My Homework

My Name

August 25, 2023

Question 1.2.3.4.5.6.7

Your text goes here. Here's an example displayed equation:

$$
\mathcal{S}=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a, b, c, d \in \mathbb{Z}\right\}
$$

and here's another:

$$
3 \equiv 7 \quad(\bmod 4)
$$

Displayed equations display nicely centered on their own lines. Look up symbols you don't know at detexify.kirelabs.org.

You can also write inline equation like this: $a=b c$. They fit right into the text. I can make fractions like $\frac{1}{3}$ and I can say something is an integer like this: $z \in \mathbb{Z}$.

Here's an example theorem.
Theorem 1. There are infinitely many primes.
Proof. The number 2 is certainly prime (it is divisible only by 1 and itself), so there is at least one prime.

Suppose, for a contradiction, that there are only finitely many, say n of them, and list them as follows:

$$
p_{1}, \ldots, p_{n} .
$$

Then consider the integer

$$
N=p_{1} p_{2} \cdots p_{n}+1 .
$$

N has a remainder of 1 when divided by any of the p_{i}. Therefore it is not divisible by any of the p_{i}. But it is certainly greater than 1 and hence divisible by some prime, which must not be in our finite list. By this contradiction, the theorem is proved.

Remark: This proof depends on the fact that every number is divisible by some prime. We haven't proven that yet.

Some stuff

Definition 1. Let $a, b \in \mathbb{Z}$. We say that a is divisible by b (and write $b \mid a$), if there exists an integer c such that $b c=a$.

Do the following exercise:
Exercise 1. Do 10 jumping jacks!

