Warm-up questions

(These warm-up questions are optional, and won't be graded.)

1. Let $X=\{a, b, c, d\}$. Let \mathcal{T} be the topology on X

$$
\mathcal{T}=\{\varnothing,\{b\},\{c\},\{a, b\},\{b, c\},\{a, b, c\},\{b, c, d\}, X\} .
$$

(a) Which elements of X are limits of the constant sequence $x_{n}=d$? The constant sequence $x_{n}=a$? The constant sequence $x_{n}=b$?
(b) Give an example of a sequence in X that does not converge.
2. Let $X=\{0,1\}$. Find a topology on X for which the following sequence converges:

$$
01010101 \ldots
$$

3. Suppose that (X, \mathcal{T}) is a topological space, and that $\left(a_{n}\right)_{n \in \mathbb{N}}$ is a sequence in X that converges to $a_{\infty} \in X$. Prove that any subsequence of $\left(a_{n}\right)_{n \in \mathbb{N}}$ converges to $a_{\infty} \in X$.
4. Let X be a topological space with the indiscrete topology. Prove that any sequence of points in X converges to every point in X.

Worksheet problems

(Hand these questions in!)

- Worksheet \#13 Problems 1, 3.
- Worksheet \#14 Problems 2(b), 4.

Assignment questions

(Hand these questions in!)

1. (a) Let A be a subset of a topological space X. Show that $\partial(\operatorname{Int}(A))$ is contained in ∂A, but show by example that these sets need not be equal.
(b) Let A be a subset of a topological space X. Show that $\partial(\bar{A})$ is contained in ∂A, but show by example that these sets need not be equal.
2. Definition (path). Let X be a topological space, and let $I=[0,1] \subseteq \mathbb{R}$ be the unit interval with the standard topology. A path in X is a continuous function $\gamma: I \rightarrow X$. For points $x, y \in X$, we say that a path γ is a path from x to y if $\gamma(0)=x$ and $\gamma(1)=y$.
Note that the path γ does not need to be injective. For example, the constant path $\gamma(t)=x$ is a path from x to x.
For these problems (as always) you may assume any standard results about which functions between Euclidean spaces (with the standard topology) are continuous.
(a) Given two points $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ in \mathbb{R}^{n}, construct a path from x to y.
(b) Let x, y be points in the space \mathbb{R} with the cofinite topology. Construct (with proof) a path from x to y.
(c) Let $X=\{a, b, c, d\}$ be a topological space with the topology

$$
\mathcal{T}=\{\varnothing,\{a\},\{b\},\{a, b\},\{a, b, c\},\{a, b, d\},\{a, b, c, d\}\}
$$

Construct (with proof) a path in X from a to d.
3. Let X be a topological space.
(a) Let $x, y \in X$ and suppose that there exists a path from x to y. Show that there exists a path from y to x.
(b) Let $x, y, z \in X$. Show that, if there exists a path from x to y, and a path from y to z, then there exists a path from x to z. Hint: Homework \#10 Problem 2.

Remark: Although we will not formally define this term, we remark that this problem shows that, for a topological space X, the condition "there exists a path from x to y " defines an equivalence relation on the points of X.
4. Let $\left(X, \mathcal{T}_{X}\right)$ be a topological space, and endow the product $X \times X$ with the product topology $\mathcal{T}_{X \times X}$. The set

$$
\Delta=\{(x, x) \mid x \in X\} \subseteq X \times X
$$

is called the diagonal of $X \times X$. Prove that X is Hausdorff if and only if the diagonal Δ is a closed subset of $X \times X$.
5. Consider the set \mathbb{R} with the cofinite topology. Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence of points in \mathbb{R}.
(a) Suppose that the sequence has the property that each term is repeated at most finitely many times. More precisely, suppose for each $r \in \mathbb{R}$ that $r=a_{n}$ for at most finitely many values of $n \in \mathbb{N}$. Which points of \mathbb{R} are limits of the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$?
(b) Now suppose the set $\left\{a_{n} \mid n \in \mathbb{N}\right\}$ is finite. Under what conditions will the sequence converge, and what will its limit(s) be?
Remember to justify your solutions!

