Warm-up questions

(These warm-up questions are optional, and won't be graded.)

- 1. Give an example of a metric space (X, d) and a continuous function $f: X \to \mathbb{R}$ such that f has a finite supremum on X, but f does not achieve its supremum at any point $x \in X$.
- 2. Let (X,d) be a metric space and let $S \subseteq X$ be a bounded set. Show that any subset of S is bounded.
- 3. Let (X, d_X) and (Y, d_Y) be bounded metric spaces. Show that $(X \times Y, d_{X \times Y})$ is bounded. What if we only assumed X is bounded?
- 4. Let (X, d_X) and (Y, d_Y) be metric spaces, and consider their product metric $(X \times Y, d_{X \times Y})$. Prove that a subset $U \subseteq X \times Y$ is open if and only if U can be written as the union of subsets of the form $U_X \times U_Y$, with U_X an open subset of X and U_Y an open subset of Y.
- 5. Let (X, d_X) and (Y, d_Y) be metric spaces. Let $A \subseteq X$ and $B \subseteq Y$. Then A and B inherit metric space structures from the metrics on X and Y. Consider the Cartesian product $A \times B$. There are two ways we can define a metric on $A \times B$: (1) using the product metric defined by the metric spaces A and B, and (2) as a subspace of the metric space $X \times Y$ with the product metric $d_{X \times Y}$. Verify that these two metrics agree, so there is no ambiguity in how to metricize the product $A \times B$.

Worksheet Problems

(Hand these questions in!)

• Worksheet #7 Problems 1, 2, 3.

Assignment questions

(Hand these questions in!)

- 1. Let $f: X \to Y$ be a continuous function of metric spaces. For each of the following statements, either prove the statement, or state a counterexample. You may state the counterexample without proof.
 - (a) If $U \subseteq X$ is open, then $f(U) \subseteq Y$ is open.
 - (b) If $C \subseteq X$ is closed, then $f(C) \subseteq Y$ is closed.
 - (c) If $C \subseteq X$ is sequentially compact, then $f(C) \subseteq Y$ is sequentially compact.
 - (d) If $C \subseteq Y$ is sequentially compact, then $f^{-1}(C)$ is sequentially compact.
 - (e) If $B \subseteq X$ is bounded, then $f(B) \subseteq Y$ is bounded.
 - (f) If $B \subseteq Y$ is bounded, then $f^{-1}(B) \subseteq X$ is bounded.
 - (g) If X is complete, then f(X) (with metric space structure inherited from Y) is complete.

Hint: Below are some continuous functions that are useful sources of counterexamples. Subsets of \mathbb{R} have the Euclidean metric unless otherwise noted.

$$(\mathbb{R}, \text{discrete}) \longrightarrow (\mathbb{R}, \text{Euclidean}) \qquad \qquad \mathbb{R} \longrightarrow (-1, 1)$$

$$x \longmapsto x \qquad \qquad x \longmapsto \frac{\arctan(x)}{\pi/2}$$

$$(0, \infty) \longrightarrow (0, \infty) \qquad \qquad \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{1}{x} \qquad \qquad x \longmapsto 0$$

- 2. Let (X, d_X) and (Y, d_Y) be metric spaces. Suppose that $C \subseteq X$ and $D \subseteq Y$ are closed subsets. Prove or find a counterexample: the subset $C \times D \subseteq X \times Y$ is closed with respect to the product metric.
- 3. Let (X, d_X) , (Y, d_Y) , and (Z, d_Z) be a metric spaces, and suppose that $f: Z \to X$ and $g: Z \to Y$ are continuous functions. Prove that the function

$$(f \times g): Z \longrightarrow X \times Y$$
$$(f \times g)(z) = \Big(f(z), g(z)\Big)$$

is continuous with respect to the product metric $d_{X\times Y}$ on $X\times Y$.

- 4. Let (X, d_X) and (Y, d_Y) be nonempty metric spaces.
 - (a) Let $(x_n)_{n\in\mathbb{N}}$ and $(y_n)_{n\in\mathbb{N}}$ be sequences of points in X and Y, respectively. Show that the sequence of points $((x_n, y_n))_{n\in\mathbb{N}}$ in $(X \times Y, d_{X \times Y})$ converges if and only if both $(x_n)_{n\in\mathbb{N}}$ and $(y_n)_{n\in\mathbb{N}}$ converge.

Hint: Worksheet # 7 Problems 2(b) and 3(a).

- (b) Show that $X \times Y$ is sequentially compact if and only if both X and Y are.
- 5. (a) Suppose that B is a nonempty closed and bounded subset of \mathbb{R} . Explain why the Least Upper Bound Property of \mathbb{R} implies that the supremum of B exists, and show that B contains its supremum.
 - (b) Prove the following theorem. This theorem is one of the important reasons we care about sequential compactness!

Theorem (Extreme value theorem for metric spaces). Let (X, d) be a metric space and C a nonempty, sequentially compact subset of X. Let $f: X \to \mathbb{R}$ be a continuous function. Then there is a point $c \in C$ so that

$$f(c) = \sup_{x \in C} f(x).$$

In other words, the restriction $f|_C$ achieves its supremum.