Warm-up questions

(These warm-up questions are optional, and won't be graded.)

- 1. Let (X, \mathcal{T}) be a topological space. Show that any subset $A = \{x\} \subseteq X$ of a single element is connected.
- 2. Let $X = \{a, b, c, d\}$ with the topology

$$\mathcal{T} = \{ \emptyset, \{a\}, \{a, b\}, \{c\}, \{a, c\}, \{a, b, c\}, \{a, b, d\}, \{a, b, c, d\} \}.$$

Is X connected?

- 3. (a) Show that, for $a, b \in \mathbb{R}$, the subsets \emptyset , $\{a\}, (a, b), (a, b], [a, b), [a, b], (a, \infty), [a, \infty), (\infty, b), (\infty, b],$ and \mathbb{R} of \mathbb{R} are all intervals in the sense of Problem b.
 - (b) Show that every interval must have one of these forms.
- 4. Give an example of a subset A of \mathbb{R} (with the standard topology) such that A is not connected, but \overline{A} is connected. (Compare to Assignment Problem ??)
- 5. Let (X, \mathcal{T}) be a topological space.
 - (a) Let (X, \mathcal{T}) be a topological space. Explain why the condition that X is compact is stronger than the assumption that X has a finite open cover.
 - (b) Show that every topological space has a finite open cover. *Hint:* What is the first axiom of a topology?
- 6. Let (X, \mathcal{T}) be a topological space, and $A \subseteq X$ a subset. Prove that the two following definitions of compactness are equivalent.
 - The subset A is *compact* if it is a compact topological space with respect to the subspace topology \mathcal{T}_A .
 - The subset A is *compact* if it satisfies the following property: for any collection of open subsets $\{U_i\}_{i \in I}$ of X such that $A \subseteq \bigcup_{i \in I} U_i$, there is a finite subscollection U_1, U_2, \ldots, U_n such that $A \subseteq \bigcup_{i=1}^n U_i$.
- 7. Give an example of a subsets $A \subseteq B$ of \mathbb{R} such that ...
 - (a) A is compact, and B is noncompact
 - (b) B is compact, and A is noncompact
- 8. Determine the connected components of \mathbb{R} with the following topologies.
 - (a) the topology induced by the Euclidean metric
 - (b) the discrete topology
 - (c) the indiscrete topology
 - (d) the cofinite topology

Assignment questions

(Hand these questions in!)

- 1. (a) Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. Let $f : X \to Y$ be a continuous map. Prove that if X is connected, then f(X) is connected. In other words, the continuous image of a connected space is connected.
 - (b) Recall the Intermediate Value Theorem from real analysis (which you may use without proof).

Intermediate Value Theorem. If $f : [a, b] \to \mathbb{R}$ is continuous and d lies between f(a) and f(b) (i.e. either $f(a) \leq d \leq f(b)$ or $f(b) \leq d \leq f(a)$), then there exists $c \in [a, b]$ such that f(c) = d.

Define a subset $A \subseteq \mathbb{R}$ to be an *interval* if whenever $x, y \in A$ and z lies between x and y, then $z \in A$.

Prove that any interval of \mathbb{R} is connected. *Hint:* Worksheet #15 Problem 4.

(c) Prove that any subset of \mathbb{R} that is not an interval is disconnected.

These last two results together prove:

Theorem (Connected subsets of \mathbb{R}). A subset of \mathbb{R} is a connected if and only if it is an interval.

2. (a) Prove the following result.

Theorem (Generalized Intermediate Value Theorem). Let (X, \mathcal{T}_X) be a connected topological space, and let $f : X \to \mathbb{R}$ be a continuous function (where the topology on \mathbb{R} is induced by the Euclidean metric). If $x, y \in X$ and c lies between f(x) and f(y), then there exists $z \in X$ such that f(z) = c.

(b) Prove that any continuous function $f : [0,1] \to [0,1]$ has a fixed point. (In other words, show that there is some $x \in [0,1]$ so that f(x) = x). *Hint:* Consider the function

$$g: [0,1] \to \mathbb{R}$$
$$g(x) = f(x) - x.$$

3. Prove the following result. This theorem is a major reason we care about compactness!

Theorem (Generalized Extreme Value Theorem). Let X be a nonempty compact topological space, and let $f: X \to \mathbb{R}$ be a continuous function (where \mathbb{R} has the standard topology). Then $\sup(f(X)) < \infty$, and there exists some $z \in X$ such that $f(z) = \sup(f(X))$. That is, f achieves its supremum on X.

Hint: See Worksheet #17 Problem 2, 4(a), 4(b), and Homework #6 Problem 5(a).

4. (a) Let (X, d) be a metric space. Suppose that (a_n)_{n∈ℕ} is a sequence in X that contains no convergent subsequence. Prove that, for every x ∈ X, there is some ε_x > 0 such that B_{ε_x}(x) contains only finitely many points of the sequence.

(b) Prove that any compact metric space is sequentially compact.

Combined with Homework #5 Problem 5, this exercise proves:

Theorem (Compactness vs sequential compactness in metric spaces). Let (X, d) be a metric space. Then X is compact if and only if X is sequentially compact.

(Neither direction of this theorem holds, however, for arbitrary topological spaces!) Combined with Homework #5 Problem 4, this exercise proves:

Theorem (Compactness in \mathbb{R}^n). Endow \mathbb{R}^n with the Euclidean metric. A subspace $S \subseteq \mathbb{R}^n$ is compact if and only if it is closed and bounded.