and ak+i = a for 2 ^ j ^ r +1. A triple H or —h +
occurs in this list only where there is a sequence aa = H h or a
sequence aa = —\- -\—. So suppose that for some i, with 1 ̂  i •
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ai = a is preceded by a. We compare y with | SyLo y2(r+i)-i+jii I:

y = ...aa... ahah+1.

y' = aa...a .
r

where h = i + r—1, and so r ^ h ^ k + r. Certainly a...ah ^ a...a, and
aft+1 > . Therefore, this comparison succeeds. Precisely the same
argument applies if for some i, with 1 ^ i < k, ai = a and is preceded by a.
This proves that IXf^oYi+n^l > y' if n < 2r + 2k + 3. Since y' is periodic
of period 2r + 2k + 3 it follows that this inequality holds for every value
of n. Thus y is an admissible kneading invariant.

Analogously, the first 4r + 2k + 5 terms of (yy)' may be written as

(yy)' = + - ~oci::oca1...(Tkak+1...ak+r+1...,

r

where ak+1 = a and ak+i = a for 2 < j < r +1. The argument used above
for y' will now serve to prove that (yy)' is also an admissible kneading
invariant.

To prove that y and (yy)' are greater than a(2r +1)', note that for both
y' and (yy)' the first 4> + 5 terms may be written as

H a...acr1...<rraf+1ar+2,

where ai = a or a for 1 ^ ^ < r + 2, and where at least one of the o^ equals
a. On the other hand, the first 4r + 5 terms of a(2r +1)' are

H a...oca...a ,
r r

From this it is clear that y and (yy)' are greater than <x(2r +1)'.

THEOREM B. JSeJ n and I be odd numbers such that n > I ^ 3. Suppose f
has an orbit of minimal period I. Then f has at least 2ln~l)/2 distinct orbits
of minimal period n.

Proof. Lemma 3.6 provides us with 2k+1 periodic or anti-periodic
admissible kneading invariants of minimal period 2r + 2k + 3, each of them
strictly greater than a(2r+l) ' . Now let I — 2r+l and n = 2r + 2k + 3.
Thus the number of admissible kneading invariants provided by Lemma
3.6 is 2(7l-')/2. Combining this fact with Theorem 2.4 and Proposition 2.5,
we see that there are at least 2(n~I)/2 equivalence classes of periodic
orbits of minimal period n.
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In fact, if I, n are odd and n > I > 3, the proof of Lemma 3.6 may be
generalized to give us 2(n~I)/2 periodic or anti-periodic admissible kneading
invariants of minimal period n.2p, all of them strictly greater than
a(l.2P)'. Thus the following more general version of Theorem B is true:

Let n and I be odd numbers such thai n > I ^ 3. Suppose f has an orbit
of period 1.2P. Then f has at least 2ln~i)/2 distinct orbits of period n.2P.

4. Asymptotically periodic orbits
In this section we consider the relationship between asymptotically

periodic behaviour of a; and eventual periodicity of 8{x). x is asymptotically
periodic if its orbit converges towards a periodic orbit; that is, if there is a
periodic point y such that limn^00 \f

n{x) —fn{y) \ = 0. We will also express
this by saying that the orbit of x is asymptotic to the orbit of y.
0 = £?«o ®fi *s eventually periodic if for some n the series SSK) ^n+i^ *s

periodic and non-vanishing. If 6(x) is eventually periodic, and if 0 is the
orbit of x, we can extend the definition of \i to such orbits by letting

= Urn inf\d{fn+m(x))\.

As n gets larger, the set over which the infimum is taken decreases. Thus
the limit as n -> oo is taken over a monotone increasing sequence of formal
power series with coefficients — 1, 0, or + 1 . This ensures that this limit
exists.

The key lemma is the following.

LEMMA 4.0 (Milnor [4]). / / 6{x) is eventually periodic, then the orbit 0
of x is asymptotic to a periodic orbit 0' such that /x(0) = /x(0'). Conversely,
if the orbit 0 of x does not contain 0, and is asymptotic to a periodic orbit
O\ then Q(x) is eventually periodic and n(&) = fi(@')-

Proof. Suppose 0 is asymptotic to 0' where 0' and /*($') are periodic
of period n. If 0 £ 0', choose y G 0' so that 16(y) | = ^(0'). If 0 e 0' choose
y = 0. Then for some z e 0, fqn{z) -+ y as q -> oo. If 0 £ 0' it follows
from Proposition 1.2 that limg_>00^(/3n(z)) = ±JM(0'). If y = 0, there is an
interval (a, 6) containing 0, such that {a, b) n {Um=i/~m(0)} = 0- Therefore
fn is a homeomorphism on (a, 0) and (0,6), mapping both to the same side
of 0. In fact we may choose a and b in such a way that fn{a, 0) = /n(0, b).
There is a large integer JV such that q ^ N implies fqn{z) e (a, 6). But then
for all q > N, fan{z) is in the same common image of (a, 0) and (0,6) under
fn. Thus either f«n(z) e (a, 0) for all q > N, or else f«n{z) e (0,6) for all
q > N. Thus lim^a, 6(fQn{z)) exists also in this case, and equals + /x(0').

Now choose M so large that for all q ^ M, Q{fqn{z)) = efi(Q') (mod t2n).
Here e = ± 1. We will show that then 9{fQn(z)) = e^t(0'). For suppose we
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have already shown 0(/fln(z)) = e^G') (mod tpn) for all q^ M. Let

££<>/*/• T h e n foi0^i<(p-l)n and q > M we have

while for 0 < i < pn we have, because 0n_i(/ffn(z)) ^ 0,

Since /^ = /x,i+n it follows that 0n_i(/sn(z)) = 1- Therefore, the above
equalities imply Bi+n(f

qn(z)) = e^ = efj,i+n for 0 ^ i < pn. Thus
0(fQn(z)) = fi/*(0') (mod«(P+1)n) for all g ^ ifef. I t now follows by induction
that for q Z M, 0(/S7l(z)) = £JU(0')- I t follows immediately that 6(x) is
eventually periodic and that /*($) = /x(^').

To prove the first half of the lemma, we suppose that 6{x) is eventually
periodic with (eventual) period n. Then {d{fp+m{x))}m^0 is a finite set for
every p, and for sufficiently large p this set does not depend on p. There-
fore, we can choose z =fm(x) e 0 such that \6(z)\ = fi(0). Then 8(z) is
periodic of period n and thus, by Lemma 2.0, so is e(z), after the first term.
That is, e(/nff(z)) is independent of q *t 1. Thus / n is a homeomorphism of
the convex hull K of {fn9(z)}'$Li into itself. Hence f2n is certainly sense-
preserving, and therefore {f2nq(z)}£=1 is a monotone sequence, converging
to a limit point w e K of period 2n. Let 0' be the orbit of w. I t follows
from the first hah0 of this proof that yb{0) =

LEMMA 4.1. Suppose 0 is a oc(2N)'-admissible invariant coordinate.
Suppose that for some n ^ N there is a block r of terms in 6 which equals
a(2n) and which is followed by a —. Then r is followed by <x{2n). Similarly,
for a(2n) + we get a(2n)a(2n).

Proof. If n = N, a series containing a(2n) — cannot be oc(2N)'-admissible.
Thus n< N. Then «(2^) begins cx{2n)- + . . . . Therefore

0 = ...oi(2n)—1-... = ...a(2n)a(T)

Now make the induction assumption that 0 = ...a(2n)a(2*)... where
k < n. Then, noting that

we compare
0 = ...a(2»)5

where a is a block of length 2*+1. Thus a ^ a(2fc). We also compare

0 = ...<x{2n)

<x{2N)=
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giving a ^ a(2fc). Thus a = a(2fc). Thus d = ...a(2n)a(2fc+1).... The result
now follows by induction.

LEMMA 4.2. Suppose 6 is a a(2N)'-admissible invariant coordinate.
Suppose n is the largest integer (n < N) such that 6 contains a block of
coefficients equal to the block ± a(2n). Then 6 is eventually equal to a(27l)/.

Proof. By replacing 6 by -6 if necessary, we may assume that 0
contains a block of coefficients equal to a(2n). The hypothesis assures us
that nowhere in 6 is there a block of coefficients equal to ± a(2m) with
m> n. Hence, by Lemma 4.1, every block a(2n) is followed by + and
every block a(2n) is followed by —. We claim that the part y of 6 that
begins with a block equal to ot(2n) is just equal to <x(2n)'. Suppose this is
false. Divide y into successive blocks of length 2n. The first two are
equal to a(2n-1) and a(2n~1) respectively. Let a be the first such block at
which this alternating pattern a(27l-1)a(2n-1)a(2n-1)... fails. Say a is
preceded by a(2n~1), the rest of the proof being the same in either case.
Then a is preceded by a(2n). Hence a starts with a + . Hence by Lemma
4.1, a = a(2n~1). This contradicts our assumption about a.

THEOREM C. / / v(f) ^ (x(2N)r for some N, then v{f) = oc{2n)f for some
n ^ N. In this case there is one equivalence class of periodic orbits for each
minimal period 2m, where m= l,...,n, plus two distinct fixed points,
corresponding to a(l) and a( |), and there are no other periodic orbits. Every
orbit is asymptotic to one of these periodic orbits.

Proof. I t follows from Proposition 3.1 that v{f) = a(2n)' for some
n ^ N. Then, using Theorem 2.4 and Proposition 2.5, we obtain the above
list of equivalence classes of periodic orbits for / . But then Lemma 4.2
and Lemma 4.0 combine to show that every orbit is asymptotic to an
orbit in this list.

Having shown that the structure of / is relatively simple when
v(f) ^ ot(2Ny for some JV, we turn to the case where v(f) < <x(2N)' for all
integers N ^ 0. Let A = infjv a(2iV)/. That is, define a formal power series
A by requiring that for every N > 0, A = a(2^)' (mod<2*+1). It is easy to
check that A is an admissible kneading invariant. A defines a dividing line
at which the complexity of the structure of/ increases dramatically.

PROPOSITION 4.3. / / /u, is an admissible kneading invariant and
fi < ac(2N)' for all N ^ 0, then either fi = A or else n ^ <x{2n.k)' for some n and
some odd k ^ 3.
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Proof. If for some n, fx > a(2n.3)' and fx, ^ cx(2N)f for any JV, then by
Lemma 3.3, the first block of 2n+1 elements of fx is equal to a(2n). There-
fore, if this holds for every n, fx = A.

The admissible kneading invariant A is not eventually periodic. For
if | AA. + Afc+1£ + AA;+2£

2 +. . . | were periodic with period n, say, then by (2) the
periodic admissible kneading invariant

would be not less than A. Therefore, by Theorem 3.4 and Proposition 4.3,
\x is periodic of period 2m for some m. Choose an integer JV so that 2-̂  ̂  k,
and so that N > m +1. Then A and a = a(2iv) have their first 2N+1 terms
in common, and because Â  = Ai+2JV — 1 for i ^ 2^, therefore also
a< = af+2JV-l for 2N ^i ^2N+1-2N~1. In particular, the third and
fourth blocks of length 2N~1 in oc(2N) would have to be equal. But these
blocks are <x(2N~2) and <x(2N~2) respectively, which are certainly not equal.

THEOREM D. If v(f) < oc(2N)' for all integers JV, then f has at least one
orbit which is not asymptotic to a periodic orbit.

Proof For if v(f) < <x(2N)' for all integers JV, then A ^ v{f), by Propo-
sition 4.3. Thus by Propositions 1.2 and 1.3 there is a point x e / such that
either 6(x) = A and 0 is not in the orbit of x, or else A = 6(x) ± tnv(f) and
fn(x) = 0. In the former case, as a consequence of Lemma 4.0, x is not
asymptotically periodic, for A is not eventually periodic. In the latter
case, v{f) = ± (An + An+1£ +...), and so v(f) is not eventually periodic. In
particular, by Lemma 2.2, 0 is not a periodic point. Thus 6 is continuous
at /(0). Also, from the definition of 6{y) it is easy to see that
% ) = 6M + do(y)td(f(y)). That is, if y * 0, 6(f(y)) = (6(y)-eo(y))/t6Q(y).
Therefore,

0(/(O)) = Urn 6(f(y)) = Urn -±- (%) - 90(y))

= t-Hv(f)-i).

Thus 0(/(O)) is not eventually periodic. Therefore, by Lemma 4.0, /(0) is
not asymptotically periodic.
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